doi: 10.17951/a.2020.74.2.31-40

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXIV, NO. 2, 2020	SECTIO A	31 - 40
-------------------------	----------	---------

SZYMON IGNACIUK and MACIEJ PAROL

Kaplan classes of a certain family of functions

ABSTRACT. We give the complete characterization of members of Kaplan classes of products of power functions with all zeros symmetrically distributed in $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$ and weakly monotonic sequence of powers. In this way we extend Sheil-Small's theorem. We apply the obtained result to study univalence of antiderivative of these products of power functions.

Introduction. Let \mathcal{H}_d be the class of all analytic functions $f : \mathbb{D} \to \mathbb{C}$ normalized by f(0) = 1 and such that $f \neq 0$ in $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{S} be the class of all analytic functions $f : \mathbb{D} \to \mathbb{C}$ normalized by f(0) = f'(0) - 1 = 0 which are univalent and \mathcal{C} be the class of functions in \mathcal{S} that are close-to-convex. For $\alpha, \beta \geq 0$ the Kaplan class $K(\alpha, \beta)$ is the set of all functions $f \in \mathcal{H}_d$ satisfying one of the two equivalent conditions:

(0.1)
$$\arg f(re^{i\theta_2}) - \arg f(re^{i\theta_1}) \le \beta \pi - \frac{1}{2}(\alpha - \beta)(\theta_1 - \theta_2),$$

(0.2)
$$-\alpha \pi - \frac{1}{2}(\alpha - \beta)(\theta_1 - \theta_2) \le \arg f(r \mathrm{e}^{\mathrm{i}\theta_2}) - \arg f(r \mathrm{e}^{\mathrm{i}\theta_1}).$$

for 0 < r < 1 and $\theta_1 < \theta_2 < \theta_1 + 2\pi$ (see [6, pp. 32–33]).

Let $\mathbb{N}_j := \mathbb{N} \cap [1; j]$ for $j \in \mathbb{N}$ and $\mathbb{R}^+ := (0; +\infty)$. Fix $n \in \mathbb{N}$ and a weakly monotonic sequence $m : \mathbb{N}_n \to \mathbb{R}^+$. Define the functions

(0.3)
$$\mathbb{D} \ni z \mapsto f_k(z) := 1 - z \mathrm{e}^{-\mathrm{i}\frac{2\pi(k-1)}{n}} \quad \text{for} \quad k \in \mathbb{N}_n$$

²⁰¹⁰ Mathematics Subject Classification. Primary: 30C15; secondary: 30C45, 30C55. Key words and phrases. Kaplan classes, univalence, close-to-convex functions, critical points.

and

(0.4)
$$\mathbb{D} \ni z \mapsto P_n(z;m) := \prod_{k=1}^n f_k^{m_k}(z) \, .$$

We denote the class of all such functions $P_n(\cdot; m)$ by \mathcal{P}_n . Let us notice that the function $P_n(\cdot; m)$ is a product of power functions with all zeros symmetrically distributed in \mathbb{T} . In particular if $m_k \in \mathbb{N}$ for all $k \in \mathbb{N}_n$, then $P_n(\cdot; m)$ is a polynomial of degree $\sum_{k=1}^n m_k$ with all zeros symmetrically distributed in \mathbb{T} . The functions of the form $\mathbb{D} \ni z \mapsto 1 - ze^{-it}$ for $t \in [0; 2\pi)$ play the central role in the univalent functions theory. Due to the result of Royster [5] they are used for example as an extremal functions in many articles (see [1, 4]).

The Kaplan classes were used as the universal tool for establishing many important subclasses of S (see [6, p. 47]). Complete membership study even for the simplest functions from \mathcal{H}_d was not carried out. For a given function it can be difficult to check if it belongs to any Kaplan class. We deduce from [2, Theorem 1.1] that $f_k \in K(1,0)$ for any $k \in \mathbb{N}_n$. Moreover, Sheil-Small proved the following theorem (see [7, p. 248]).

Theorem A (Sheil-Small). For any polynomial $Q \in \mathcal{H}_d$ of the degree $n \in \mathbb{N} \setminus \{1\}$ with all zeros in \mathbb{T} , if λ is the minimal arclength between two consecutive zeros of Q, then $Q \in K(1, 2\pi/\lambda - n + 1)$.

Theorem A can also be deduced from [3], where Jahangiri obtained a certain gap condition for polynomials with all zeros in \mathbb{T} . In [2], we extended the Jahangiri's result for all $\alpha, \beta \geq 0$ and effectively determined complete membership to Kaplan classes of polynomials with all zeros in \mathbb{T} . In this article, we extend the above results by describing complete membership to Kaplan classes of functions from the class \mathcal{P}_n for all $n \in \mathbb{N}$. To this end we recall some properties of Kaplan classes (see [7, p. 245]).

Lemma B. For all $\alpha_1, \alpha_2, \beta_1, \beta_2 \ge 0$ and t > 0 the following conditions hold:

$$\begin{split} f &\in K(\alpha_1, \beta_1) \text{ and } g \in K(\alpha_2, \beta_2) \Rightarrow fg \in K(\alpha_1 + \alpha_2, \beta_1 + \beta_2) \,, \\ f &\in K(\alpha_1, \beta_1) \Rightarrow f^0 \in K(0, 0) \,, \\ f &\in K(\alpha_1, \beta_1) \iff f^t \in K(t\alpha_1, t\beta_1) \,, \\ f &\in K(\alpha_1, \beta_1) \iff f^{-1} \in K(\beta_1, \alpha_1) \,. \end{split}$$

1. Main theorems. Assume that $m_0 := 0$. For all $j \in \mathbb{N}$ and $k \in \mathbb{N}_n$ we define

$$\begin{split} t_{j} &:= \frac{2\pi(j-1)}{n}, \quad s := \sum_{l=1}^{n} m_{l}, \\ a_{k} &:= -\frac{n-k}{k}, \quad b_{k} := -s + \frac{n}{k} \sum_{l=n-k}^{n} m_{l}, \\ x_{k} &:= \sum_{l=n-k}^{n} m_{l} - km_{n-k}, \quad y_{k} := (n-k)m_{n-k} - \sum_{l=1}^{n-k-1} m_{l}, \\ \Pi_{0} &:= \{(x,y) \in \mathbb{R}^{2} : x \ge m_{n}\}, \\ \Pi_{k} &:= \{(x,y) \in \mathbb{R}^{2} : y \ge a_{k}x + b_{k}\}, \\ \Pi_{0} &:= \{(x,y) \in \mathbb{R}^{2} : 0 \le x < m_{n}\}, \\ \Pi_{k}' &:= \{(x,y) \in \mathbb{R}^{2} : 0 \le x, \ 0 \le y < a_{k}x + b_{k}\}, \\ \Pi &:= \bigcap_{l=0}^{n} \Pi_{l}. \end{split}$$

Now we give the complete characterization of membership of $P_n(\cdot; m)$ to Kaplan classes.

Theorem 1.1. If $m : \mathbb{N}_n \to \mathbb{R}^+$ is weakly monotonic, then for all $\alpha, \beta \ge 0$, $P_n(\cdot; m) \in K(\alpha, \beta)$ if and only if $(\alpha, \beta) \in \Pi$.

Proof. Without loss of generality we assume that m is a nondecreasing sequence. Since $\prod_{k=1}^{n} f_k(z) = 1 - z^n$ and $1 - z^n$ has positive real part in \mathbb{D} , we have

(1.1)
$$\prod_{k=1}^{n} f_k \in K(1,1).$$

First we prove that $P_n(\cdot; m) \in K(x_k, y_k)$ for $k \in \mathbb{N}_n$. Fix $k \in \mathbb{N}_n$. Therefore,

$$P_{n}(\cdot;m) = \prod_{l=1}^{n} f_{l}^{m_{n-k}} \prod_{l=1}^{n} f_{l}^{m_{l}-m_{n-k}}$$
$$= \prod_{l=1}^{n} f_{l}^{m_{n-k}} \prod_{l=1}^{n-k-1} f_{l}^{m_{l}-m_{n-k}} \prod_{l=n-k+1}^{n} f_{l}^{m_{l}-m_{n-k}}$$
$$= \prod_{l=1}^{n} f_{l}^{m_{n-k}} \prod_{l=1}^{n-k-1} \left(\frac{1}{f_{l}}\right)^{m_{n-k}-m_{l}} \prod_{l=n-k+1}^{n} f_{l}^{m_{l}-m_{n-k}}.$$

By (1.1) and Lemma B, we get

$$\prod_{l=1}^{n} f_l^{m_{n-k}} \in K(m_{n-k}, m_{n-k}),$$

(1/f_l)^{m_{n-k}-m_l} $\in K(0, m_{n-k} - m_l)$ for $l \in \mathbb{N}_{n-k-1}$

and

$$f_l^{m_l-m_{n-k}} \in K(m_l-m_{n-k},0)$$
 for $l \in \mathbb{N}_n \setminus \mathbb{N}_{n-k}$.

Then

$$P_n(\cdot;m) \in K\left(m_{n-k} + \sum_{l=n-k+1}^n (m_l - m_{n-k}), m_{n-k} + \sum_{l=1}^{n-k-1} (m_{n-k} - m_l)\right)$$

and as a consequence

(1.2)
$$P_n(\cdot;m) \in K(x_k, y_k).$$

By Lemma B, we obtain $f \in \Pi$.

Now we prove the second part of the theorem. Fix $k \in \mathbb{N}_{n-1}$. Consider the left side of inequality (0.1) with $\mathbb{N} \ni j \mapsto \theta_1(j) := -2\pi/n + 1/j$, $\mathbb{N} \ni j \mapsto \theta_2(j) := 2\pi - 2\pi(k+1)/n - 1/j$ and $\mathbb{N} \ni j \mapsto r_j := 1 - 1/j^2$. Therefore,

$$\begin{split} \arg(P_n(r_j e^{i\theta_2}; m)) &- \arg(P_n(r_j e^{i\theta_1}; m)) \\ &= \sum_{l=1}^n m_l \left(\arctan\left(\frac{-r_j \sin\left(\theta_2(j) - \frac{2\pi}{n}(l-1)\right)}{1 - r_j \cos\left(\theta_2(j) - \frac{2\pi}{n}(l-1)\right)}\right) \right) \\ &- \arctan\left(\frac{-r_j \sin\left(\theta_1(j) - \frac{2\pi}{n}(l-1)\right)}{1 - r_j \cos\left(\theta_1(j) - \frac{2\pi}{n}(l-1)\right)}\right) \right) \\ &= \sum_{l=1}^n m_l \left(\arctan\left(\frac{r_j \sin\left(\frac{2\pi}{n}(k+l) + \frac{1}{j}\right)}{1 - r_j \cos\left(\frac{2\pi}{n}(k+l) + \frac{1}{j}\right)}\right) \\ &- \arctan\left(\frac{r_j \sin\left(\frac{2\pi l}{n} - \frac{1}{j}\right)}{1 - r_j \cos\left(\frac{2\pi l}{n} - \frac{1}{j}\right)}\right) \right) \\ &= \sum_{l=1}^{n-k-1} m_l \left(\arctan\left(\frac{r_j \sin\left(\frac{2\pi}{n}(k+l) + \frac{1}{j}\right)}{1 - r_j \cos\left(\frac{2\pi}{n}(k+l) + \frac{1}{j}\right)}\right) \\ &- \arctan\left(\frac{r_j \sin\left(\frac{2\pi l}{n} - \frac{1}{j}\right)}{1 - r_j \cos\left(\frac{2\pi l}{n} - \frac{1}{j}\right)}\right) \right) \end{split}$$

$$+\sum_{l=n-k+1}^{n-1} m_l \left(\arctan\left(\frac{r_j \sin\left(\frac{2\pi}{n}(k+l)+\frac{1}{j}\right)}{1-r_j \cos\left(\frac{2\pi}{n}(k+l)+\frac{1}{j}\right)}\right) - \arctan\left(\frac{r_j \sin\left(\frac{2\pi l}{n}-\frac{1}{j}\right)}{1-r_j \cos\left(\frac{2\pi l}{n}-\frac{1}{j}\right)}\right)\right) + m_{n-k} \left(\arctan\left(\frac{\left(1-\frac{1}{j^2}\right) \sin\left(\frac{1}{j}\right)}{1-\left(1-\frac{1}{j^2}\right) \cos\left(\frac{1}{j}\right)}\right) + \arctan\left(\frac{r_j \sin\left(\frac{2\pi k}{n}+\frac{1}{j}\right)}{1-r_j \cos\left(\frac{2\pi k}{n}+\frac{1}{j}\right)}\right)\right) + m_n \left(\arctan\left(\frac{r_j \sin\left(\frac{2\pi k}{n}+\frac{1}{j}\right)}{1-r_j \cos\left(\frac{2\pi k}{n}+\frac{1}{j}\right)}\right) + \arctan\left(\frac{\left(1-\frac{1}{j^2}\right) \sin\left(\frac{1}{j}\right)}{1-\left(1-\frac{1}{j^2}\right) \cos\left(\frac{1}{j}\right)}\right)\right)$$

and as a consequence

$$\begin{split} &\lim_{j \to +\infty} (\arg(P_n(r_j e^{i\theta_2}; m)) - \arg(P_n(r_j e^{i\theta_1}; m))) \\ &= \sum_{l=1}^{n-k-1} m_l \left(\arctan\left(\frac{\sin\left(\frac{2\pi}{n}(k+l)\right)}{1 - \cos\left(\frac{2\pi}{n}(k+l)\right)}\right) - \arctan\left(\frac{\sin\left(\frac{2\pi l}{n}\right)}{1 - \cos\left(\frac{2\pi l}{n}\right)}\right) \right) \\ &+ \sum_{l=n-k+1}^{n-1} m_l \left(\arctan\left(\frac{\sin\left(\frac{2\pi}{n}(k+l)\right)}{1 - \cos\left(\frac{2\pi}{n}(k+l)\right)}\right) - \arctan\left(\frac{\sin\left(\frac{2\pi l}{n}\right)}{1 - \cos\left(\frac{2\pi l}{n}\right)}\right) \right) \\ &+ m_{n-k} \left(\frac{\pi}{2} + \arctan\left(\frac{\sin\left(\frac{2\pi k}{n}\right)}{1 - \cos\left(\frac{2\pi k}{n}\right)}\right) \right) \\ &+ m_n \left(\arctan\left(\frac{\sin\left(\frac{2\pi k}{n}\right)}{1 - \cos\left(\frac{2\pi k}{n}\right)}\right) + \frac{\pi}{2}\right). \end{split}$$

By the trigonometric identity:

$$\frac{\sin x}{1 - \cos x} = \tan\left(\frac{\pi}{2} - \frac{x}{2}\right) \quad \text{for} \quad x \in \mathbb{R} \setminus \bigcup_{j \in \mathbb{Z}} \{2j\pi\}$$

we get

$$\lim_{j \to +\infty} (\arg(P_n(r_j e^{i\theta_2}; m)) - \arg(P_n(r_j e^{i\theta_1}; m)))$$

$$= \sum_{l=1}^{n-k-1} m_l \left(\arctan\left(\tan\left(\frac{\pi}{2} - \frac{\pi}{n}(k+l)\right)\right) - \arctan\left(\tan\left(\frac{\pi}{2} - \frac{\pi l}{n}\right)\right)\right)$$

$$+ \sum_{l=n-k+1}^{n-1} m_l \left(\arctan\left(\tan\left(\frac{\pi}{2} - \frac{\pi}{n}(k+l)\right)\right) - \arctan\left(\tan\left(\frac{\pi}{2} - \frac{\pi l}{n}\right)\right)\right)$$

$$+ m_{n-k} \left(\frac{\pi}{2} + \arctan\left(\tan\left(\frac{\pi}{2} - \frac{\pi k}{n}\right)\right)\right)$$

$$+ m_n \left(\arctan\left(\tan\left(\frac{\pi}{2} - \frac{\pi k}{n}\right)\right) + \frac{\pi}{2}\right).$$

Since

$$\frac{\pi}{2} - \frac{\pi}{n}(k+l) \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \text{ for } l \in \mathbb{N}_{n-k-1},$$
$$\frac{\pi}{2} - \frac{\pi}{n}(k+l) \in \left(-\frac{3\pi}{2}; -\frac{\pi}{2}\right) \text{ for } l \in \mathbb{N}_{n-1} \setminus \mathbb{N}_{n-k}$$

and

$$\frac{\pi}{2} - \frac{\pi l}{n} \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \text{ for } l \in \mathbb{N}_{n-1},$$

we have

$$\lim_{j \to +\infty} (\arg(P_n(r_j e^{i\theta_2}; m)) - \arg(P_n(r_j e^{i\theta_1}; m)))$$

$$= \sum_{l=1}^{n-k-1} m_l \left(\frac{\pi}{2} - \frac{\pi}{n}(k+l) - \frac{\pi}{2} + \frac{\pi l}{n}\right)$$

$$+ \sum_{l=n-k+1}^{n-1} m_l \left(\frac{3\pi}{2} - \frac{\pi}{n}(k+l) - \frac{\pi}{2} + \frac{\pi l}{n}\right)$$

$$+ m_{n-k} \left(\frac{\pi}{2} + \frac{\pi}{2} - \frac{\pi k}{n}\right) + m_n \left(\frac{\pi}{2} - \frac{\pi k}{n} + \frac{\pi}{2}\right)$$

$$= -\frac{\pi ks}{n} + \pi \sum_{l=n-k}^{n} m_l.$$

On the other hand,

$$\lim_{j \to +\infty} \left(\beta \pi + \frac{1}{2} (\alpha - \beta) (\theta_2(j) - \theta_1(j)) \right) = \beta \pi + (\alpha - \beta) \left(\pi - \frac{\pi k}{n} \right)$$
$$= \beta \pi \frac{k}{n} + \alpha \pi \frac{n - k}{n},$$

from which we deduce that inequality (0.1) does not hold for

$$\beta < -\frac{n-k}{k}\alpha - s + \frac{n}{k}\sum_{l=n-k}^{n}m_{l}$$

and as a consequence $P_n(\cdot; m) \notin K(\alpha, \beta)$ for $(\alpha, \beta) \in \Pi'_k$. Hence

(1.3)
$$P_n(\cdot;m) \notin \bigcup_{k=1}^{n-1} \Pi'_k.$$

Now we prove that $P_n(\cdot; m) \notin \Pi'_0$. Consider the right side of inequality (0.2) with $\mathbb{N} \ni j \mapsto \theta_1(j) := 2\pi(n-1)/n + 1/j$, $\mathbb{N} \ni j \mapsto \theta_2(j) := 2\pi(n-1)/n - 1/j$ and $\mathbb{N} \ni j \mapsto r_j := 1 - 1/j^2$. Therefore,

$$\arg(P_n(r_j e^{i\theta_2}; m)) - \arg(P_n(r_j e^{i\theta_1}; m))$$

$$= -2m_n \arctan\left(\frac{\left(1 - \frac{1}{j^2}\right)\sin\left(\frac{1}{j}\right)}{1 - \left(1 - \frac{1}{j^2}\right)\cos\left(\frac{1}{j}\right)}\right)$$

$$+ \sum_{l=1}^{n-1} m_l \left(\arctan\left(\frac{-r_j \sin\left(\frac{2\pi l}{n} - \frac{1}{j}\right)}{1 - r_j \cos\left(\frac{2\pi l}{n} - \frac{1}{j}\right)}\right)$$

$$- \arctan\left(\frac{-r_j \sin\left(\frac{2\pi l}{n} + \frac{1}{j}\right)}{1 - r_j \cos\left(\frac{2\pi l}{n} + \frac{1}{j}\right)}\right)\right)$$

and as a consequence

$$\lim_{j \to +\infty} \left(\arg \left(P_n \left(r_j e^{i\theta_2}; m \right) \right) - \arg \left(P_n \left(r_j e^{i\theta_1}; m \right) \right) \right) = -m_n \pi$$

On the other hand, we have

$$\lim_{j \to +\infty} \left(-\alpha \pi + \frac{1}{2} (\alpha - \beta) (\theta_2(j) - \theta_1(j)) \right) = -\alpha \pi \,,$$

from which we deduce that inequality (0.2) does not hold for $\alpha < m_n$ and as a consequence $P_n(\cdot; m) \notin K(\alpha, \beta)$ for $(\alpha, \beta) \in \Pi'_0$. From this and (1.3) we obtain

$$P_n(\cdot;m) \notin \bigcup_{k=0}^n \Pi'_k.$$

By Theorem A, if $m_k = 1$ for all $k \in \mathbb{N}_n$, then $P_n(\cdot; m) \in K(1, 1)$. Theorem 1.1 is an extension of Theorem A for functions from the class \mathcal{P}_n . Moreover, in the first part of the proof of Theorem 1.1 we obtain nontrivial, interesting factorization of $P_n(\cdot; m)$ (cf. [7, p. 246]). **Remark 1.2.** Let us notice that for a nondecreasing sequence $m : \mathbb{N}_n \to \mathbb{R}^+$ points (x_k, y_k) for $k \in \mathbb{N}_n$ are all vertices of the set Π . Analogously we can effectively determine vertices of Π if m is nonincreasing.

Let $\varphi'_q := (P_n(\cdot; m))^q$ for any $q \in \mathbb{R}$ such that $\varphi_q(0) = 0$. The complete characterization of functions $P_n(\cdot; m)$ belonging to Kaplan classes obtained in Theorem 1.1 can be used to study univalence of φ_q .

Theorem 1.3. If $m : \mathbb{N}_n \to \mathbb{R}^+$ is nondecreasing sequence, then for any $n \in \mathbb{N}, k \in \mathbb{N}_{n-1}$ and $q \ge 0$ the following implications hold:

(1.4)
$$s \ge nm_{n-1} - 2m_n \Longrightarrow \left(\varphi_q \in \mathcal{C} \iff q \in \left[0; \frac{1}{m_n}\right]\right),$$

(1.5) $s \in \left[(n+2k)m_{n-k-1} - 2\sum_{l=n-k}^n m_l; (n+2k)m_{n-k} - 2\sum_{l=n-k}^n m_l\right)$
 $\Longrightarrow \left(\varphi_q \in \mathcal{C} \iff q \in \left[0; \frac{n+2k}{n\sum_{l=n-k}^n m_l - ks}\right]\right).$

Proof. Let m be a nondecreasing sequence. Fix $q \ge 0$. First we prove (1.4). If $s \ge nm_{n-1} - 2m_n$, then $y_1 \le 3x_1$. This and Theorem 1.1 imply that $P_n(\cdot;m) \in K(m_n, 3m_n)$ and for any $\alpha \in [0; m_n)$, $P_n(\cdot;m) \notin K(\alpha, 3\alpha)$. Therefore, $(P_n(\cdot;m))^q \in K(1,3)$ if and only if $q \in [0; 1/m_n]$.

Now we prove (1.5). Fix $k \in \mathbb{N}_{n-1}$. Assume that

$$s \in \left[(n+2k)m_{n-k-1} - 2\sum_{l=n-k}^{n} m_l; (n+2k)m_{n-k} - 2\sum_{l=n-k}^{n} m_l \right).$$

Then

$$\begin{cases} y_l > 3x_l & \text{ for } l \in \mathbb{N}_k \,, \\ y_l \le 3x_l & \text{ for } l \in \mathbb{N}_n \setminus \mathbb{N}_k \,. \end{cases}$$

This and Theorem 1.1 imply that

$$P_n(\cdot;m) \in K\left(\frac{n}{n+2k}\sum_{l=n-k}^n m_l - ks, \frac{3n}{n+2k}\sum_{l=n-k}^n m_l - ks\right)$$

and for any

$$\alpha \in \left[0; \frac{n}{n+2k} \sum_{l=n-k}^{n} m_l - ks \right),$$

 $P_n(\cdot; m) \notin K(\alpha, 3\alpha)$, which leads to (1.5).

Theorem 1.4. If $m : \mathbb{N}_n \to \mathbb{R}^+$ is a nondecreasing sequence, then for any $n \in \mathbb{N}, k \in \mathbb{N}_{n-1}$ and q < 0 the following implications hold:

(1.6)
$$s \ge \frac{2}{3}m_n + nm_{n-1} \Longrightarrow \left(\varphi_q \in \mathcal{C} \iff q \in \left[-\frac{3}{m_n}; 0\right]\right),$$

(1.7)
$$s \in \left[\left(n - \frac{2}{3}k \right) m_{n-k-1} + \frac{2}{3} \sum_{l=n-k}^{n} m_{l}; \left(n - \frac{2}{3}k \right) m_{n-k} + \frac{2}{3} \sum_{l=n-k}^{n} m_{l} \right) \\ \Longrightarrow \left(\varphi_{q} \in \mathcal{C} \iff q \in \left[\frac{3n - 2k}{ks - n \sum_{l=n-k}^{n} m_{l}}; 0 \right] \right).$$

Proof. Let *m* be a nondecreasing sequence. Fix q < 0. First we prove (1.6). If $s \geq 2/3m_n + nm_{n-1}$, then $3y_1 \leq x_1$. This and Theorem 1.1 imply that $P_n(\cdot;m) \in K(m_n, 1/3m_n)$ and for any $\alpha \in [0; m_n)$, $P_n(\cdot;m) \notin K(\alpha, 1/3\alpha)$. Therefore, $(P_n(\cdot;m)) \in K(1,3)$ if and only if $q \in [-3/m_n; 0)$.

Now we prove (1.7). Fix $k \in \mathbb{N}_{n-1}$. Assume that

$$s \in \left[\left(n - \frac{2}{3}k \right) m_{n-k-1} + \frac{2}{3} \sum_{l=n-k}^{n} m_{l}; \left(n - \frac{2}{3}k \right) m_{n-k} + \frac{2}{3} \sum_{l=n-k}^{n} m_{l} \right).$$

Then

$$\begin{cases} 3y_l > x_l & \text{ for } l \in \mathbb{N}_k ,\\ 3y_l \le x_l & \text{ for } l \in \mathbb{N}_n \setminus \mathbb{N}_k . \end{cases}$$

This and Theorem 1.1 imply that

$$P_n(\cdot;m) \in K\left(\frac{3n}{3n-2k}\sum_{l=n-k}^n m_l - ks, \frac{n}{3n-2k}\sum_{l=n-k}^n m_l - ks\right)$$

and for any

$$\alpha \in \left[0; \frac{n}{3n-2k} \sum_{l=n-k}^{n} m_l - ks\right),\,$$

 $P_n(\cdot; m) \notin K(3\alpha, \alpha)$, which leads to (1.7).

References

- Goodman, A. W., Univalent functions. Vol. II, Mariner Pub. Co., Inc., Tampa, Florida, 1983.
- [2] Ignaciuk, S., Parol, M., Zeros of complex polynomials and Kaplan classes, Anal. Math. 46 (2020), 769–779.
- [3] Jahangiri, M., A gap condition for the zeroes of certain polynomials in Kaplan classes K(α, β), Mathematika 34 (1987), 53–63.
- [4] Kim, Y. J., Merkes, E. P., On certain convex sets in the space of locally schlicht functions, Trans. Amer. Math. Soc. 196 (1974), 217–224.
- [5] Royster, W. C., On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385–387.
- [6] Ruscheweyh, S., Convolutions in Geometric Function Theory, Séminaire de Math. Sup. 83, Presses de l'Université de Montréal, Montréal, 1982.
- [7] Sheil-Small, T., Complex Polynomials, Cambridge University Press, Cambridge, 2002.

Szymon Ignaciuk Department of Applied Mathematics and Computer Science University of Life Sciences in Lublin ul. Głęboka 28 20-612 Lublin Poland e-mail: szymon.ignaciuk@up.lublin.pl

Maciej Parol Department of Mathematical Analysis The John Paul II Catholic University of Lublin ul. Konstantynów 1 H 20-708 Lublin Poland e-mail: mparol@kul.lublin.pl

Received July 10, 2020