doi: 10.17951/a.2020.74.2.31-40

ANNALES
UNIVERSITATIS MARIAE CURIE-SKEODOWSKA
LUBLIN-POLONIA

VOL. LXXIV, NO. 2, 2020 SECTIO A 31-40

SZYMON IGNACIUK and MACIEJ PAROL

Kaplan classes of a certain family of functions

ABSTRACT. We give the complete characterization of members of Kaplan
classes of products of power functions with all zeros symmetrically distributed
in T:={z € C: |z| = 1} and weakly monotonic sequence of powers. In this
way we extend Sheil-Small’s theorem. We apply the obtained result to study
univalence of antiderivative of these products of power functions.

Introduction. Let H, be the class of all analytic functions f : D — C
normalized by f(0) = 1 and such that f # 0in D := {z € C: |2| < 1}.
Let S be the class of all analytic functions f : D — C normalized by
f(0) = f’(0) — 1 = 0 which are univalent and C be the class of functions in
S that are close-to-convex. For «, 8 > 0 the Kaplan class K(«, ) is the set
of all functions f € H4 satisfying one of the two equivalent conditions:

(0.1) arg f(re'?) — arg f(re”) < pr — %(a — B)(61 — 62),

(0:2) —am — %(04 — B)(61 = 05) < arg f(re”) — arg f(re™).

for 0 < r <1 and 6 <6y < 0; + 27 (see [6, pp. 32-33]).
Let N; := NN [1;4] for j € N and RT := (0;+00). Fix n € N and a
weakly monotonic sequence m : N,, — R*. Define the functions

_.2m(k—1)

(0.3) Doz fr(z)=1—2e"" n for keN,
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and

(0.4) D3z Py = H

We denote the class of all such funct10ns Pn(~;m) by P,. Let us notice
that the function P,(-;m) is a product of power functions with all zeros
symmetrically distributed in T. In particular if my € N for all k € N,,, then
P,(;m) is a polynomial of degree ., my with all zeros symmetrically
distributed in T. The functions of the form D > z + 1 — ze~ ¥ for t € [0; 27)
play the central role in the univalent functions theory. Due to the result
of Royster [5] they are used for example as an extremal functions in many
articles (see [1, 4]).

The Kaplan classes were used as the universal tool for establishing many
important subclasses of S (see [6, p. 47]). Complete membership study even
for the simplest functions from Hy; was not carried out. For a given function
it can be difficult to check if it belongs to any Kaplan class. We deduce from
[2, Theorem 1.1] that f; € K(1,0) for any k € N,,. Moreover, Sheil-Small
proved the following theorem (see [7, p. 248]).

Theorem A (Sheil-Small). For any polynomial Q € Hg of the degree
n € N\ {1} with all zeros in T, if X\ is the minimal arclength between
two consecutive zeros of Q, then @Q € K(1,2r/X —n+1).

Theorem A can also be deduced from [3], where Jahangiri obtained a cer-
tain gap condition for polynomials with all zeros in T. In [2], we extended
the Jahangiri’s result for all o, 8 > 0 and effectively determined complete
membership to Kaplan classes of polynomials with all zeros in T. In this
article, we extend the above results by describing complete membership to
Kaplan classes of functions from the class Py, for all n € N. To this end we
recall some properties of Kaplan classes (see [7, p. 245]).

Lemma B. For all ay,as, 51,82 > 0 and t > 0 the following conditions
hold:

f € K(a,B1) and g € K(az,2) = fg € K(a1 + az, 1+ B2),
f € K(a,p1) = € K(0,0),
feK(a,p) < ft € K(tay,tp1),

( ) <= [T eK(f,m).
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1. Main theorems. Assume that mg:= 0. For all j € N and k& € N,, we
define

2 (j — 1)
=20 _Zmz,

—k
ak:_nk ’ b __S"'_*Zmlu
l=n—k
n n—k—1
T = Zml—kmn,k, Yk - (n— Mypy—f — th
l=n—k
o :={(z,y) €R* : x> m,},
I, = {(z,y) €R* 1y > apx + bi},
I == {(z,y) €R?: 0 < = < my},
pi={(z,y) eR*:0< 2, 0<y<apw+by},

Now we give the complete characterization of membership of P,(-;m) to
Kaplan classes.

Theorem 1.1. If m : N,, = R* is weakly monotonic, then for all o, 3 > 0,
P,(-;m) € K(a, B) if and only if (o, B) € II.

Proof. Without loss of generality we assume that m is a nondecreasing
sequence. Since [[r_; fx(z) = 1— 2" and 1 — 2" has positive real part in D,
we have

(1.1) I e K@.1).
k=1

First we prove that P,(-;m) € K(xp,yx) for k € N,,. Fix k € N,,. Therefore,

pom =L E=

=1

n—k—1

mnkll mlmnk || mlmnk

l=n—k+1

—k— My — =M n
mn k H ( ) H fml_mn—lc
I .

l=n—k+1

I
::]:

X
I

I
::]:

N
Il
—
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By (1.1) and Lemma B, we get

H mn keKmn ky Mp— k)

(1/fl)m"_k ™ e K(0,mp_ —my) for 1 € N1

and
lml_mn_k S K(ml — mn,k,O) for l e N, \ N,—k.
Then
n n—k—1
Pp(sm) € K(mnk + Y (=M k) Mk Y (Mg — mz))
l=n—k+1 =1

and as a consequence
(1.2) Po(m) € K(zk, yk) -

By Lemma B, we obtain f € II.

Now we prove the second part of the theorem. Fix £ € N,,_;. Con-
sider the left side of inequality (0.1) with N 3 5 +— 601(j) := —2n/n + 1/7,
N> j— b(j) =2 —2n(k+1)/n—1/jand N> j > r; :=1—1/52
Therefore,

arg(P, (rje?;m)) — arg(Py(r;e";m))

— Y my | arctan —r;sin (65(7) — T (L~ 1)) )
; l< k <1—rjcos(92(j)_2ﬂ(l_1))

rj51n<n( )+jl>
1—73(:05(277T k+1)+ )

oml 1
msm( Lit —3)
2nl 1
1—73(305( j)
n—k—1 7 sin <2ﬂ(k+l)+l)
: .

k 2
n
Z my | arctan
=1 1 —rjcos (27”(14:

n
= Z my | arctan
=1

— arctan
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n—1 75 sin ( T(k+1)+ l.)
+ Z my | arctan
I—n ki1 1 —r;jcos (2%(/6 +10)+ )
rj sin <2;rl %)
— arctan

2l 1
1 —rjcos ( ;)

(-2) ()
+ m,_i | arctan
1— <1 — —) cos <;)

-+ arctan

7; sin <M + l)

1—r; cos(Qka + ]>

o 2k 1
rjsm< " +j>

1—@005(%—%%)

(- 2)n ()
-+ arctan N

+ m,, | arctan

and as a consequence

n—k—1

my | arctan sin (%(k i l)) — arctan M
— : 1—cos (2 (k+1)) 1-—

- cos (27rl)
-1 .
5 sin (25 (k + 1)) B sm(?::l)
+ o my (arctan (1 " eos (Qn bt l))) arctan (1 o (Lﬁl)
s sm( o )
+ My i <2 + arctan (1 fcos( - )>>
sin 2k T
+my, (arctan (165%) + 2) .

By the trigonometric identity:

sin x

= an(%—g) for xER\U{2j7T}

JEZ

1 —cosx
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we get

lim (arg(Py(r;je'%;m)) — arg(P,(r;c%;m)))

Jj—+oo

n—k—1

)

= Z my <arctan (tan (g - %(k: + l))) — arctan <tan (W _

=1

+ nz:l my <arctan (tan (g — %(kz + l))) — arctan <tan (;r - —

l=n—k+1

2 n

T T 7wk
+ my— | = +arctan | tan { = — —
2 2 n
T wk T
+m, | arctan [ tan { — — — +—=].
2 n 2

Since
m
2
T
2

and

we have

™

(k+1) e <_§;g) for 1 € Np_j_1,

(k+1) € (—32”;—7;) for 1€ Np_1 \ Ny,

33 313

T
2

s

S <—g; g) for l € N,,_1,

lim (arg(P,(r;je'%;m)) — arg(P, (r;c%;m)))

Jj——+oo
n k! T o7 T ml
= Z my <2_n(k+l)—2+n>
=1
il RY T 7l
l=n—k+1

lim (BW

j—+o0

50 = A)0) ~1(3) ) = + 0= ) (== T

n

:,87T§+oz7rn_k,
n n

)
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from which we deduce that inequality (0.1) does not hold for

—k
B<—n a—s—i—ﬁZml

and as a consequence P,(-;m) ¢ K(a, 8) for (o, 3) € II}.. Hence
n—1

(1.3) Po(sm) ¢ U H?c‘
k=1

Now we prove that P,(-;m) ¢ IIj,. Consider the right side of inequality (0.2)
with N> j— 01(j) :=2n(n—1)/n+1/j,N> j s 02(j) :=2m(n—1)/n—1/j
and N 3 j + r; :=1—1/52. Therefore,

arg( Py (rje';m)) — arg(Py(rje'’;m))
(1-3)n()
1-— (1 — ]%) cos (%)

= —2m,, arctan

1 Cain (27 1
n r]sm(n j
—i—E my | arctan P
. 2rl 1
=1 1—7‘jcos(n j)
i (2@l 41
—msm(n —1—].)
— arctan

1—rjcos<27”l+%>

and as a consequence
. 05, i01 . _
jETm(arg(Pn (7"]-e1 Z,m)) - arg(Pn (rje‘ 1,m))) = —m,T.
On the other hand, we have
. 1 . .
i (~am+ 5la = H(6:0) - 61(3)) =~

Jj—+oo 2

from which we deduce that inequality (0.2) does not hold for o < m,, and
as a consequence P,(-;m) ¢ K(«, ) for (o, 5) € IIj,. From this and (1.3)
we obtain

Po(sm) ¢ |10 O
k=0

By Theorem A, if my = 1 for all k£ € N, then P,(;m) € K(1,1).
Theorem 1.1 is an extension of Theorem A for functions from the class P,,.
Moreover, in the first part of the proof of Theorem 1.1 we obtain nontrivial,
interesting factorization of P,(-;m) (cf. [7, p. 246]).
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Remark 1.2. Let us notice that for a nondecreasing sequence m : N, — R™
points (xg, yx) for k € N,, are all vertices of the set II. Analogously we can
effectively determine vertices of II if m is nonincreasing.

Let ¢y, := (Pu(;m))? for any ¢ € R such that ¢,(0) = 0. The complete
characterization of functions P, (-; m) belonging to Kaplan classes obtained
in Theorem 1.1 can be used to study univalence of ¢,.

Theorem 1.3. If m : N, — RT is nondecreasing sequence, then for any
n €N, k€ Ny_1 and g > 0 the following implications hold:

1
(14)  s>nmp_1—2m, = (cquC — q¢€ [0;}>,
s

n n
s € |:(n + Qk)mn—k:—l -2 Z m; (TL + Qk)mn—k -2 Z ml)
(15) l=n—k l=n—k
= €C <= qe |0; nt 2k
i I , nz;l:nfk my — ks .
Proof. Let m be a nondecreasing sequence. Fix ¢ > 0. First we prove
(1.4). If s > nmyp_1 — 2my, then y; < 3x;. This and Theorem 1.1 imply
that P,(-;m) € K(my,3m,) and for any « € [0;m,,), P,(-;m) ¢ K(«,3a).
Therefore, (P,(-;m))? € K(1,3) if and only if ¢ € [0;1/m,,].
Now we prove (1.5). Fix k € N,,_;. Assume that

s € [(n+2k)mn_k_1—2 Z my; (n + 2k)my,_ — 2 Z ml>.

l=n—k l=n—k
Then
Yy > 317 for l € N,
{yl§3xl for I € N, \ Ny
This and Theorem 1.1 imply that

n ~ 3n °
Pn'; K _k7 —k
<k (g, X e 32 m )

and for any

n
n
a € [0;n+2k Z ml—ks>,
l=n—k
P,(:;m) ¢ K(a,3a), which leads to (1.5). O
Theorem 1.4. If m : N,, — RT is a nondecreasing sequence, then for any
n €N, k€ Ny_1 and g <0 the following implications hold:

2
(1.6) szgmn—i-nmn_l: <<pq€C <~ g€ [—3;0)>,

n
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2 2 — 2 2 —
s € [(n—?)k) mn_k_1+§ Z mg; (n—3k> mn_k+§ Z ml>
(17) l=n—k l=n—k

= €C < qe€ sn — 2k -0
Ya d ks—mnd . cmy’ '

Proof. Let m be a nondecreasing sequence. Fix ¢ < 0. First we prove (1.6).
If s > 2/3m,, + nm,_1, then 3y; < z1. This and Theorem 1.1 imply that
P,(:;m) € K(my,1/3my,) and for any o € [0;my,), Po(;m) ¢ K(a,1/3a).
Therefore, (P,(-;m)) € K(1,3) if and only if ¢ € [-3/my;0).

Now we prove (1.7). Fix k € N,,_;. Assume that

2 2 — 2 2 —
s € [(n—3k> mn—k—l‘Fg Z my; (n—3k‘> mn_k—|—§ kal>-

l=n—k l=n—

Then

3y >x; forl e Ny,
3y; < ay fOI“lENn\Nk.

This and Theorem 1.1 imply that

and for any

n
n
o€ |:0,3’)’L—2k Z ml—ka),
l=n—k

P,(-;m) ¢ K(3a, ), which leads to (1.7). O

REFERENCES

[1] Goodman, A. W., Univalent functions. Vol. II, Mariner Pub. Co., Inc., Tampa,
Florida, 1983.

[2] Ignaciuk, S., Parol, M., Zeros of complex: polynomials and Kaplan classes, Anal. Math.
46 (2020), 769-779.

[3] Jahangiri, M., A gap condition for the zeroes of certain polynomials in Kaplan classes
K (a, 8), Mathematika 34 (1987), 53—63.

[4] Kim, Y. J., Merkes, E. P., On certain convez sets in the space of locally schlicht
functions, Trans. Amer. Math. Soc. 196 (1974), 217-224.

[5] Royster, W. C., On the univalence of a certain integral, Michigan Math. J. 12 (1965),
385-387.

[6] Ruscheweyh, S., Convolutions in Geometric Function Theory, Séminaire de Math.
Sup. 83, Presses de I’Université de Montréal, Montréal, 1982.

[7] Sheil-Small, T., Complex Polynomials, Cambridge University Press, Cambridge, 2002.



40 Sz. Ignaciuk and M. Parol

Szymon Ignaciuk

Department of Applied Mathematics and Computer Science
University of Life Sciences in Lublin

ul. Gleboka 28

20-612 Lublin

Poland

e-mail: szymon.ignaciuk@up.lublin.pl

Maciej Parol

Department of Mathematical Analysis

The John Paul II Catholic University of Lublin
ul. Konstantynéow 1 H

20-708 Lublin

Poland

e-mail: mparol@kul.lublin.pl

Received July 10, 2020



