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ABSTRACT. By a radial set we understand a non-empty set A C C\ {0}
such that for every point z € A the circle with centre at the origin and
passing through z is included in A. We show in a detailed manner that
every continuous and injective function F' : A — C\ {0} can be represented
by means of the natural exponential function exp and a certain continuous
function @ : Ei(A) — C, where Ei(A) is the set of all z € C with the property
exp(iz) € A. The representation is given by F(exp(iz)) = exp(i®(z)) for
z € Ei(A). We also touch the problem of the injectivity of ®.

1. Introduction. Unless otherwise stated we assume throughout the pa-
per that all topological notions are relevant to the Euclidean topology in the
set of complex numbers C. In the paper [7], J. Krzyz characterized quasicon-
formal mappings of the unit disk D := {z € C : |z| < 1} onto itself by means
of quasisymmetric homeomorphisms of the unit circle T := {z € C: |z| = 1}
onto itself. To this aim he assigned to a quasiconformal mapping F' of D
onto itself and keeping the origin fixed a quasiconformal mapping & of the
upper half-plane C; := {z € C: Imz > 0} onto itself, related to F' by

(1.1) F (e*™) = ™) ey,
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Then he carried the classical Beurling—Ahlfors quasisymmetric boundary
characterization of @ on the mapping F' by means of (1.1). He defined & by
the formula

1 .
Cio2P(2):= o log ' (627”2) ,
T

cf. [7, (2.9)]. However, the interpretation of the formula as the composition
of the logarithmic function log with F' does not make any sense, because
F takes values in the doubly connected domain D\ {0}, where log is not
defined. Unfortunately, Krzyz did not write how to interpret the expres-
sion log F’ (eQ’Tiz) and did not give any references, where this problem was
explained. The existence of ¢ satisfying the condition (1.1) seems to be
an intuitive fact. However, the precise proof of this fact is not obvious.
The aim of this paper is to prove the existence of a continuous mapping
& satisfying the condition (2.2), provided F is a continuous and injective
mapping in a radial set A (cf. Definition 2.1) and F(A) does not contain
the origin. The main result is Theorem 3.2. The crucial role in its proof
plays Lemma 3.1. We also present a few auxiliary facts collected in Sec-
tion 2. In Section 4, we touch the problem of the injectivity of @. It is
worth noting that Theorem 3.2 can be proved alternatively by using the
analytic continuation method and the monodromy theorem. An outline of
the proof is presented in Remark 3.3. However, the first proof seems to be
more elementary and constructive.

In this way we complete gaps in the proof of [7, Theorem 1], which was
a motivation for our considerations. Theorem 3.2 will be very helpful for
generalizations of Krzyz’s results [7, Theorems 1 and 2| to quasiregular
mappings instead of quasiconformal ones. However, this subject will be
developed in a separate paper.

The authors would like to thank the reviewer for his helpful comments.

2. Auxiliary facts. Given a € C and 7, R € R write D(a;r, R) := {z €
C:r<|z—al] < R}and D(a;r,R) :={2€ C:7 < |z—a| <R} as well as
T(a,r) :={z € C:|z—a| =r}. In particular, T := T(0, 1) is the unit circle.

Definition 2.1. A set A is said to be radial if A € C\ {0} and the following
condition holds:

(2.1) ze€ A=T(0,|z|]) C A, zeC.

Following the relationship (1.1) we define for every radial set A and every
continuous function F : A — C\ {0} the class Log(F') of all continuous
functions @ : Ei(A) — C satisfying the following condition:

(2.2) F(e?) = ®G) 2 e Ei(A),
where

(2.3) Ei(A) := {2 € C: e € A}.
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In particular, for all r, R € R, if 0 < r < R, then

(2.4) Ei(D(0;r,R)) ={z € C: —logR <Imz < —logr}
and
(2.5) Ei(D(0;r,R)) ={2z€C: —logR<Imz < —logr}.

Definition 2.2. For any radial set A and continuous function F' : A —
C\ {0} an object @ is said to be an exponential representation of F provided
¢ € Log(F).

Lemma 2.3. Let A be a connected radial set, F': A — C\ {0} be a contin-
uous function and ® € Log(F'). Then for every function ¥ : B — C, where
B :=Ei(A), ¥ € Log(F) if and only if ¥ is a continuous function and there
exists n € 7. such that

(2.6) U(z) —P(z) =2mn, z€ B.
Proof. Fix A, F and & satisfying the assumptions of the lemma. Suppose
first that ¥ € Log(F'). Then
ei¢'(z) _ F(eiz) _ eiW(z)’ z € B,
and consequently,
ei(kp(z)fQS(z)) _ eiW(z)/ei¢(z) _ 17 ~ € B.

Hence

1
(2.7) 5
Since the functions ¥ and @ are continuous in the connected set B, 5 (¥ —®)
is a constant function, which yields the property (2.6) for a certaln n € Z.
Conversely, assume that ¥ is a continuous function satisfying the condition
(2.6) for a certain n € Z. Then for every z € B,

ei&”(z) — ei(¢(z)+27rn)

(U(z) —P(2)) €Z, z¢€B.

— ei’?(z)eQﬂin — ei@(z) — F(eiz)
which means that ¥ € Log(F). O

Lemma 2.4. Let A be a connected radial set and let p,q € B = Ei(A).
Then for every continuous function F': A — C\ {0}, if Log( ) #£ 0 and

(2.8) F(e'P) = el
then there exists the unique function @ € Log(F') such that ®(p) =

Proof. Fix A, p, ¢ and F satisfying the assumptions of the lemma. Then
there exists @ € Log(F’), which together with (2.8) gives

P0) = F(e?)=¢4 z€B.

Hence ¢ = &(p) + 27n for a certain n € Z. Setting @ := & + 27n, we
conclude from Lemma 2.3 that ¢ € Log(F') and &(p) = gq.
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To prove the uniqueness of @ let us consider an arbitrarily fixed ¥ €
Log(F) satisfying ¥(p) = q. Applying Lemma 2.3 once more, we see that
the condition (2.6) holds for a certain n € Z, and consequently ¥ — @ is a
constant function. Therefore,

U(z)—P(z) =¥(p) —P(p) =q—q=0, z€B,
and so ¥ = @, which completes the proof. ]

Remark 2.5. It is well known that for every continuous function f: T —
T there exists a continuous function ¢ : R — R satisfying the following
condition:

(2.9) fle?) =e¥®  teR.

This is a classical result of algebraic topology relevant to the fundamental
group of the unit circle, cf. e.g., [5, Chap. 1], [6, Chap. 16]. This result
is also very useful in complex analysis, cf. e.g., [3, Sec. 3.3], [11, Sec. 2.1
and 3.1]. By Definition 2.2, each continuous function ¢ : R — C satisfying
the condition (2.9) is an exponential representation of a given continuous
function f : T — T, which means that ¢ € Log(f), and so Log(f) # 0.
Since T is a connected radial set, Lemmas 2.3 and 2.4 are applicable to
A :=T. By the formula (2.3), Ei(A) = R, while from the condition (2.9)
we see that ¢ : R — R for every ¢ € Log(f). Moreover, from Lemma 2.4 it
follows that there exists the unique ¢ € Log(f) such that

(2.10) 0 < ¢(0) < 2.

Thus an exponential representation ¢ of f is uniquely determined by the
condition (2.10).

Lemma 2.6. For any continuous functions f,g: T — T, if
(2.11) @) —g(w) < V3, weT,
then for all ¢ € Log(f) and 1) € Log(g) there exists n € Z such that

fe)
g(et)
Proof. Given continuous functions f,g : T — T satisfying the condition
(2.11) we have

W—l'zw‘gw”:v(u)—g(wwﬂ, uer,

(2.12) o(t) —(t) = arcsin <Im > +2mn, tekR.

g(u) lg(u)
and f(u)/g(u) € T for u € T. Hence
fw il
(2.13) Re o) >0 and ’Im o(0) <1, eT
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Let us consider the function

R 3¢+ «at) := arcsin <Im

)

Then for an arbitrarily fixed t € R, a(t) € (—7/2;7/2) as well as

f(e)

) = cos(a isin(« = cos(a iIm ——
(a(t)) +isin(a(t)) (a(t)) +il o)’

which implies

ity \ 2
1 = [ele®)2 = (coS(Oé(f)))2 - (Im g((;to ‘

FE) P (o FE@)) Fe))?

gl = (Reg«eit)) *(Im g(eit>> |
Hence and by the first inequality in (2.13),

GO NIC))

e ~ 1 g

On the other hand,

1=

= |cos(a(t))| = cos(a(t)).

Therefore,

i) _ o o S f(eh)  f(e)
(2.14) ) = cos(a(t)) +isin(a(t)) = Re o) +ilm J(@) ~ glet)’
t € R. Since f and g are continuous functions, the function « is continuous,
and thereby for given ¢ € Log(f) and ¢ € Log(g), the function A := p—¢)—«

is also continuous. On the other hand, by (2.14) we obtain

i (t) it
i _ €7 e _ f(eF)
¢ /e g(eit)/

fe*) _
o — b teR

RSO
and so 5=A(t) € Z for t € R. Therefore, there exists n € Z such that
A(t) = 27mn for t € R, which proves the property (2.12). O

3. Main results. The main aim of this section is to show that Log(F) # 0,
provided F' : A — C\ {0} is a continuous and injective function on a
connected radial set A. We will start with the following auxiliary lemma.

Lemma 3.1. Given r,R € R and p,q € C assume that 0 < r < R and
p,q € B := Ei(A), where A :== D(0;7,R). Let FF : A — C\ {0} be a

continuous and injective function such that
(3.1) F(e'?) = el

Then there exists the unique function & € Log(F) satisfying the equality
®(p) =q.
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Proof. Fix r, R, p, ¢ and F satisfying the assumptions. Since A is a
compact set and F' is a continuous function in A, we conclude from the
extreme value theorem that there exist (,£ € A satisfying the following
property:

(32) [FOI < [F(u)] <|F(E), ue A

We will consider two complementary cases.

Case I. Assume first that {¢,£} N [r; R] = (. Then there exists a connected
set I' € A\ [r; R] containing the points ¢ and £. Setting

(3.3)  E:={tF(C):te |01} UF(T)U{tF(€):t € [1;+00)} U {oo},

we see that 0,00 € E c C:=CU {o0}. By the continuity of F', the image
F(T) is a connected set. Since F((), F(§) € F(I'), we conclude from the
formula (3.3) that E is a connected set in (C,p) where p is the chordal
metric in C. By the injectivity of F, F([r;R]) N F(I') = . Combining
this with (3.2) and (3.3), we see that E N F([r; R]) = (. Therefore, the
points 0 and oo do not belong to different connected components of the set
C\ F([r; R]) in the extended complex plane (C, p). Since the interval [r; R]
is a compact set and the mapping F is continuous, F'([r; R]) is a compact
set. Thus there exists a continuous function L : F([r; R]) — C satisfying
the following condition:

(3.4) W —w, we F(r;R)),

which is a consequence of the classical Eilenberg’s theorem, cf. [4, Théore-
me 1 on p. 75|, [8, Chap. XXI §3]. Since e™* € [r;R] C Afort € I :=
[—log R; —log ], we see that the function

1 _ _
(3.5) I>t— At) = Y(L(F(e ") —log(|F(e™")]))
is well defined and continuous. For every y € I the function
F(e Yu)
. T =
(3.6) S u— fy(u) F(ovu)

is continuous and f,(T) C T. From Remark 2.5 it follows that for a given
y € I there exists ¢, € Log(f,). Then ei?y(0) — fy(1). On the other hand,
combining (3.5) with (3.4), we have

. _ o _ F (e_y)
iNy) _ JL(F(e7¥)—log|F(e7¥)| _ ~\* ") __
e =e = [F(ev)| = fy(1).

Thus €'?v(9) = M) for y € I, and so there exists a function p : I — Z such
that ¢,(0) — A(y) = 2mpu(y) for y € I. Setting now

(3.7) oy =@y —2mp(y), yel,

we obtain

(3.8) ey(0) =Ay), yel,
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and applying Lemma 2.3, we see that ¢, € Log(f,) for y € I. From the
formula (3.6) we conclude that

Fee) = F(evel) = f,(e)| F(e Ve

3.9 . .
(3.9) _ ciey(®) log [F(eve)| _ gilpy(x)-ilog | Fle~vei)))

x € R, y € I. We proceed to show that the function
(3.10) B>z +iy = Uz +iy) = g, () —ilog|F(e Yel)|

is continuous. Since the function B 3 z + log |F(e'?)| is continuous, it is
enough to show that the function B 3 x+iy — ¢, () is continuous. Since F
is a continuous function and 0 ¢ F(A), it follows that F/|F| is a continuous
function. Therefore, F'/|F| is uniformly continuous, because A is a compact
set. Then for a given € > 0 there exists g > 0 such that

F(v)
|F(v)]
By Lagrange’s Mean Value Theorem applied to the function I > t + e™*

we have

le™ —e | <sup|—e | |t1 —to| < Rlt1 — ta|, t1,t2 €1,
tel

< min({e,V2}), w,v € A.

(3.11)  |u—v| < 8 = ‘ |§EZ§\

because —t < log R for t € I. Given y1,y2 € I assume that |y; —y2| < do/R.
Then for each x € R, e ¥ € A and e”¥2e'* € A as well as

o™Vl — e¥el?| = |of7] - [TV — eV < &y
Combining this with (3.11) and the formula (3.6), we obtain
‘fyl(eix) - fyg(eix)‘ < \/5, r € R.

By Lemma 2.6, there exists a function I x I 5 (y1,y2) — v(y1,y2) € Z such
that

312 o)~ pule) = arcsin (1 2L 4 o, m),
fyz (€17)
x € R, y1,y2 € I. In particular, for x := 0 we deduce from (3.8) that
1
(3:13) 2alvn )] < W) ~ A + orcsin (1 22000 | e
Y2

Since A is a continuous function on the compact set I, A is uniformly con-
tinuous on I. Therefore, there exists d; > 0 such that

ly1 — ol <01 = [A(y1) — AMy2)| <1, y1,y2 € 1.

Setting d2 := min({do/R, d1}), we conclude from (3.13) that for all y1,y2 € I,
if |y1 — y2| < d2, then

[y

1 =
< —_ —_ . — < —
vl <ot 55 <
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and so v(y1,y2) = 0. Combining this with (3.12), we get
ix
arcsin (Im T (e. )>
fyz (em)
x€R, y1,y2 € 1. Fix 29 = xg +iyo € B. Then for all x € R and y € I, we

see that u := @) € A and v := €*+%0) ¢ A, and using the condition
(3.11), we obtain

(B.14)  |y1 — ya2| <02 = [0y, (2) =y, (z)| =

)

fy(e®) fy(e®)
‘Im ful@)| =™ <fyo(eif”) 1)’
fy(e™)
= fyo(em)
_ F(u) / F(v) ‘
[F(u)|/ [F(v)]
| P F)
| F'(u) \F(U)!

|
provided |y — yo| < 2. Hence and by (3.14),
|0y () = @yo (20)] < [y (2) = Py ()| + |y () = @yo (20)]
(

arcsin (Im ﬁ (ew)))

T
< 55 + ‘(Pyo(x) - Soyo(xﬁ)’a

IN

+ |90yo (33) — Pyo ($0)|

provided |y — yo| < d2. Since the function ¢y, is continuous, there exists
03 > 0 such that
|z — o <03 = [0y () — @yo(w0)| <&, z€R.
Thus setting § := min({d2, d3}), we obtain
|z — 20| <0 = |py(x) — @yo(z0)| < 3e, z:=x+iy € B,

and so the function B > x +iy — ¢, (x) is continuous at each point zg € B.
Therefore, the function ¥ defined by the formula (3.10) is continuous. Thus
from (3.9) and (3.10) it follows that ¥ € Log(F), and so Log(F') # 0.
Case II. Assume now that {¢,&} N[r; R] # 0. Then there exists a € R such
that {e'®C,e*¢} N [r; R] = ). Setting

(3.15) Asu— F(u) = Fe™ %),

we see that F': A — C\ {0} is a continuous and injective function, and by
(3.2),

|F ()| < |F(u)| < [F(e?€)], ue€ A,
which gives

| < [F(u)] < [F(e€)], ue€ A
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Thus we can appeal to the first case which has been already proved with F',
¢ and & replaced by F, e'*( and €'“§, respectively. As a result there exists
¥ € Log(F). Applying the formula (3.15), we see that for every z € B,

F(eiZ) _ F(efiaeiaeiZ) _ F(ei(era)) — ei@(z+a) — ei'I/(z)’
where B 3 z + W(z) := ¥(z + ). Hence ¥ € Log(F), because ¥ is a
continuous function.

Both cases lead to Log(F') # (). Moreover, by the assumption (3.1) the
condition (2.8) holds. Lemma 2.4 now shows that there exists the unique
function @ € Log(F') satisfying the equality @(p) = ¢, which is the desired
conclusion. d

The following theorem extends Lemma 3.1 to an arbitrary connected
radial set.

Theorem 3.2. Let A be a connected radial set and let p,q € B := Ei(A).
Then for every continuous and injective function F : A — C\ {0} satisfying
the condition (3.1) there exists the unique ® € Log(F) such that &(p) = q.

Proof. Fix a connected radial set A. If A = D(0;r, R) for some r, R € R
with 0 < r < R, then the theorem reduces to Lemma 3.1. Otherwise
there exist r, R € R such that 0 < » < R and one of the following three
possibilities hold:

(3.16) A=D(0;r, R)UT(0,R) or A=D(0;7, R)UT(0,r) or A=D(0;7, R).
If the first equality in (3.16) holds, then we put

(3.17) Ay, =D(0;r+(R—7r)/n,R), neN.
If the second equality in (3.16) holds, then we put
(3.18) Ay, =D(0;r,R— (R—7)/n), neN.

If the last equality in (3.16) holds, then we put
(3.19) A, :=D0O;r+(R-7r)/(n+1),R—(R—7r)/(n+1)), neN.
By the formulas (3.17), (3.18) and (3.19) we have

(3.20) An CApt1, meN,
as well as
(3.21) U 4n=A
neN
Setting now By, := Ei(4,,) for n € N, we deduce from (3.20) and (3.21) that
(3.22) B, C Bp+1, m€eN
as well as
(3.23) U B.=B.

neN
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Write Z; := {n € Z : n > j} for j € Z. From (3.22) and (3.23) it follows
that there exists j € N such that

(3.24) p,q € By, nel;
By the formulas (3.17), (3.18) and (3.19), A,, is a closed annulus for n € N.
Moreover, by the assumption, the restriction F, := F|4, is a continuous

function for n € N. Then Lemma 3.2 shows, by (3.24), that for each n € Z;
there exists the unique @, € Log(F),) satisfying the equality ®,(p) = q.
From (3.22) it follows that B,, C B,, for all n € N and m € Z,,. Thus for
all n € Zj, m € Zy, and z € B,, we have

ei@m\Bn(z) _ ei@m(z) _ Fm(eiz) _ F(eiz) _ Fn(eiz),
and consequently &,,|p, € Log(F,). Since @,(p) = q = @n(p) for n,m €
Z;, we conclude from Lemma 2.4 that
(325) ém‘Bn =&, nec Zj, m € Zn.
Using the properties (3.22) and (3.23), we can define the function @ : B — C
by the following formulas:
D(z) :=Pj(z), z € Bj;

3.26
(3:26) D(z) :=Pp(2), n € Ljt1, 2 € By \ Bp—1.

In particular, @]Bj = &;. Suppose that ¢|p, = &, for a fixed n € Z;. Given
z € Bp4+1 we see by (3.22) that z € B,y1 \ By or z € By,. If z € By11 \ By,
then by the second formula in (3.26) we have &(z) = @,41(2). If z € By,
then by (3.25) we see that

b(z) = @B, (2) = Pn(2) = Pni1]B,(2) = Pnt1(2).

Therefore, #(z) = P,11(2) for z € Bp11, which implies @|p,,, = Ppny1.
Then by the Principle of Mathematical Induction we obtain

(3.27) B|p, =P, neEZj

From the formulas (3.17), (3.18), (3.19) and the equality (3.23) it follows
that for every z € B there exists n € Z; such that z is an inner point of B,,.
Since each function @,,, n € Z;, is continuous, we conclude from (3.27) that
& is a continuous function. Moreover, by (3.27) we obtain

e®(2) = ¢lPn(2) = F (6%) = F(e%), ne Zj, z € By,

which together with (3.23) yields ¢ € Log(F). By (3.24) we also have
&(p) = @(p) = q. Lemma 2.4 now shows that & is the unique function with
this property, which proves the theorem. ]

Write D(a,7) :={z € C: |z —a| <r} and D(a,7) :={z € C:|z—a| <1}
for a € C and r € R.
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Remark 3.3. We outline now an alternative proof of Theorem 3.2 based
on the analytic continuation technique and the monodromy theorem, cf. [2,
Chap. 8] or [12, Chap. 16]. Assume that A, p, ¢ and F' satisfy the assump-
tions of Theorem 3.2. By the properties of the function exp we know that for
every 6 € R the function Dy > w +— Ty(w) := exp(iw) is holomorphic and
injective, where Dy := {w € C : [Rew — 0| < 7}. Hence (T, ', D(rel?,r)) is
a function element for all # € R and r € (0;+00), cf. [12, Definition 16.9].
Given z € B let 7 be a path in B joining p with z, i.e., v : [0;1] — B is
a continuous function satisfying v(0) = p and (1) = z. Then there exists
0. € R such that F(z) = |F(z)[e'?> and (Tg_zl, D(F(z),|F(z)|)) is the unique
analytic continuation of the function element (Té,_]p 1 D(e'?, |€'])) along the
path F o, where B 3 w — F(w) := F(e) and 6, := Regq, cf. [12, The-
orem 16.11]. Moreover, since B is a simply connected set, the function
element (Te_zl,]D)(F(z), |F(2)])) does not depend on a path joining p with
z, cf. [12, Theorems 16.13 and 16.14]. In this manner we define a function
B3z &(z) = Tél(ﬁ'(z)). By definition, @ is a continuous function such
that

e?G) = Ty (#B(2)) = F(z) = F(e'%), ze B.

Thus @ € Log(F') and ®(p) = ¢, which implies the existential part of Theo-
rem 3.2. The detailed proof according to the above sketch is of course much
longer.

4. Complementary remarks. By Theorem 3.2 we know that Log(F') #
0, provided F : A — C\ {0} is a continuous and injective function on a
connected radial set A. A natural question arises about injectivity of @ €
Log(F'). This seems to be rather a difficult problem in general. Therefore
we restrict further considerations to a few simple but useful cases.

Lemma 4.1. Let A be a connected radial set and F : A — C\ {0} be a
continuous and injective function. Assume that there exist r,R > 0 such
that

(4.1) T(,r) C A and T(0,R)= F(T(0,r)).
Then there exists np € {—1,1} such that for every @ € Log(F),
(4.2) D(z+27) — P(2) =2mnp, z€ B:=Ei(A).

Proof. Given A and F satisfying the assumption let ¢ € Log(F') be arbi-
trarily fixed. Setting

(4.3) B3>z ¥(z):=d(z+2m),
we see that ¥ is a continuous function and for every z € B,

eiW(z) _ ei@(z+27r) _ F(ei(z+27r)) _ F(eiz)‘
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Therefore, ¥ € Log(F'). By Lemma 2.3 there exists n € Z such that
(4.4) D(z+2m) —P(2) =¥(z) — P(2) =2mn, z€B.
Suppose now that |n| > 1. By (4.4) we have

(4.5) %@(2 +2) — %@(z) —or, zeB,

and so there exists a function G : A — C satisfying the following condition:
(4.6) G(e?) = ?G)/m e B,

Since @ € Log(F), we conclude from (4.6) that

(4.7) G(e®)" = ) = F(c%), 2z e B.

Hence and by the assumption (4.1) we obtain the inclusion

(4.8) G(T(0,7)) C T(0, VR).

Setting

(4.9) RSt oft) = %Re(qﬁ(t ilogr),

we see that ¢ is a real valued and continuous function, and by (4.4),
©(2m) = ¢(0) + 27. Using now the Darboux principle, we obtain the in-
clusion [p(0); ¢(0) + 27] C ¢([0;27]). Combining the properties (4.6) and
(4.8), we get

G(reit) _ G(ei(tfilogr)) _ eisﬁ(tfilogr)/n _ {l/ﬁeinp(t)’ t eR.
Thus G(T(0,7)) = T(0, ¥/R), and consequently for each u € T(0,7) there
exists v € T(0,r) such that G(v) = e*™/"G(u). Hence u # v and, by (4.7),
F(v) = G(v)" = ™G (u)" = F(u).

This contradicts the injectivity of F. Therefore, |n| < 1. Assume that
n = 0. Then condition (4.4) takes the following form:

(4.10) &(z+2m) =P(2), z¢€B.
Setting
(4.11) R >t t(t) := Re(P(t —ilogr)),

we see that 1 is a real valued and continuous function, and by (4.10),

¥(0) = ¢(27). Applying the Darboux principle once more, we conclude

that 0 < to — t1 < 2w and ¥(t1) = ¥(t2) for some t1,t2 € [0;27]. Setting

now 21 :=t; —ilogr and 29 := t9 —ilogr, we have

(4.12) el?l = pellt + relt2 — eizQ,

and thereby e, e'?2 € T(0,r). Hence and by the assumption (4.1) we have
F(eizl) — ei@(tl—ilog’l‘) — Rei¢(t1) — Rei’d)(tg) — ei@(tg—ilogr) — F(eiz2).
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This together with (4.12) contradicts the injectivity of F'. Thus 0 < |n| <1,
and setting np := n, we see that np € {—1,1} and the condition (4.2) holds.
Taking into account Lemma 2.3, we finally see that the condition (4.2) holds
for every @ € Log(F'), which completes the proof. O

Theorem 4.2. Let A be a connected radial set and F : A — C\ {0} be
a continuous and injective function. Assume that the condition (4.1) holds
for some r, R > 0. Then each function & € Log(F) is injective.

Proof. Given A and F satisfying the assumption let ¢ € Log(F') be arbi-
trarily fixed. From Lemma 4.1 it follows that the condition (4.2) holds with
the constant np € {—1,1}. Suppose that @(z1) = @(22) for arbitrarily fixed
21,72 € B. Then

F(eiz1) — ei'P(zl) _ ei@(ZQ) — F(6122)7

and by the injectivity of F' we have €1 = ¢l?2. Hence 2o — z; = 2m for a
certain m € Z, and from the condition (4.2) we deduce that

0=P(z2) — P(z1) = (21 + 2mm) — D(21) = 2mrmnp,

which implies m = 0, and thereby z; = 2z3. This proves the injectivity of @,
and the proof is complete. ]

Corollary 4.3. Given r,R > 0 let F be a homeomorphism of D(0,7) onto
D(0, R) keeping the origin fized. Then each mapping ® € Log(F|4) is a
homeomorphism of B := Ei(A) onto B’ := Ei(A), where A :=D(0,r) \ {0}
and A" :=D(0, R) \ {0}.

Proof. Under the assumptions of the corollary we see that A is a connected
radial set, F'|4 : A — C\ {0} is a continuous and injective function as well as
F|4(T(0,7)) = T(0, R). From Theorem 4.2 it follows that ¢ is an injective
mapping. Since F(A) = A’, we conclude from the property (4.2) that
&(B) = B'. By the properties of the exponential function exp we know that
for every p € C,

(4.13) Qp 2 2 Ap(2) 1= €

is a conformal mapping in the domain Q, := {z € C: |Rez — Rep| < 7}.
From the condition (2.2) it follows that for every p € B there exists r, > 0
such that @ has the following local representation:

(4.14) B(2) = (Aog) 0 FoAy(z), z€D(p,rp)N B.

Hence ¢! is a continuous mapping in B’. By definition, @ is a continuous
mapping in B. Thus @ is a homeomorphism of B onto B’, which is the
desired conclusion. g

Corollary 4.4. Given r,R > 0 and K > 1 let F' be a K-quasiconformal
mapping of D(0,7) onto D(0, R) keeping the origin fized. Then each ¢ €
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Log(F|a) is a K-quasiconformal mapping of B := Ei(A) onto B' := Ei(A’),
where A :=D(0,r) \ {0} and A" :=D(0, R) \ {0}.

Here and later on the quasiconformality of a mapping is understood in
the sense of geometric definition, cf. [9, Chap. I §3], [1, Chap. II Sec. A].

Proof. Under the assumptions of the corollary we see that F' has an ex-
tension to a homeomorphism F of D(0, ) onto D(0, R), cf. [10, Theorem 4],
and also [1, Corollary in Chap. III Sec. C], [9, Theorem 8.2 in Chap. I §8].
By Corollary 4.3, a given & € Log(F!A) is a homeomorphism of B := Ei(A)
onto B’ := Ei(A’), where A := D(0,7) \ {0} and A’ := D(0,R) \ {0}.
Then the restriction &g := (lg| B is a homeomorphism of B onto B’. Since
F|a(e?) = F|;(e?) for z € B, &y € Log(F|). Moreover, from the represen-
tation (4.14) with @ := @ it follows that @ is a locally K-quasiconformal
mapping as a composition of the K-quasiconformal mapping F' with confor-
mal mappings, cf. [9, Chap. I §3], [1, Chap. II Sec. A]. Since @ is a home-
omorphism of B onto B’, &y is a K-quasiconformal mapping of B onto B’,
cf. [9, Theorem 9.1 in Chap. I §9], [1, Theorem 1 in Chap. II Sec. A]. By
Lemma 2.3, this property is valid for every @ € Log(F'|4), which is our
assertion. U

Remark 4.5. Given K > 1 assume that F'is a K-quasiconformal mapping
of the unit disk D onto itself and satisfying the equality F'(0) = 0. Since A :=
D\ {0} is a connected radial set and 0 ¢ F(A), it follows from Theorem 3.2
that Log(F|a) # 0. Applying Corollary 4.4 with r := 1 and R := 1 we
see that each @ € Log(F'|4) is a K-quasiconformal mapping of the upper
half-plane C; (= Ei(A)) onto itself. Moreover, from Lemma 4.1 it follows
that the condition (4.2) holds with np = 1, because @ as a quasiconformal
mapping is a sense-preserving homeomorphism. This completes Krzyz’s
proof of [7, Theorem 1].

REFERENCES

[1] Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton,
New Jersey—Toronto—New York—London, 1966.

2] , Complex Analysis: An Introduction to the Theory of Analytic Functions of
One Complex Variable, 3rd ed., McGraw-Hill, Inc., New York, 1979.

[3] Duren, P., Harmonic Mappings in the Plane, Cambridge University Press, Cam-
bridge, 2004.

[4] Eilenberg, S., Transformations continues en circonférnce et la topologie du plan,
Fund. Math. 26 (1936), 61-112.

[5] Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, 2002.

[6] Kosniowski, C., A First Course in Algebraic Topology, Cambridge University Press,
Cambridge, 1980.

[7] Krzyz, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A. 1.
Math. 12 (1987), 19-24.

[8] Kuratowski, K., Introduction to Set Theory and Topology, 2nd English ed., Pergamon
Press, Oxford, 2014.




Exponential representations of injective continuous mappings... 51

[9] Lehto, O., Virtanen, K. L., Quasiconformal Mappings in the Plane, 2nd ed., Springer,
Berlin, 1973.

[10] Mori, A., On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc. 84
(1957), 56-77.

[11] Partyka, D., The generalized Neumann—Poincaré operator and its spectrum, Dis-
sertationes Math., vol. 366, Institute of Mathematics, Polish Academy of Sciences,
Warszawa, 1997.

[12] Rudin, W., Real and Complex Analysis, third ed., McGraw-Hill International Edi-
tions, Mathematics Series, McGraw-Hill Book Company, Singapore, 1987.

Magdalena Jastrzebska

Department of Applied Mathematics
Lublin University of Technology

ul. Nadbystrzycka 38D

20-618 Lublin

Poland

e-mail: m.jastrzebska@pollub.pl

Dariusz Partyka

Department of Mathematical Analysis

The John Paul II Catholic University of Lublin
Al. Ractawickie 14, P.O. Box 129

20-950 Lublin

Poland

e-mail: partyka@kul.lublin.pl

Institute of Mathematics and Information Technology
The State School of Higher Education in Chetm
Pocztowa 54

22-100 Chelm

Poland

Received December 10, 2020



