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Abstract. In this paper, we study matrix-valued Hahn–Sturm–Liouville
equations. We give an existence and uniqueness result. We introduce the
corresponding maximal and minimal operators for this system, and some
properties of these operators are investigated. Finally, we characterize ex-
tensions (maximal dissipative, maximal accumulative and self-adjoint) of the
minimal symmetric operator.

1. Introduction. As is known, extension theory of symmetric operators is
one of the main research areas of operator theory. This theory was studied
earlier [33]. In [17], the description of self-adjoint extensions of a symmetric
operator was given. Rofe-Beketov [31] obtained extensions of a symmetric
operator with aid of linear relations. Later, in [16,24], the notion of a space
of boundary values was introduced. In [26], a description of extensions of
a second-order symmetric operator was given. In [19], the author obtained
a description of self-adjoint extensions of Sturm–Liouville operators with an
operator potential. In the case when the deficiency indices take indetermi-
nate values, a description of extensions of differential operators was given
in [1,28–30]. The readers may find some papers related to extension theory
in [20,24,35].

Matrix-valued Sturm–Liouville equations arise in a variety of physical
problems (for example, see [5,10–15,18,34]). While there are several results
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about matrix-valued Sturm–Liouville equations, to the best knowledge of
the authors of this paper, there is no study on matrix-valued Hahn–Sturm–
Liouville operators in the literature. So, in this study, we discuss matrix-
valued Hahn–Sturm–Liouville operators. In the analysis that follows, we
will largely follow the development of the theory in [1, 5, 8, 21,25,27,32,35]

This paper is organized as follows. In Section 2, an existence and unique-
ness theorem is given. Later, the corresponding maximal and minimal oper-
ators for the matrix-valued Hahn–Sturm–Liouville equation are constructed
and some properties of these operators are investigated. In Section 3, max-
imal dissipative, maximal accumulative and self-adjoint extensions of the
minimal operator are studied.

Now, we recall some necessary concepts of the Hahn calculus. For more
details, the reader may want to consult [2–4,6, 7, 22,23].

Throughout the paper, we let ω > 0 and q ∈ (0, 1). Let I be a real
interval containing ω0, where ω0 := ω

1−q .

Definition 1 ([22, 23]). Let u : I → R be a function. If u is differentiable
at ω0, then the Hahn difference operator Dω,q is given by the formula

Dω,qu(x) =

{
[ω + (q − 1)x]−1[u(ω + qx)− u(x)], x 6= ω0,

u′(ω0), x = ω0.

Theorem 2 ([6]). Let u, v : I → R be ω, q-differentiable at x ∈ I. Then we
have

i) Dω,q(au+ bv)(x) = aDω,qu(x) + bDω,qv(x), a, b ∈ I,

ii) Dω,q(u/v)(x) =
Dω,q(u(x))v(x)− u(x)Dω,qv(x)

v(x)v(ω + xq)
,

iii) Dω,q(uv)(x) = (Dω,qu(x))v(x) + u(ω + xq)Dω,qv(x),

iv) Dω,qu
(
h−1(x)

)
= D−ωq−1,q−1u(x),

where h(x) := ω + qx, h−1(x) = q−1(x− ω), and x ∈ I.

Definition 3 ([6]). Let u : I → R be a function and a, b, ω0 ∈ I. The
ω, q-integral of u is given by∫ b

a
u(x)dω,qx :=

∫ b

ω0

u(x)dω,qx−
∫ a

ω0

u(x)dω,qx,

where∫ x

ω0

u(x)dω,qx := ((1− q)x− ω)
∞∑
n=0

qnu

(
ω

1− qn

1− q
+ xqn

)
, x ∈ I

provided that the series converges.
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2. The matrix-valued Hahn–Sturm–Liouville problem. Consider
the matrix-valued Hahn–Sturm–Liouville equation defined as

(1)
l1(z) := −1

q
D−ωq−1,q−1 [P (x)Dω,qz(x)] +Q1(x)z(x)

= λV1(x)z(x), x ∈ [ω0, a],

where P , V1 and Q1 are n× n complex Hermitian matrix-valued functions
defined and continuous on [ω0, h

−1(a)], detP (x) 6= 0, P−1(x) is continuous
on [ω0, h

−1(a)], V1(x) is positive, and λ is a complex parameter.
Let

Z(x) =

(
z(x)

P (x)Dω,qz(x)

)
,

Z [h](x) =

(
Dω,qz(x)

1
qD−ωq−1,q−1 (P (x)Dω,qz(x))

)
,

V (x) =

(
V1(x) On

On On

)
, W (x) =

(
−Q1(x) On

On P−1(x)

)
.

Then we can transform Eq. (1) into the following Hahn–Hamiltonian system

(2) l(Z) := JZ [h](x)−W (x)Z(x) = λV (x)Z(x), x ∈ [ω0, a],

where

J =

(
On −In
In On

)
,

and In (On) is the identity (zero) matrix on Cn.
Let

L2
ω,q,V [(ω0, a);E] =

{
Z :

∫ a

ω0

(V Z,Z)Edω,qx <∞
}

be the Hilbert space of vector-valued functions Z,Y with the inner product

(Z,Y) :=

∫ a

ω0

(V Z,Y)Edω,qx

=

∫ a

ω0

Y∗(x)V (x)Z(x)dω,qx,

where E := C2n is the 2n-dimensional Euclidean space, and ∗ indicates the
complex conjugate transpose.

Let

C2
ω,q [(ω0, a);E] = {Z : z and P (x)Dω,qz are continuous at ω0} .

It is evident that C2
ω,q [(ω0, a);E] ⊂ L2

ω,q,V [(ω0, a);E] .

Theorem 4. For K ∈ C2n, Eq. (2) with the initial condition

(3) Z(ω0, λ) = K (λ ∈ C)

has a unique solution in C2
ω,q[(ω0, a);E].
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Proof. From (2), we see that

(4) Z(x, λ) = K − q
∫ x

ω0

J [λV (h(t), λ) +W (h(t), λ)]Z(h(t), λ)dω,qt,

where x ∈ [ω0, a].
Define the sequence {Zi}∞i=1 of successive approximations by

Z0(x, λ) = K,

Zi+1(x, λ) = K − q
∫ x

ω0

J [λV (h(t), λ) +W (h(t), λ)]Zi(h(t), λ)dω,qt,(5)

where i = 0, 1, 2, . . . and x ∈ [ω0, a].
Now, we prove that {Zi}∞i=1 converges uniformly on each compact subset

of [ω0, a]. There exist positive numbers κ(λ) and %(λ) such that

‖J [λV (h(x), λ) +W (h(x), λ)]‖E ≤ κ(λ),

‖Z1(x, λ)‖E ≤ %(λ),

where x ∈ [ω0, a]. Using mathematical induction, we get

‖Zi+1(x, λ)−Zi(x, λ)‖E ≤ Cκ(λ)q
i(i+1)

2
(%(λ)(x− ω0)(1− q))i

(q; q)i
,

where i ∈ N, C > 0 and

(q; q)i =
i−1∏
k=0

(
1− qk+1

)
.

The Weierstrass M -test now shows that the sequence {Zi}∞i=1 converges to
a function Z uniformly on each compact subset of [ω0, a]. One can prove
that z and Dω,qz are continuous at ω0. It is obvious that the function Z
satisfies (3).

We proceed to show that (2) has a unique solution. Suppose that Y is
another solution of (2). Proceeding as above, we conclude that

‖Z(x, λ)− Y(x, λ)‖E ≤ C1κ(λ)q
i(i+1)

2
(%(λ)(x− ω0)(1− q))i

(q; q)i
,

where i ∈ N, C1 > 0. Then we obtain

lim
i→∞

q
i(i+1)

2
(%(λ)(x− ω0)(1− q))i

(q; q)i
= 0.

We thus get Z = Y on [ω0, a]. �

Now, we will introduce the definition of maximal and minimal operators
for Eq. (2).
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Denote

Dmax :=

Z ∈ L2
ω,q,V [(ω0, a);E] :

Z is continuous at ω0,

JZ [h](x)−W (x)Z(x) = V F
exists in [ω0, a], and
F ∈ L2

ω,q,V [(ω0, a);E]


and

(6) Dmin :=
{
Z ∈ Dmax : Ẑ(ω0) = Ẑ(a) = 0

}
,

where

Ẑ(x) =

(
z(x)

P
(
h−1(x)

)
Dω,qz

(
h−1(x)

) ) .
The minimal operator Tmin is defined by

Tmin : Dmin → L2
ω,q,V [(ω0, a);E],

Z → TminZ = F

if and only if l(Z) = V F for all Z ∈ Dmin. The maximal operator Tmax is
defined by

Tmax : Dmax → L2
q,V [(ω0, a);E],

Z → TmaxZ = F

if and only if l(Z) = V F for all for all Z ∈ Dmax.
The Green formula is given by the next theorem.

Theorem 5. Let U ,Y ∈ Dmax. Then we have∫ t

ω0

[
Y∗(x)JU [h](x)−

{
JY [h](x)

}∗
U(x)

]
dω,qx

= Ŷ∗(t)J Û(t)− Ŷ∗(ω0)J Û(ω0),

where t ∈ (ω0, a].

Proof.∫ t

ω0

[
Y∗(x)JU [h](x)−

{
JY [h](x)

}∗
U(x)

]
dω,qx

=

∫ t

ω0


(

y(x)
P (x)Dω,qy(x)

)∗(
On −In
In On

)
×
(

Dω,qu(x)
1
qD−ωq−1,q−1 (P (x)Dω,qu(x))

)
dω,qx


−
∫ t

ω0


[(

Dω,qy(x)
1
qD−ωq−1,q−1 (P (x)Dω,qy(x))

)]∗
×
(
On −In
In On

)(
u(x)

P (x)Dω,qu(x)

)
dω,qx
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=

∫ t

ω0

[
y∗(x)

{
1
qD−ωq−1,q−1 (P (x)Dω,qu(x))

}
+ (P (x)Dω,qy(x))∗Dω,qu(x)

]
dω,qx

−
∫ t

ω0

[ {
−1

qD−ωq−1,q−1 (P (x)Dω,qy(x))
}∗
u(x)

+ (Dω,qy(x))∗ P (x)Dω,qu(x)

]
dω,qx

=

∫ t

ω0

Dω,q

{ [
(PDω,qy)

(
h−1(x)

)]∗
u(x)

−y∗(x) (PDω,qu)
(
h−1(x)

) } dω,qx
= Ŷ∗(t)J Û(t)− Ŷ∗(ω0)J Û(ω0).

�

Then by Theorem 5, the following theorem is obtained.

Theorem 6. For all U ,Y ∈ Dmax we have

(7) (TmaxU ,Y)− (U , TmaxY) = [U ,Y]a − [U ,Y]ω0
,

where [U ,Y]x := Ŷ∗(x)J Û(x), x ∈ [ω0, a].

Lemma 7. The minimal operator Tmin is Hermitian.

Proof. For U ,Y ∈ Dmin, there exist F,G ∈ L2
q,V [(ω0, a) ;E] such that

l(U) = V F and l(Y) = V G. It follows from (6) and (7) that

(TminU ,Y)− (U , TminY) = (F,Y)− (U , G)

=

∫ a

ω0

[Y∗(t)V F −G∗(t)V U(t)] dω,qt

=

∫ a

ω0

[Y∗(t)l(U)− l(Y)∗U(t)] dω,qt

= [U ,Y]a − [U ,Y]ω0
= 0.

�

A proof of the following lemma is similar to that of Lemma 7.

Lemma 8. For all U ∈ Dmin and for all Y ∈ Dmax, we have the relation

(TminU ,Y) = (U , TmaxY) .

Lemma 9. Let N (T ) and R(T ) denote the null space and the range of an
operator T , respectively. Then we have

R (Tmin) = N (Tmax)⊥ .

Proof. Given any ξ ∈ R (Tmin), there exists U ∈ Dmin such that TminU = ξ.
From Lemma 8, it follows that

(ξ,Y) = (TminU ,Y) = (U , TmaxY) = 0,

for each Y ∈ N (Tmax). Thus ξ ∈ N (Tmax)⊥. For any given ξ ∈ N (Tmax)⊥

and for all Y ∈ N (Tmax) , we have (ξ,Y) = 0.
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Consider the problem:

(8) JZ [h](x)−W (x)Z(x) = V (x)ξ(x), Ẑ(ω0) = 0,

where x ∈ [ω0, a]. According to Theorem 4, (8) has a unique solution on
[ω0, a]. Let Ψ(x) = (ψ1, ψ2, . . . , ψ2n) be the fundamental solution of the
system

JZ [h](x)−W (x)Z(x) = 0, Ψ̂(a) = J,

where x ∈ [ω0, a]. It follows easily that ψk ∈ N (Tmax) for 1 ≤ k ≤ 2n.
Therefore for 1 ≤ k ≤ 2n,

0 = (ξ, ψk) =

∫ a

ω0

ψ∗k(t)V (x)ξ(t)dω,qt =

∫ a

ω0

ψ∗k(t)l(Z)(t)dω,qt

=

∫ a

ω0

ψ∗k(t)l(Z)(t)dω,qt−
∫ a

ω0

l (ψk)∗ (t)Z(t)dω,qt

= [Z, ψk]a − [Z, ψk]ω0
= [Z, ψk]a = ψ̂k

∗
(a)JẐ(a),

by Theorem 6. This gives Ψ̂∗(a)JẐ(a) = Ẑ(a) = 0, i.e., ξ ∈ R (Tmin). �

Theorem 10. The operator Tmin is a densely defined and symmetric op-
erator. Furthermore T ∗min = Tmax, where T ∗min denotes the adjoint operator
of Tmin.

Proof. Assume that ξ ∈ D⊥min. Then, for all Y ∈ Dmin, we have (ξ,Y) = 0.
Write TminY(x) = φ(x). We will denote by U(x) any solution of the Hahn–
Hamiltonian system

JU [h](x)−W (x)U(x) = V (x)ξ(x),

where x ∈ [ω0, a]. Theorem 6 now yields

(U , φ)− (ξ,Y)

=

∫ a

ω0

φ∗(t)V (t)U(t)dω,qt−
∫ a

ω0

Y∗(t)V (t)ξ(t)dω,qt

=

∫ a

ω0

l(Y)∗(t)U(t)dω,qt−
∫ a

ω0

Y∗(t)l(U)(t)dω,qt

= −[U ,Y]a + [U ,Y]ω0
= 0.

Therefore U ∈ R (Tmin)⊥ = N (Tmax) by Lemma 9. From this, it follows
that ξ = 0, i.e., D⊥min = {0}. According to Lemma 7, Tmin is a symmetric
operator.

Let D∗min be the domain of T ∗min. Our next goal is to we prove that D∗min =
Dmax, and T ∗minU = TmaxU for all U ∈ D∗min. From Lemma 8, for any given
U ∈ Dmax, we have (U , TminY) = (TmaxU ,Y) = (T ∗min,Y) for all Y ∈ Dmin.
Then U ∈ D∗min, i.e., Dmax ⊂ D∗min.
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Let U ∈ D∗min. Then we have U , φ ∈ L2
q,V [(ω0, a) ;E], where φ := T ∗minU .

Suppose that Φ is a solution of the system

(9) JΦ[h](x)−W (x)Φ(x) = V (x)φ(x).

By Lemma 8, it follows that

(φ,Y) = (TmaxΦ,Y) = (Φ, TminY) .

Hence

(U − Φ, TminY) = (U , TminY)− (Φ, TminY)

= (T ∗minU ,Y)− (φ,Y) = 0,

i.e., U − Φ ∈ R (Tmin)⊥. From Lemma 9, we obtain U − Φ ∈ N (Tmax).
From (9), it may be concluded that

JU [h](x)−W (x)U(x) = JΦ[q](x)−W (x)Φ(x)

= V (x)φ(x),

where x ∈ [ω0, a]. As U , φ ∈ L2
q,V [(ω0, a);E], we see that U ∈ Dmax and

TmaxU = φ = T ∗minU . This completes the proof. �

3. Extensions of the symmetric operator. In this section, we intro-
duce the maximal dissipative, maximal accumulative and self-adjoint exten-
sions of the symmetric operator Tmin.

We begin this section with the following definition (see [16,21,24]).

Definition 11. Let H be a Hilbert space; let Π1 and Π2 be linear mappings
of D (B∗) into H, where B is a closed symmetric operator acting in a Hilbert
space H with equal (finite or infinite) deficiency indices. Then the triplet
(H,Π1,Π2) is called a space of boundary values of the operator B if

1. (B∗h, g)H−(h,B∗g)H = (Π1h,Π2g)H−(Π2h,Π1g)H , ∀h, g ∈ D((B∗),
and

2. for every G1, G2 ∈ H, there exists a vector g ∈ D(B∗) such that
Π1g = G1 and Π2g = G2.

Let
Π1,Π2 : Dmax → Cn ⊕ Cn,

where

(10) Π1U =

(
−u(ω0)

u(a)

)
, Π2U =

(
(PD−ωq−1,q−1u)(ω0)

P (h−1(a))D−ωq−1,q−1u(a)

)
,

and

U(x) =

(
u(x)

P (x)D−ωq−1,q−1u(h(x))

)
,

U ∈ Dmax.

Theorem 12. The triplet (Cn ⊕ Cn,Π1,Π2) defined by (10) is a space of
boundary values of the symmetric operator Tmin.
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Proof. From (10) and (7), we see that

(Π1U ,Π2Y)Cn⊕Cn − (Π2U ,Π1Y)Cn⊕Cn

= −
(
u(ω0), (PD−ωq−1,q−1y)(ω0)

)
Cn +

(
u(a), P (h−1(a))D−ωq−1,q−1y(a)

)
Cn

+
(
(PD−ωq−1,q−1u)(ω0), y(ω0)

)
Cn −

(
P (h−1(a))D−ωq−1,q−1u(a), y(a)

)
Cn

= [U ,Y](a)− [U ,Y](ω0) = (TmaxU ,Y)− (U , TmaxY),

where U ,Y ∈ Dmax.
Our next goal is to show the second assumption of the definition of space

of boundary values. Let

Λ =

(
Λ1

Λ2

)
, Γ =

(
Γ1

Γ2

)
∈ Cn ⊕ Cn.

We construct the vector-valued function

u(x) = α1(x) ◦ Λ1 + α2(x) ◦ Γ1 + β1(x) ◦ Λ2 + β2(x) ◦ Γ2,

where ◦ is a symbol of the Hadamard product of vectors and the vector-
valued functions αi(x), βi(x), D−ωq−1,q−1αi(x), D−ωq−1,q−1βi(x) ∈ Rn (i =

1, 2) are defined on [ω0, h
−1(a)] and continuous at ω0 which satisfies the

conditions:

α1j (ω0) = −1, α1(a) = 0, D−ωq−1,q−1α1 (ω0) = 0, D−ωq−1,q−1α1(a) = 0,

α2 (ω0) = 0, α2(a) = 0, (PD−ωq−1, q−1α2)j (ω0) = 1, D−ωq−1,q−1α2(a) = 0,

β1 (ω0) = 0, β1j(a) = 1, D−ωq−1,q−1β1 (ω0) = 0, D−ωq−1,q−1β1(a) = 0,

β2 (ω0) = 0, β2(a) = 0, D−ωq−1, q−1β2 (ω0) = 0,

P (h−1(a))(D−ωq−1,q−1β2)j(a) = 1 (j = 1, 2, . . . , n).

Then we have

U(x) =

(
u(x)

P (x)D−ωq−1,q−1u(h(x))

)
=

(
u(x)

P (x)Dω,qu(x)

)
,

U ∈ Dmax and Π1U = Λ, Π2U = Γ. This completes the proof. �

Now, we give the following definition.

Definition 13 ([21]). Let L be a linear operator with dense domain D(L)
acting on some Hilbert space H. The operator L is called dissipative if

Im(Lf, f) ≥ 0

for all f ∈ D(L) and is called maximal dissipative if it does not have a proper
dissipative extension. Similarly, the operator L is called accumulative if

Im(Lf, f) ≤ 0

for all f ∈ D(L) and is called maximal accumulative if it does not have a
proper accumulative extension.
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Let

D1 = {Y ∈ Dmax : (M − I)Π1Y + i(M + I)Π2Y = 0} ,(11)

D2 = {Y ∈ Dmax : (M − I)Π1Y − i(M + I)Π2Y = 0} ,(12)

where M is a contraction operator in Cn ⊕ Cn.
Then by Theorem 12, the following theorem is obtained [21].

Theorem 14. The restriction of the maximal operator Tmax to the set D1 is
a maximal dissipative extension of the symmetric operator Tmin. Conversely,
any maximal dissipative extensions of Tmin is the restriction of Tmax to a set
D1. Similarly, the restriction of the operator Tmax to the set D2 is a maximal
accumulative extension of the symmetric operator Tmin. Conversely, any
maximal accumulative extensions of Tmin is the restriction of Tmax to a set
D2. Here, the contraction M is uniquely determined by the extension. If
the operator M is unitary, these conditions define a self-adjoint extension
of Tmin.
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