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Generalized perturbed Ostrowski-type inequalities

ABSTRACT. In this paper, we present new perturbed inequalities of Ostrowski-
type, for twice differentiable functions with absolutely continuous first deriv-
ative and second-order derivative in some L”-space for 1 < p < cc.

1. Introduction. In 1938, the Ukrainian mathematician Alexander
Markowich Ostrowski (1893-1986) presented a new inequality in [25]. This
inequality is now known as Ostrowski’s inequality. Many researchers have
written papers about generalizations of Ostrowski’s inequality in the past
few decades, including [1,10,12,21,22]. Ostrowski’s inequality has proved
to be a huge and remarkable tool for the enlargement of several branches
of mathematics. Inequalities involving integrals, which create bounds in
physical quantities, are of great significance in the sense that these kinds
of inequalities are not only used in integral approximation theory, operator
theory, nonlinear analysis, numerical integration, stochastic analysis, infor-
mation theory, statistics, and probability theory, but we may also see their
applications in various fields such as biological sciences, engineering, and
physics. For some recent contributions to the study of Ostrowski’s inequal-
ity to different subject areas, we refer to [2,4,5,13-18,23,24,26].

In this paper, we give some new perturbed inequalities of Ostrowski type
for second-order differentiable mappings, which generalise and refine the
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inequalities that are presented in [6-9,11,19,20,27,28] and [3, Theorem 20).
One such inequality is extracted from [11, Theorem 4|, and it reads as
follows.

Lemma 1.1. Let ¢ : [, 8] — R be a mapping whose first-order derivative
is absolutely continuous in o, 8] and ¢" € L>®(«, B). Then

IR e e (e ’

- 3 1 + s "
22 3= =2)[ b
for all y € [a, B].

2. Auxiliary result and notation. Let p > 1. We introduce the space
@, of functions ¢ : [, f] — R such that ¢ is absolutely continuous in [, 3]
and ¢ € LP(«, ). Our main tool is the following identity.

(1.1)

<

Theorem 2.1. Suppose

f—a atp
(21) a<pB, p:i= 5 = 5 |’L€| <p, 0<i<p.
Put
(2.2) ap=a, agi=p—4L oaz=p+l oag:=p

and define K : [a, 8] — R by

where
k() =7 —p+rk, ko(r):=7—p, ks3(r):=7—p—=k.
If p € @y, then the identity
B B
(2.3) / o(r)dr — A(k, £) :/ K(t;k,0)¢" (1)dT

holds, where

Alw ) = (0 — ) (p(0) + 2(8) + £
(2.4) + k(o =€) +p(p+0)
1 (0=5) (Cu—D =& (u+0).
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Proof. Note that our assumptions guarantee that
a; Sag <ag <oy
and
—k1(a1) = k3(aa) = p — K,
kl(ag) = —kg(ag) =K — E,
—kg(ag) = kg(ag) = /.
See Figure 2.1 for a graph of the kernel K. We have
K

ki=1 and <

/
2)—]@- for ie{1,2,3}.

Using the three formulas

@i+l |2 (7 2(r
[ e = B

%

%)

I
S
X
(oW
\]
+

where we used (2.2) in the last step. This shows (2.3). O
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K(7;k,0)

L
L
1
L
[ ]

FiGURE 2.1. The kernel K

3. Main results. Our main result is a new perturbed Ostrowski-type in-
equality, and it reads as follows.

Theorem 3.1. Assume 1 <p < oo, (2.1), and (2.4). If p € O, then

(31) [ etmar - A 0] < By, )],
where Ey(k,0) is defined by
%((p—lﬁ)3+(li—€)3+£3) if p=o0,
p=1
(3.2) % ((p—n)sﬁﬂfz;ﬁ)yln—ﬁ!ﬂ +€35_11) i F1<p<oo
2 T p-1
\%(max{p—ﬁ,|ﬁ—€|,€})2 if p=1.

Proof. We use the notation from Theorem 2.1. By (2.3), the triangle in-
equality, and the nonnegativity of K, we obtain

/j @(T)dT — A(Fd,ﬂ)‘ = /j K(r;k,0)¢" (T)dr

(3.3) 5
§/ K(t;k,0)|¢" (7)| d7.

First, we consider the case p = co. By the assumption,

"]l = S " (7)] < 0.
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By (3.3), we have

B8 B
/ @(T)dT—A(M)‘<H90"HOO / K(rir, 0)dr

/KTF;E =

(3.4)

NIE

(), R e
/a dT—Z 5

i i=1

l\D

=1

(k=0 +(p— R+ L+ + (p—kK)>+ (k- 0)%)

((p— K)* + (kK — 0)* + £%) = Exo(k, 0),

Wl o =

which, together with (3.4), proves (3.1) in this case. Next, we consider the
case 1 < p < co. By the assumption,

1
n A " P v
ng Hp = ’(p (T)‘ dr ] < oo.

By (3.3) and Holder’s inequality, with ¢ := p/(p — 1), we have

/f p(r)dr — Ak, e)’ <ol </j o M)dT);
and

B 3 a; ]{72 q
[ wimwpar =y [T DD,
a i=1"7 %

TN ) (=) dr [ (0 = w)?)
29

¢ pP—K
{/ ds—l—/ (52)qu+/ (sz)qu}
—L l—K
{/ Pst+/ E PstJr/ |s Pst+/ ’s’qus}
{/ ]s]qus—i— | lzqu}
pP—K 0
{/ ysy2qu+ s |2qu+/ \S\qus}
l—kK

pP—K Kk—{
qus + s%ds + / |s|2qu}
0

(3.5)

(£2q+1 + (p /i)QqJFl —+ (/{ — E)‘H — £’2q) - Eg(ﬁag)v

N )2q
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which, together with (3.5), proves (3.1) in this case. Finally, we consider
the case p = 1. By the assumption,

Il = ([ " lar) <o

B8
/ w(T)dT—A(%,f)‘SHSO"Hl sup K(rin,0)
a a<r<p

By (3.3), we have

(3.6)

and (observe (2.1), see also Figure 2.1)

{(p—fi)2 (k= 0)° 52}

sup K(7;k, ) = max

as<r<f 2 ’ 2 2
_ % (max {|p — #|, |k — €], |€]})?
_ %(max{p bk — 00— 5, 0})?
= % (max {p — #,k — £, })?
= Ei(k, 1),
which, together with (3.6), proves (3.1) in this case. =

4. Applications. Now we discuss some special cases in each of the situa-
tionsp=o0,p=2,1<p<oo,p=1.

4.1. The case p = oco. We start by restating Theorem 3.1 for the case
P = 0.

Theorem 4.1. Assume (2.1) and (2.4). If ¢ € P, then

B
(4.1) [ otmrdr = A(s.0)] < B 0)]|¢"] .
where T )3
—
Ex(k,0) = BT k(p—0)(p+L—K).
Proof. The calculation
1
Eoo(r0) = 3 (0= 5)* + (5 = £)° + £7)
= é (p* = 3p%k + 3pK® — 320 + 3rL?)
N3
= (5 24@) — P’k + pr? — K2+ k(P
B—a)
— 0o+

together with Theorem 3.1 completes the proof. ]
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Setting x = p in Theorem 4.1, we obtain the following perturbed form of
[7, Theorem 2.1].

Corollary 4.2. Assume (2.1). If ¢ € ®o, then

B8
[ etmar- A(p,@] < Bnlp.0) ¢ ..

where
(4.2) A(p,0) = p (@l = D)+ + )+ (£=2) (¢ =) = ¢ (1 +0)

and .
(B—a)
—— —pl(p—1).

51 pl(p—10)
Setting x = £ in Theorem 4.1, we obtain the following result.

Corollary 4.3. Assume (2.1). If ¢ € O, then
B
p p "
dr—A *,f SEoo *aé ’
[ et = a(5.0)| < B (.0) 141

Eoo(pvg) =

where
A(5.0) = 5 (ele) +(8) + 5 (¢'(0) = (5)
(43) +5 (plu =0 +olu+0)
+E(-8) (Plu-0 - u+0)
and

—a)
Eoo(éaf)ﬂ%)—pf(é—ﬂ)-

It may be seen that (4.3) is a perturbation of the left-hand side of (1.1).
Further, Corollary 4.3 gives a better estimation than (1.1) for £ = 0. Hence,
we can give refinements of Corollary 4.3 by the help of the following result,
which follows by setting ¢ = 0 in Theorem 3.1.

Corollary 4.4. Assume (2.1). If ¢ € O, then

B
/ p(7)dr — AR, 0)| < Foo (5,0) [[¢"]. .

where
_R)?
(14) A(5,0) = (o) ((0) + 2(3) + L2 (¢l(0) — (8)) + 2m0(10)
and
(8-’
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Some special cases of Corollary 4.4 are given in the following remark.
Remark 4.5. Using Corollary 4.4 for k = p, we get the classical midpoint
inequality

— )
(45) B9 o

B
| etrar =6 - ayetw)| < U,

Using Corollary 4.4 for x = 0, we obtain

—a)?
B (1(8) — (o)

_ 3
B ).,

B 8-«
[ etmar =20 ola) +o(8) +

(4.6)
<

Inequality (4.6) is a perturbed trapezoid inequality, and it is easy to see
that it is better than the classical trapezoid inequality (which has 12 in
the denominator). Further, (4.6) is better than the perturbed trapezoid
inequalities given in [7,19]. Next, using Corollary 4.4 for k = £, we get

A —a —a)?
[ etmar=28 pta 20t o0 + Lo (9 - (@)

—a)? "
T o).

(4.7)
<

Inequality (4.7) is a new perturbed averaged trapezoid midpoint rule, and
is better than the simple average midpoint-trapezoid inequality in [19]. Fi-

nally, using Corollary 4.4 for xk = %’O, we obtain
B _ )2
. [ otriar-222 )+ aetm+een+T22E (¢15) - ()
4.8 @
AT
< (57204) HSO//HOO.

Inequality (4.8) is Simpson’s inequality with a new perturbed variant. How-
ever, the simple Simpson inequality given in [19] is better than (4.8).

A special situation occurs when all three terms in the expression for Fo
in (3.2) are equal, which happens when

2
(4.9) /f:?p and (=2 ie., p—m:/{—ﬁzﬁzg.

See Figure 4.1 for a graph of the kernel K in this special situation.
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FI1GURE 4.1. The special kernel K

Applying Theorem 4.1 for this case, we obtain the following result.
Theorem 4.6. If ¢ € &, then

g 20 p\|_ (B-a)
/a p(r)dr — A <37 3>' < 916 H<P”HOO7
where

o A(23p,§> :ﬁgo‘@(nggp(m;ﬂ)m@ <a§2ﬂ>+¢(5)>

4.2. The case p = 2. We start by restating Theorem 3.1 for the case
p=2.

Theorem 4.7. Assume (2.1) and (2.4). If p € ®q, then

B
(4.11) / o()dr — A(r,0)| < Ea(r, 0) |||,

where

Es(k,0) = \/(63_2(?)5 — %/{(p—f)(p%—f— k) (k2= (p+ Ok + p> + £2).

Proof. The calculation

E2(k,0) = Tlo ((p—K)® + (k. —£)° +£°)

1
:TO(p5_5,04’{+10:03’f2—10p2m3+5pm4—5/£4€+10/£3€2—10/—;283_1_5,.;54)

(5—a)5 1,y 3 2 2 3 4 4 32 23 4
:W_i(p k—2p°k* +2p°K% — pr* 4 KM — 2r%0° 4 2r%0° — kU7)
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—a)P® 1
= B “k(p—0)(p+L—k) (k> = (p+O)K+p*+£?)
320 2
together with Theorem 3.1 completes the proof. ]

Setting k = p in Theorem 4.7, we obtain the following result.

Corollary 4.8. Assume (2.1). If ¢ € ®9, then

B8
[ etmar- A(p,a) < Ba(p, ) [|"],

where A(p,?) is given in (4.2) and

Es(p, ) = \/(”83_23)5 - %pﬁ(p — ) (p? + €2 = pl).

It is easy to see that the trapezoid inequality in Corollary 4.8 is better

than the classical inequality in [19].

Setting x = £ in Theorem 4.7, we obtain the following result.

Corollary 4.9. Assume (2.1). If ¢ € ®g, then

B
p p
/a o(r)dr — A <2,€)' < Ey (§’g> H<P”|
where A (8,0) is given in (4.3) and
PN _ [B=a)® plip P> pt
B (5:) —\/ 20 15 Y (4‘2”2)-

Setting ¢ = 0 in Theorem 4.7, we get the following variant of [29, Corollary
2.5].

2 )

Corollary 4.10. Assume (2.1). If ¢ € ®g, then

B
[ trar - A(n,m' < B3 (5,0) "],

where A(k,0) is given in (4.4) and

Balie.0) [ L 2 )

Some special cases of Corollary 4.10 are given in the following remark.

Remark 4.11. Using Corollary 4.10 for k = p, we get

=2 o,

(4.12) v @

[ otmar - el <
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Using Corollary 4.10 for x = 0, we obtain

B8 B —a
/ p(r)dr — 2% (o) + () + L=

2
5
< (B—a)2 HSOHH
T 8V5 2
Inequality (4.13) is a perturbed trapezoid inequality, and it is easy to see

that it is better than the inequalities of this type as recognized in [7,19].

Next, using Corollary 4.10 for x = £, we get

(4.13)

B /8 — 6 — 2
[ etmar=222 e+ 200 +0(8)+ L2 (61(8) - ()
5
< (B—a)? H //H ‘
T 32v5 2
Inequality (4.14) is a new perturbed averaged trapezoid midpoint rule, and it

is easy to see that it is better than the inequalities of this type as recognized
in [7,19]. Finally, using Corollary 4.10 for k = %p, we obtain

(4.14)

A -« —a)?
[ otmar=222 ela) ot +o9)+ L2 (0(8) - (@)

\/ﬁ(ﬁ_a)g "
< el

Inequality (4.15) is a new perturbed variant of Simpson’s inequality, and it
is better than the one presented in [19].

(4.15)

Now, we apply Theorem 4.7 in the case (4.9) to obtain the following
result.

Theorem 4.12. If ¢ € &5, then

/f@(ﬂdf -4 (23p g)' : (57;;%)3 e

where A <%, §> is given in (4.10).

4.3. The case 1 < p < oo. For the general case 1 < p < oo, we offer
three special cases of Theorem 3.1. First, setting x = p in Theorem 3.1, we
obtain the following result.

Corollary 4.13. Let 1 < p < co. Assume (2.1). If ¢ € ®,,, then

B
/ P(r)dT — A(p, 0)| < Eylp, 0) |||

p7
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where A(p,?) is given in (4.2) and

Eylp.t) = (

2 2 1-1

(p _ 6)3+ﬁ +£3+pl> p
3 1 :
2t 1

Setting £ = 0 in Theorem 3.1, we get the following generalization of
[29, Corollary 2.5].

Corollary 4.14. Let 1 <p < co. Assume (2.1). If ¢ € @, then

B
/ o(r)dr — A(K,O)’ < E, (k,0) Hgo”“p,

where A(k,0) is given in (4.4) and

2 2 1-1

1 (p _ KJ)3+F + I€3+pj P

Ep(H, 0) = 5 < 3 i 1 .
2 p—1

Some special cases of Corollary 4.14 are given in the following general-
izations of the inequalities presented in Remark 4.11.

Remark 4.15. Using Corollary 4.14 for k = p, we get

(4.16)

(5_04)37l "
Hp'

/ﬁ p(r)dr — (B — Oé)SO(M)‘ < — e
« 8 (3 + %) ?

Using Corollary 4.14 for k = 0, we obtain

8 B—a
[ emar = E52 ota) + p() + EL20

(4.17) (6—a) )
3 1

Using Corollary 4.14 for k = §, we get

B B—a
| emar=E1% elar+2e0+o8) +

(4.18) (B—a)
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Finally, using Corollary 4.14 for k = %p, we obtain

B —Q — 2
[ etmar= L5 ety agt e+ o (05) @) |
(4.19) g (B—a)® 5 [ 142370 T §
— 72 2 HSD Hp
3(3+:%)

Now, we apply Theorem 3.1 in the case (4.9) to obtain the following
result.

Theorem 4.16. Let 1 < p < co. If ¢ € ®,, then
B 2 PR
pp (B—a)" >
/a @(T)dT—A(Sv?))' < -1 H‘p//Hp’

where A <%, §> is given in (4.10).

4.4. The case p = 1. There are only three possibilities for Fj, i.e., the
supremum of K over [a, 8], namely (see also Figure 2.1), a half of the square
of the largest one of p — k, Kk — £, and /. Theorem 3.1 for the case p =1 can
be specified as follows.

Theorem 4.17. Assume (2.1) and (2.4). If p € @1, then

(4.20)

B8
/ o()dr — A(r, 0)| < Ey(s.0) |||, -

where
. 3p—L0—|30—
(p—r)? if r< Bl

1
Ey(k,0) = 54 (k=0 if x> HEEEE
2 otherwise.

Proof. We have max{p — k,k — {,£} = p — k if and only if
k—0<p—k and {<p—&,

ﬁgmin{p—;g,p—é}.

We have max{p — K,k — {,{} = k — £ if and only if
p—k<kK—0 and (<kKk-—V/,

K Zmax{p;—g,%}.

i.e.,

i.e.,
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In all other cases, we have max{p — k,x — ¢, ¢} = ¢. Now noting

z+y+|z—yl
2
(z,y € R) and applying Theorem 3.1 completes the proof.

r+y—|r—y

and min{x,y} = 5

max{z, y} =

Setting x = p in Theorem 4.17, we obtain the following result.

Corollary 4.18. Assume (2.1). If ¢ € &1, then

[ et at.0] < (5 ¢ e~ 5) 1l

where A(p,0) is given in (4.2).

Setting £ = £ in Theorem 4.17, we obtain the following inequality.

Corollary 4.19. Assume (2.1). If ¢ € &1, then

[ o= a(5.0)| =5 (04 5+ = 5D 170

where A (5,0) is given in (4.3).

Setting ¢ = 0 in Theorem 4.17, we get the following result.
Corollary 4.20. Assume (2.1). If ¢ € &y, then

/j o(T)dr — A(K,O)‘ < (g + ‘F&— g‘) Hgo’"

where A(k,0) is given in (4.4).

1 )

Some special cases of Corollary 4.20 are given in the following remark.

Remark 4.21. Using Corollary 4.20 for k = p, we get

8 )2
[ emar - - ayptn] < T )

8
Using Corollary 4.20 for x = 0, we obtain

B B—a
[ etmar = 0% oty +o(6) +

(4.21) <

1°

—a)?
P 0 - dla)

—a)? "
< B o

(4.22)

Next, using Corollary 4.20 for x = £, we get

A —a —a)?
[ etmar=L2 oty 2ot + o)+ LS (10)- (@)

/B_ 2 /"
< Bl o,

(4.23)




Generalized perturbed Ostrowski-type inequalities 27

Finally, using Corollary 4.20 for k = %p, we obtain

(4.24)

(B—a)?
72

/6_ 2 "
< B o,

B —
| emar= 2% (e raptn+o)+ P (4(0) -/ (a)

Applying Theorem 4.17 for the case (4.9), we obtain the following result.
Theorem 4.22. If ¢ € &1, then

[ o= (5.6)] < ST,

where A (2p p) is given in (4.10).

373

5. Conclusion. In this article, generalisations with refinements of
Ostrowski-type inequalities for second-order differentiable functions are
proved. As special cases, we present perturbed midpoint inequalities ver-
sions, Simpson’s, averaged trapezoid-midpoint type and trapezoid, which
refine the results of [6,7,9,11,19,20,28,29] and also recapture the results of
[7,22] in perturbed form.
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