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Natural affinors and torsion of connections
on Welil like functors on double vector bundles

ABSTRACT. We describe completely all natural affinors on product preserving
gauge bundle functors on double vector bundles. Next, we study torsion of
double-linear connections.

1. Introduction. We assume that any manifold considered in the paper
is Hausdorff, second countable, finite dimensional, without boundary and
smooth (i.e. of class C*). All maps between manifolds are assumed to be
smooth (of class C*°).

The concept of double vector bundles was introduced in [12] and further
studied in [1, 7, 9], etc. The framework of double vector bundles is con-
venient for many constructions like linear forms, linear Poisson structures,
linear connections, etc. The equivalent concept of double vector bundles
can be found in [10]. We cite it in Section 2 of the present note.

The general concept of gauge bundle functors can be found in [5]. The
concept of product preserving gauge bundle functors (ppgb-functors) on the
category of double vector bundles can be found in [10], too. We cite it in
Section 3.
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In [10], it is proved that the ppgb-functors F' on the category of double
vector bundles are in bijection with the AF-bilinear maps

AUt xvE 5w,

where AF" are Weil algebras and U and V' and W are finite dimensional
(over R) AF-modules. Moreover, given a ppgb-functor F' on double vector
bundles and a point ¢ € AF in [10] an affinor (i.e. tensor field of type (1,1))

af(c) : TFK — TFK

on F'K is constructed for any double vector bundle K.
The main result of the present note is the following one extending [6].

Theorem 1.1. Let F' be a ppgb-functor on double vector bundles. The
canonical affinors af(c) for all c € AY are all natural affinors on FK.

Canonical (later called natural) affinors on some other bundle functors
are described in [2, 3, 6, 8], etc. We point out that natural affinors play an
important role in differential geometry. For example, natural affinors are
useful in the prolongation of vector fields to product preserving bundles, see
e.g. [5]. Natural affinors can be also used to define the general concept of a
torsion of a connection, [6].

2. On double vector bundles.

Definition 2.1 ([10]). An almost double vector bundle is a system K =
(K, K, B, E;) of vector bundles K, = (K, 7., E,), K; = (K, 7, E)), E, =
(Ey,1;, M) and E; = (Ej, 1,, M) such that 7,07, =1, 07.

If K' = (K|, K], E], E]) is another almost double vector bundle, an almost
double vector bundle map K — K’ is a map f : K — K’ such that there
are maps f : E. — Ej, f, : B — Ej and f : M — M’ such that (f, f ) :
K, = K., (f.f): Ki = K}, (f..f) : E. — E. and (f,, f) : Ei — Ej are
vector bundle maps.

We call M the basis of K and f : M — M’ the base map of f.

‘We have the trivial almost double vector bundle
Rm17m27n17n2 — (K’I‘7 Kl7 ET‘) El)’

where K; = (R™ x R™ x R™ x R"™, 7, R™ x R™), K, = (R™ X
R™ x R™ x R™,7,,R™ x R"™), E, = (R™ x R"™,7,,R™) and E; =
(R™ x R™,r,.,R™), and where 7,, 7, 7,., 7; are the obvious projections.

Definition 2.2 ([10]). A double vector bundle is a locally trivial almost dou-
ble vector bundle K, that is, there are non-negative integers my, ma, n1,ng
such that for any x € M there is an open neighborhood 2 C M of x such
that Ko = R™™>""2 modulo an almost double vector bundle isomor-
phism.
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A very important example of a double vector bundle is the tangent bun-
dle TE = (TE,TE,E,TM) of a vector bundle E = (E,m, M), where
T =prg :ITE - FE, =T :TE - TM, 7, :=prpg : TM — M,
7, := m: E — M. Another such example is the cotangent bundle T*F =
(T*E,T*E, E, E*) of a vector bundle E, see [9]. Double vector bundle struc-
tures on TT'M and TT*M make possible the Lagrangian formulation of the
dynamics in classical mechanics, see [13].

All double vector bundles and almost double vector bundle maps between
them form a category which we denote by DVB. (In [10], the notion of 2-VB
instead of DVB is used.) Any DVB-map f : R™vm2nun2 R™1mMa:m1m3 g
of the form

f(x? u? /U7 w)

D~ (aoh T a0, Sue)et, Y el + 3 diay)
J k g,k l

for some maps a : R™ — R™ ,aj r R™ — RmIZ, by : R™ — Rn/l7 Cjk *
R™ — R",d;:R™ > R"™, j=1,....,mo, k=1,....n1, 1 =1,...,n9,
where z € R™, u = (ul,...,u™) € R™, v = (v!,...,0™) € R™, w =
(wh, ..., w™) € R™.

By the local description (presented in [7]) of double vector bundles in the
sense of [9], the double vector bundles in our sense are equivalent to the one
of [9].

3. On ppgb-functors on double vector bundles. Let FM denote
the category of fibred manifolds and fibred maps. The general concept of
(gauge) bundle functors can be found in the book [5]. We need the following
particular case of it.

Definition 3.1 ([10]). A gauge bundle functoron DVB is a covariant functor
F : DVB — FM sending any double vector bundle K with the basis M
into fibred manifold pg : FK — M over M and any double vector bundle
map f : K — K’ with the base map f : M — M’ into fibred map Ff :
FK — FK' over f: M — M’ and satisfying the following conditions:

(i) (Localization condition) For every double vector bundle K with the
basis M and any open subset U C M, the inclusion map igy : K|U — K
induces diffeomorphism Fig @ F(K|U) — Py (U), and

(ii) (Regularity condition) F transforms smoothly parametrized families
of DVB-maps into smoothly parametrized families of F M-maps.

A gauge bundle functor F' on DVB is called a Weil like functor (or ppgb-
functor) if F(K; x K3) = F(K;) x F(K>3) for any DVB-objects K; and Ko.

An example of a ppgb-functor on DVB is the tangent functor 7" sending
any DVB-object K with basis M into the tangent bundle TK (treated as
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the fibred manifold over M) and any DVB-map f : K — K’ into Tf :
TK - TK'.

In [10], it is proved that the ppgb-functors F' on the category of double
vector bundles are in bijection with the Af-bilinear maps

AUt xvE 5w,

where A" are Weil algebras and U and VI and W are finite dimensional
(over R) AF-modules. We have

FR™Mm2mM02 — (AF)™ s (UF)™2 5 (V)M o (W)
and if f: RM1m2mun2 _y RM1M2M00% g of the form (1), then
Ff: (AFY™ x (UF)™ x (V)" x (W)™ —
— (AFY™ 5 (UF)™2 x (VFY™ x (W)™
is of the similar form
Ff(z,u,v,w)

(2) _ (aAF(:E), Z aJAF(:B)uj, Z b‘,?F(w)vk, Z cf;(x)ujonk+Z df‘F(:n)wl)
j k j.k 1

(ul,...,u™) € (UF) = (v}...,0™m) e (VE)m
€ (VVF)"Q7 where a4 = TAF CTATR™ = (AFym
1 TAF . (AF)m1 (AF)m’Q’ bﬁF _ TAFbk
(AF)ml SN (AF)”ll’ SF _ TAF . (AF)m1 SN (AF)né, dz4F _ TAFdl :
(AFym™ 5 (AF)"2 are the Values of a,a;j, by, cjr,d; by the (usual) Weil
functor T4 of Weil algebra AF. So, F' has values in DVB, i.e. F: DVB —
DVEB.

4. Tangent bundle of a ppgb-functor on double vector bundles.
It is observed that any ppgb-functor F' on DVB has values in DVB. So,
we can compose ppgb-functors F} and F' and obtain ppgb-functor Fi F on
DVB. In particular, the composition T'F' of the tangent functor 7" and a
ppgb-functor F' on DVB is again a ppgb-functor on DVB. We have

ATE = AP AP, UTF = UF < UF, v =VvE < vE Wit =wh x wr
and the algebra multiplication (of A7¥") and the module multiplications (of
UTE and VT and WTT) and the AT*-bilinear map o' satisfy

(a1,a2)(b1,b2) =
(a1, a2)(u,ug
(3) (a1, az)(v1,v2

)=
)=
(a1, az)(wla wz) =
)

aiby, agby + aibs) ,

ajuy, agul + ajug) ,

ajwi, awi + ajwz) ,

(
(
(ajv1, agvy + ajva),
(
(

(uq, Uz) (1)1, V2 U1 of’ V1, U2 off U1+ up of’ vg)
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for any a1, as, by,bs € AF, Uy, Uz € UF, V1,02 € VF, w1, W € wt.
In [10], for any ¢ € AF, it is constructed a DVB-invariant affinor

af(c) : TFK — TFK
on FK for any DVB-object K. If K = R™:m2:":12  then
af(c)((alv uy, vy, ’Ujl), ((12, uz, v2, w2)) = ((CLl, Uy, V1, ’Ujl), C(a27 Uz, v2, w2))

for any aj,az € (AF)™, uj,up € (UF)Y™2) v1,v9 € (VI wy,wy €
(WE)n2 where the standard identification TX = X x X for vector spaces
X is applied. The invariance means that if f : K — K;j is a DVB-map,
then TF f o af(c) = af(c) o TFf.

5. The natural affinors on ppgb-functors on double vector bun-
dles. Let DVBy,, mo.nine be the category of all DVB-objects K being lo-
cally isomorphic with R"1m2™:"2 with local DVB-isomorphisms between
them as morphisms.

Definition 5.1. A DVB,,, m,n, no-natural affinor on F'is a DV B, my.ni na-
invariant family B : TF — TF of affinors

B:TFK - TFK

on F'K for any DVB,, manin.-0bject K. It means that TF foB = BoTF' f
for any DV B, monine-map f: K — K'.

Theorem 5.2. If m1 > 2, then the natural affinors
af(¢c) : TF - TF
for c € AT are all DV B, my.ny .ny-natural affinors on a ppgb-functor F.

Proof. Let B be a DVB,,, m,,ni n.-natural affinor on a ppgb-functor F' on
DVB. Clearly, B is determined by the affinor

B . TFRm17m27n17n2 - TFRm17m2=n17n2
on FR™Mumzninz — (AFym o (UEFymz (V) o (WHn2 Then
B : FRm1,m2,n1,n2 X Fle,m2,TL1,7’L2 — Fle7m2an17n2 X Fleva’nlvnQ
modulo the standard identification. So, we can write
B(z,y) = (z, B(z,y))
for all z,y € FR™ ™22 where B(z,y) € FR™™2:m:m2 is linear in y.

Because of the invariance of B with respect to the homotheties
t - idgmimamine for t > 0, B(tx,ty) = tB(z,y), i.e. B(tx,y) = B(z,y).

Consequently, B(z,y) is independent of x. So, we can write
B((a1,u1,v1,w1), (az, uz, v, w2))
- ((ala Uy, vy, wl)a (O[(CLQ, u2,v2, U)Q), IB(G’Z’ U2, v2, U)Q),

v(az, uz, v2, we), 0(az, uz, v, we)))
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for all ay,as € (AF)Y™ | wy,ug € (UF)™2, v1,v9 € (VF)™ and wy,wy €
(W2 where a(ag,ug,ve,ws) € (AF)™ is linear in (ag,us,ve, ws) and
B(az, ug, v, we) € (UF)™2 is linear in (ag, ug, va, wz) and y(asg, uz, v, ws) €
(VEY™ is linear in (ag, ug, v2, w2) and &(ag, ug, v, ws) € (WH)"2 is linear in
(CLQ, uz, v2, UJQ).

Let @)ty 45 © RMLM2ILN2 — RMLM2NLN2 he given by

Ot t1 0,15 (T, Y1, Y2, y3) = (L, t1y1, taye, t3y3)

for all z € R™ and y; € R™2 and y2 € R™ and y3 € R"2, where t,11,t2,13
are positive real numbers. It is a DV B, my ni n,-map. Then, by the invari-
ance of B with respect to ¢ ¢, t,.t5, We derive

a(tag, tiug, tave, taws) = ta(ag, ug, v2, wa) .

Consequently, a(ag, ug, v2,ws) is linear in ag and independent of ug, va, ws.
Similarly, S(ag, u2,ve,ws) is linear in uy and independent of ag, ve, we, and
v(ag, ug,v2,we) is linear in wve and independent od ag,us,ws, and
d(ag,ug,v2, we) is linear in wo and independent of b, ug, ve. Hence we can
write

B((a1, u1,v1, w), (az, uz, v2, w2))
= ((a1, w1, v1,w1), (a(az), Bluz), v(v2), 6(w2)))
for all a1, as € (AF)™  uy,us € (UF)™2, vy, 09 € (VI wy,wy € (WH)R2)
where a(az) € (AF)™ is linear in ay and B(uz) € (UF)™2 is linear in us
and y(vg) € (VI)™ is linear in vo and §(ws) € (W¥)"2 is linear in ws.
Let f: R™Mum2n0n2 o RMLM2:1L12 he given by
f@,y1,92,93) = (z+ &'z, g0+ 2y, g + 2l ys, ys + 7' ys)

for all z = (z!',...,2™) € R™ and y; € R™ and y» € R™ and y3 € R™.
It is a DVB, ms,ni,n.-map on the open and dense subset in R™1:™2:"1:12
x! # —1. Then, by the invariance of B with respect to f and (in particular)
formula (2) for T'F instead of F' and formulas (3), we get

((a1 + atay,uy + atuy,...), (alag + atas + aday), Buz + atug + aduy),...))
= (a1 + aja1, uy + ajuy, ...), (a(az) + aja(ag) + o' (az)as,
Blug) + aif(uz) + a'(az)us, .. .))

forall aj,as € (AF)™ and uy,up € (UF)™2and ..., where (al(b), ..., a™ (b))
= a(b) € (AF)™ and (b%,...,0™) =be (A)™. Then

a(a%ag) + a(a%al

) =a
Blajuz) + Blayur) = a1 B(ug) + o' (az)ur
Y(ajve) +v(azv1) = a1y(v2) + o' (az)v,
S(atwy) + 6(adwy) = atd(ws) + at(az)w .
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If a} = 1, then

alatay) = al(a)ay, Bladur) = a'(az)uy,

Yazvr) = ot (az)or, (agwr) = o' (az)wr .
If az = (1,0,...,0) € (AF)™  we get
ala) =ca, Bu) =cu, y(v) =cv, 6(w) =cw
for any a = (a',...,a™) € (AF)™ with o' = 1 and v € (UF)™2 and

ve (VI and w e (W)™, where ¢; := o!(1,0,...,0) € AT,
Similarly, replacing 1 by i € {1,...,m;}, we derive

a(a) = Ga, /B(u) = Giu, V(U) =GV, 5(w) = Gw
for any a = (a',...,a™) € (AF)™ with a® = 1 and u € (UF)™ and
ve (VI and w € (WF)"2) where ¢; := o¥(0,...,1,...,0) € AF (1 in i-th
position).
From the linearity of a and mj > 2 we obtain

ala) =ca, B(u) =cu, v(v) =cv, §(w) =cw

for any a = (a',...,a™) € (AF)™ and u € (UF)™ and v € (VF)™ and
we W where ci=c; = ... = ¢, € AF. That ¢y = ... = ¢, is a
simple consequence of the invariance of B with respect to the permutations

of the base coordinates.
Then

B((a1,u1,v1,wr), (az, ug, v2, w2)) = ((a1,ur, v, wr), c(az, uz, vz, we))

for all a1, as € (AF)™  uy,us € (UF)Y™2, vy, 09 € (VI wy,wy € (W2,
where ¢ € A is as above. Then B = af(c), as well and the proof is complete.
Q.E.D. O

6. On double-linear vector fields. Let K be a double vector bundle
with basis M. A vector field Z on K is called double-linear if the flow of Z
is formed by local DVB-isomorphisms.

Let ', ... 2™, wl, .. um2 ol oo™ wl o w™ be (local) DVB-
coordinates on K. A map f: K — K is a DVB-map if and only if it is of
the form (1). Consequently, a vector field Z on K is double linear if and
only if it is of the form

mi P mo 4 8
o B L s PR

(4) - w o

0
+ Z wl1 + Z Z Z f2k2 u32 " ow'lz

Lil=1 Jo=1ko=112=1
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So, we have:

Lemma 6.1 ([11]). The space of all double-linear vector fields on K is the
Lie subalgebra in the Lie algebra of vector fields on K.

Let F be a ppgb-functor on DVB. Then FK is again a DVB-object (see
Section 3).

Lemma 6.2. Let Z be a double-linear vector field on FK and c € A¥ be a
point. Then the vector field af(c)(Z) on FK 1is also double-linear.

Proof. We may assume that K = R™™2"%2 Then FK = A™ x U™ x
V™M x W2, Fixing the bases (over R) of A" and U™2 and V™ and W"2,

we can write F I = RMUuM2NLN2 et 10 Mo gt Mol ™
wl, ..., w2 be the usual coordinates on RM1:-M2:N.No - Then Z is of the
form
MQ Nl
0 k 0
Z = Za o)u! —— + E A (z)o*
n ; (@) dut v (@) duk
(5) Jyt=1 k,k1=1
o 0
-5 e 3 5SS v
8wll e (4 dwlz
ll 1 jo=1ko=112=1

To prove that af(c)(Z) is double-linear, it is sufficient to show that
af(c)(Z) is of the form (5), too. Of course it is sufficient to show that

af(c)( 21) is the linear combination of 8w1 st e ?\41 with real coefficients

and that af(c )( =) is the linear combination of 8‘91 ey &L% with real co-

efficients and that af(c )(W) is the linear combination of %, e N1 with

real coefficients and that af (c)(%) is the linear combination of +°+,...,
w ’LU

aw% with real coefficients.

For example, we prove that af(c)(a%l) is the linear combination of
%, e au% with real coefficients. Let (x,u,v,w) € A™ x U™2 x V"™ x
Wn2. Let eq,...,en, be the usual basis in RM2=y™2, We can write
%I(Lu,v,w) = ((z,u,v,w),(0,€,0,0)). Then

0
af(c) <> = ((z,u,v,w),(0,c-e1,0,0)).
oul [(z,u,v,w)

On the other hand, ¢-e; € U™ (as ey € U™2), and then ¢ - e; is the
linear combination of ey, ..., en, with real coefficients. The proof of the
proposition is complete. Q.E.D. O

7. The F-N-bracket and double-linear (semi-basic) tangent val-
ued p-forms. If K — M is a fibred manifold, a projectable semi-basic
tangent valued p-form on K is a section ¢ : K — APT*M ® TK such
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that ¢(X1,...,X,) is a projectable vector field on K for any vector fields
Xi,...,Xpon M.

Given a projectable semi-basic tangent valued p-form ¢ : K — APT*M ®
T K we have the underlying tangent valued p-form ¢ : M — APT*M Q T M
on M such that (X7, ..., X)) is the underlying vector field of (X7, ..., X))
for any vector fields Xi,..., X, on M.

Lemma 7.1. Let K — M be a fibred manifold. Given a projectable semi-
basic tangent valued p-form ¢ : K — NPT*M ® TK on K and a pro-
jectable semi-basic tangent valued q-form ¢ : K — NT*M Q TK on K, the
Frolicher—Nijenhuis bracket (F-N-bracket) [[p,v]] is (again) a projectable
semi-basic tangent valued (p + q)-form [[p,v]] : K — APTIT*M @ TK on
K satisfying

[[Qoa d}]](Xl? ) Xp+q)
1 .
= ]qu Zs&gna[tp(Xal, s 7X0p)a w(ch(P-I—l)’ <o 7X0'(p+q))]

-1

" m Zsign Uw([f(Xola e 7X0p)v XO(p+1)]a Xa(p+2)> .- )
_1)pa
©) 4 (](9 — )1)q' Zs&gn oo([Y(Xo1s -5 Xog)s Xo(g+1)], Xo(g4+2)5 - - -)
(—1r! I
* (p—1)(qg—1)12! ;Slgnmﬁ(f([ o> Xo2], X635 -+ )5 Xo(prays - - -)

(—1)P—1a ]
+ P11 Z&gnagp(y([XUl,Xag],XUg,, )y Xo(g42)s -+ +)

for any vector fields X1,..., Xprq on M, where sums are over all permuta-
tionso:{l,....,p+q} —{1,...,p+q}.

Proof. It is well-known fact, see e.g. [4]. Q.E.D. O

Let F be a ppgb-functor on DV and K be a DVB-object with basis M.
Then we have the fibred manifold FK — M. We have also the DVB-object
F K with basis F'M.

Definition 7.2. A double-linear semi-basic tangent valued p-form on FK —
M is a projectable semi-basic tangent valued p-form ¢ : FK — APT*M ®
TFK on (fibered manifold) FK (with basis M) such that (additionally)
©(X1,...,X,) is a double-linear vector field on DVB-object F'K (with basis
FM) for any vector fields X1,..., X, on M.
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Remark 7.3. If F' is the identity functor and K = R™//m271,"2 the space
of double-linear semi-basic tangent valued p-forms on R™1.™2:71.72 ig (in
obvious way) a module over the ring of smooth maps R"™ — R. This
module is free and the basis is (for example) the collection consisting of
dz A ... Ndz ® a?;i and widx' A. .. Adz? @ % and du/t Adz™ A ... A
dz'r—1 ® % and vF1dz A L. A datr ® % and dvFt A dait A L. A datr @
% and w'dz™ A ... Ada? @ % and dw!t A dzft A ... A dar @ %
and uw/vFdz A LA det ® % and vFdul A dzft AL A dath1 @ % and
Wdvk Ada AL AN dzir-1 @ % and dwl AdoF Adzt A .. Ndz'P2 ® % for
all integers 4,41, . .., dp, i1, -+, 0p 1,97,y 0y 9,5, J1, Kk, k1,1, 11 with 1 <4p <
ce<idp<mpand 1 <id) <...<ip, g <mpand 1 <if <...<ip o <my
and 1 <i<mijand 1 <j<moand 1< j <mgand 1<k < n; and
1<ki<njand1l<l<mngandl <l <no, wherez! ... ,z™ o' ... u™2,

vl oo o™, wh, . w™ are the usual coordinates on R™1m2:mn2,

Proposition 7.4. Let ¢ : FK — NPT*M @ TFK be a double-linear (then
projectable) semi-basic tangent valued p-form on FK — M and ¢ : FK —
NT*M @ TFK be a double-linear semi-basic tangent valued q-form on
FK — M. Then the F-N bracket [[p,¢]] : FK — ANTIT*M @ TFK
of ¢ and 1 is a double-linear semi-basic tangent valued (p + q)-form on
FK — M.

Proof. It is a simple consequence of formula (6) (with FK — M playing
the role of K — M) and Lemma 6.1. Q.E.D. O

8. An application to torsion of double-linear connections in FK —
M. Let F be a ppgb-functor on DVB and let K be a DVB,y,, my ni no-0bject
with basis M.

Definition 8.1. A double-linear connection in FK — M is a double-linear
semi-basic tangent valued 1-form I' : FK — T"M  TFK on FK — M
such that the underlying vector field of I'(X) is equal to X for any vector
field X on basis M.

Assume mq > 2. Let I': FK — T*M ® TFK be a double-linear connec-
tion in FK — M and let B : TFK — TFK be a DVBy,, mo.n, no-natural
affinor on FK. If m; > 2, then B = af(c) for some ¢ € AF, see Theorem 5.2.
If ¢ = A+ n, where A € R and n is nilpotent, then given a vector field X
on M, the vector field B o I'(X) on FK is projectable with the underlying
vector field AX. Now, because of Lemma 6.2, B oI is a double-linear semi-
basic tangent-valued 1-form on FFK — M, where (BoT')(X) := BoI'(X)
for any vector field X on M.

Definition 8.2. The torsion 75(I") of type B of T' is by definition the F-N
bracket of I and BoT, ie. 78(T) := [[[, BoT]).
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Theorem 8.3. Let F' and I" and B be as above. Assume mi, mo,ni, Ny are
non-negative integers with my > 2. The torsion T2(I') of type B of T is a
double-linear semi-basic tangent valued 2-form on FK. If B = af(c), where
c=\+n, A€ R, ne A" is a nilpotent, then

TP(0)(X,Y) = 2ARp(X,Y) + [[(X), af (n) o T(Y)]
— [D(Y),af(n) o T(X)] — af(n) o T([X, Y])

for any vector fields X andY on M, where Rp = [[I,I]] : FK — A’ T*M®
VFK (ie. Rp(X,Y) = [['(X),T(Y)] — T'([X,Y])) is the curvature of T'.
Thus 78(T) : FK — N’T*M ® VFK, where V is the vertical functor.

Proof. Since I' is a double-linear semi-basic tangent valued 1-form on
FK — M, then so is BoTI', see Lemma 6.2, and then [[I", BoT'] is a double-
linear semi-basic tangent valued 2-form on FFK — M, see Proposition 7.4.
To obtain the formula, we propose to apply the one of the F-N-bracket, see
(6) for FK — M instead of K — M and I" and B o I" instead of ¢ and ).
Q.E.D. O

Remark 8.4. If F = T is the tangent functor and B = J is the almost
tangent structure (i.e. AX =D, c=n=(0,1) € D, A = 0), then

7 (D)(X,Y) = [[(X),J o T(Y)] — [[(Y), J o T(X)] — J o T([X, Y])

for any vector fields X and Y on M. If additionally K = (M, M, M, M),
then 77/(T") is (almost) the usual torsion of a usual linear connection I' on M.
Indeed, if 2!, ..., 2™ are local coordinates on M and z!,...,z™ y', ... y™
. . ; a 8
are the induced coordinates on TM, then J = > 7", dz' ® gy I INCIE
0 k j_0 0y _ 0 J(_0 o0\ _ (Tk ky_0
D2t 7F’Lj(m)y]87yk’ then JOF(axl) = 9y Then T (81‘1 N @) = (F’Lj 71—‘]2)@
(the Einstein summation convention). Therefore our torsion generalizes the
classical torsion of classical linear connection.

Example 8.5. Let V : DVB — FM be the vertical functor sending any
double vector bundle K with basis M into the usual vertical bundle VK =
UeemT(Kz) — M of K. Then AY = R and ¢V : D x D — D is the usual
multiplication of the dual numbers. By our theorem, any natural affinor B
on VK is B = af(\) = Ald, A € R. On the other hand, the torsion (in our
sense) of the type B = AId of double linear connection I' on VK — M is of
the form 75(I") = [T, BoT]] = \[[T',T]] = 2ARr. Consequently, any torsion
(in our sense) of double linear connection I' on VK — M is the constant
multiple of the curvature Rp of I'.

Example 8.6. If we replace in the previous example the algebra of dual
numbers D by the arbitrary Weil algebra A, we get the A-vertical bundle
VAK = UpenTA(K,) — M of a double vector bundle K — M. Clearly,
A" =Rand oV : AxA — Aisthe algebra multiplication of A. Thus any
natural affinor B on VAK is proportional to the identity one, i.c. B = AId.
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Then (similarly to the previous example) 73(T') = 2ARr for any double
linear connection I' on VAK — M. Hence any torsion (in our sense) of
a double linear connection I' on VAK — M is a constant multiple of the
curvature Rr of I

By the arguments of the above examples we have:

Corollary 8.7. If AT = R, then any natural affinor on FK is the constant
multiple of the identity one and any torsion (in our sense) of a double linear
connection I' on FK — M is a constant multiple of the curvature Rr of I.

Acknowledgement. The authors thank the reviewer for valuable com-
ments that improved the paper.
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