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for Riemann—Liouville fractional integrals

ABSTRACT. In the present article, an equality is established by using the well-
known Riemann—Liouville fractional integrals. With the aid of this equality,
some Euler—-Maclaurin-type inequalities are given in the case of differentiable
convex functions. Moreover, we give an example using graphs in order to
show that our main result is correct.

1. Introduction. The inequality theory is a famous subject in many math-
ematical areas and remains an interesting research field with a great deal
of applications. In addition, convex functions have also a significant place
in the theory of inequalities. Furthermore, fractional calculus has been the
focus of attraction for mathematicians in mathematical sciences because of
its fundamental properties and applications in real-life problems. In conse-
quence of the importance of fractional calculus, mathematicians have stud-
ied several fractional integral inequalities. For new inequalities bounds can
be proved by using not only Hermite-Hadamard-type inequalities but also
Simpson, Newton, and Euler—-Maclaurin-type inequalities.

Let us consider f € Li[a,b]. The Riemann—Liouwville integrals J$_f and
Jit f of order o > 0 with a > 0 are defined by

T @) = o [ @07 0 > a

I(e)
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and

(e 1 b a—
1@ = g [ =0 0 2 <o,
respectively [11, 17]. Here, I'(«) denotes the Gamma function and it is
defined as

oo
INa) = / e “u®du.
0
The fractional integral reduces to the classical integral in the case of @ = 1.

Simpson’s inequalities have the following Simpson’s rules:
i. Simpson’s quadrature formula (Simpson’s 1/3 rule) is formulated as

follows:
@+ () <)

(1) /:f(w)dw~

ii. Simpson’s second formula or the Newton—Cotes quadrature formula
(Simpson’s 3 / 8 rule (cf. [3])) is formulated as follows:

@ [ rwas"g[rwvar (2550) var (52 ro).

iii. The correspondlng dual Simpson’s 3/8 formula — the Maclaurin rule
based on the Maclaurin formula (cf. [3]) is formulated as follows:

lébfuﬁdr% [3f<5a+b> 2f<a+b> 3f<a+5b)}

Formulae (1), (2), and (3) hold for every function f with continuous 4th
derivative on |[a, b].

The most popular Newton-Cotes quadrature containing three-point
Simpson-type inequality is formulated as follows:

Theorem 1. Let f : [a,b] — R denote a four times differentiable and
continuous function on (a,b) and let Hf(4)Hoo = SUDPge(q ) ‘f(4)(x)‘ < 00.
Then, the following inequality holds:

\é [f( >+4f(“+b) +f<b>] —b_la/abf(x)dw

f“H (b—a)*.
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Dragomir [6] proved an estimation of the remainder for Simpson’s quadra-
ture formula for the case of bounded variation functions and gave its appli-
cations in theory of special means. Moreover, some fractional Simpson-type
inequalities for the case of functions whose second derivatives in absolute
value are convex are given in [12]. Budak et al. [1] established some vari-
ants of Simpson-type inequalities for the case of differentiable convex func-
tions and generalized fractional integrals. For further information concerned
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Simpson-type inequalities and some properties of Riemann—Liouville frac-
tional integrals, the reader is referred to [2, 16] and the references therein.

The classical closed type quadrature rule is the Simpson 3/8 rule based
on the Simpson 3/8 inequality formulated as follows:

Theorem 2. Let f : [a,b] — R denote a four times diﬁerentmble and
continuous function on (a,b), and let Hf(4)H = SUPg¢(a,b) }f( ‘ < 0.
Then, one has the inequality

;{f() 3f<2a+b> 3f<a—|—2b>+f ]—/f )z

b—a

< g 7.
Simpson’s second rule has the rule of three-point Newton—Cotes quad-
rature, hence evaluations for three steps quadratic kernel are sometimes
called Newton-type results in the literature. Newton-type inequalities have
been investigated extensively by many researchers. For instance, Erden et
al. [8] proved some new integral inequalities of Newton-type for the case
of functions whose first derivative in absolute value at certain power are
arithmetically-harmonically convex. By using the Riemann—Liouville frac-
tional integrals, several Newton-type inequalities for the case of differen-
tiable convex functions were proved and some fractional Newton-type in-
equalities for the case of bounded variation functions were presented in [13].
Moreover, Gao and Shi [10] proved new Newton-type inequalities based
on convexity and some applications for special cases of real functions are
also established. Furthermore, Sitthiwirattham et al. [20] presented some
Newton-type inequalities by using Riemann—Liouville fractional integrals
and several fractional Newton-type inequalities for the case of bounded vari-
ation functions were given. For further information concerning Newton-type
inequalities including convex differentiable functions, the reader is referred
to [14, 15, 18] and the references therein.
The corresponding dual Simpson’s 3/8 formula — the Maclaurin rule based
on the Maclaurin inequality is formulated as follows:

Theorem 3. Let f : [a,b] — R denote a four times differentiable and
continuous function on (a,b), and let Hf(4)HOO = SUPge(q,b) ’f(4) ()] < oc.
Then, the following inequality holds:

[3f<5a+b> 2f<a—|—b) 3f<a+56>]_bia/abf(x)dfv

(4)
- 51840 Hf H

Dedi¢ et al. [4] established a set of inequalities by using the Euler—
Maclaurin formulae and the results are applied to obtain some error es-
timates in the case of the Maclaurin quadrature rules. Furthermore, a set
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of inequalities is established by using the Euler-Simpson 3/8 formulae. The
results are implemented to get some error estimates for the case of the Simp-
son 3/8 quadrature rules in [5]. The reader is referred to [9, 3, 19] and the
references therein for further information about inequalities of this kind.
The aim of this article is to derive Euler—-Maclaurin-type inequalities for
the case of differentiable convex functions by using Riemann—Liouville frac-
tional integrals and we present an example using graphs to display that
our main result is correct. The basic definition of fractional calculus and
other studies in this discipline are given in Section 1. We will prove an
integral equality in Section 2 that is critical in proving the primary re-
sults of the presented paper. Furthermore, using the Riemann—Liouville
fractional integrals, we will prove some inequalities of the Euler—-Maclaurin-
type inequalities for differentiable convex functions. Moreover, we will pro-
vide a graphical example and demonstrate the accuracy of the newly es-
tablished inequalities. In Section 2, we will present some opinions about
Euler-Maclaurin-type inequalities for the further directions of research.

2. Main results.

Lemma 1. If f : [a,b] — R is an absolutely continuous function on (a,b)
such that ' € Ly ([a,b]), then the following equality

1 5a + b a+b a+ 5b
s () e (1) v (50

I'(a+1)

(4) T 2(b—a)” [Jai f (D) + T f (a)]

_b-a) N~
=" ;L

18 valid. Here,

7

o=

1'1:/0 t[f b+ (1 —t)a) — f'(ta+ (1 —t)b)] dt,

1

12_/; (1= 3) @+ =00 - ta+ @ - 0n)] a

n- (tag> [/ (th+ (L= t)a) = £ (ta+ (1 — 1) b)] .

1
2

14:/: (1" = 1) [/ (tb+ (L= t)a) = ' (ta+ (1~ 1)B)] dt.

\
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Proof. With the help of integration by parts, we get

o=

11:/0 € [F (th+ (1— t)a) — f (ta+ (1— 1) b)] dt

NI

:ﬁto‘f(tlH—(l—t)a)

0

(5) e /Gt"‘—l[f(tb+(1—t)a)+f(ta+(1_t)b)]dt

b—a 0

“wo-a (/) (55))

1

/6#’“1 [f(tb+ (1 —t)a)+ f(ta+ (1 —1t)b)]dt.

b—a 0

a

In a similar manner, we obtain

() ()
o (el (F)]

_bfa/;ta_l[f(tb+(1—t)a)+f(m+(1_t>b)]dt’

el () )
0l )

= ﬁita1[f(tb+(1—t)a)+f(ta+(1—t)b)]dt,

and

it (@) 01 (52)

baa/;ta1[f(tb+(1—t)a)+f(ta+(1—t)b)]dt.

(8)
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If we collect equalities from (5) to (8), then we readily get

4

o = i 1 (5 w2 () +or ()]

—bfa [/Olta1f(tb—|—(1—t)a)dt+/1t°‘1f(ta+(1—t)b)dt].

0

If we use the change of the variable z = tb+ (1 —t)a and x =ta+ (1 —t)b
for t € [0, 1] respectively, then equality (9) will be rewritten as follows:

(10) gli:zl(bl )[3f <5a+b> 2 <a+b> ¥ (5““’”
_m [T d () + T f (a)]

Multiplying (10) by (bga), we obtain equality (4). This completes the proof
of Lemma 1. O

Theorem 4. Suppose that conditions of Lemma 1 hold and the function
|f'| is convex on [a,b]. Then, we have

e () e (7)o (057)

(1) R T 0+ 5 @)
< O, () 4 s (@) + 03 (@) + (@) || @)] + | B)]
where
2 (a) = /01|ta|dt (Hl)ﬁaﬂ
0 )= [ oY
w1 (e — ) — & 0<a<id,
= O (@) - b pd<as i,
£+t (s = ). n <o
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Q s te > dt
s(@) = [ -2
2
1 ((5yatl _ 1 5 ()
ol ((6) - 2a+1> ~ 21 0<a< mé)a
_ 20 (5)\1+% 1 1 5o+l 5 In(§) In(§)
a1 (8) T+l (2a+1 +(3) ) ~ % 1n(§) Sas mé)v
5 1 1 5\ a+1 ln(é)
| 22T a 1<2a+1_(6) )’ 1n(§)<04,

and

Lo 1 1 5\
6

Proof. Consider modulus in Lemma 1. Then, we readily get the following
inequality:

% [31" (5a6+b> +of <“J2fb> L3 <a4;5b>]
2F ((bajaii (I8 f (0) + T2 f (a)]

_(b—a)

[/06 | (tb+ (1 —t)a) — f (ta+ (1 —t)b)|dt
(12)

’ ta—z‘\f’(tb+(1—t)a)—f’(ta+(1—t)b)}dt

5

6
—I—/
1
2

+/51|ta—1||f’(tb+(1—t)a)—f’(ta+(1—t)b)\dt :

6

_|_
mh—t\ [\

ta—2‘\f’(tb+(1—t)a)—f’(ta+(l—t)b)}dt

Since |f'| is convex, we have

‘51; [3f (5a6+b> Lof <a—21—b> ey <a—1(—55b>]
_ ;((bo‘ja;l (T2, F (6) + T f (a)]

< (b2“) [/G\tal [t[£ ®) + (1= 1) | (@)] + | £ (@) + A=) | £ (0)])dt
0

1

2
+/
1
6

e = 2l O+ A =017 @]+l @]+ @ -0 |7 @] &
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+

3@ a- ol @l @ s a-olr o)

1
+/5 [t — 1] [t\f’(b)!+(1—t)\f’(a)\+t|f’(a)}+(1—t)\f’(b)\]dt]

s
(b—a) [ [o 2 3 s 5 !
- / 0] dt + ta—dt+/ ta—dt+/ 1] dt
2 0 1 8 1 8 5
2 6
This is the end of the proof of Theorem 4. O

<[ @]+ ®)]-

Example 1. Let us consider a function f : [a,b] = [0,1] — R given by
f(x) = 2% in Theorem 4. Then, the left-hand side of (11) reduces to

s () o (57) (”“)]

T ey g0

@ ! 1,2 2
—— U (1—t)*""t dt+/ t 1t dt”
2 LJo 0
The right hand-side of (11) becomes

Wl Wl

a’?+a+2
2+ 1) (a+2)|"

1 5ya+1 1 In(2)
@ [2(8) —1] ~ & 0<a<iy
2 [ 5\o+1 3\1+s 1 7 In(§) n(g)
(atD) |6t T ()" +a®) - 5] 51 mé) <as h@)’
2 [ 1 1 5\ a+1
o |+ + (3)
3\ 142 5\1+% _ 1 1 In(2) In(2)
ta(3) T ta(g) e - 5} VR lné) <as m(;)’
2 1 5\a+1 syI+% 1] 13 () In(g)
(a+1) [6a+1 +(8)" a3 - §] 247 lné) <as 1n(§)’
1 2 17+ 1 In(3)
(a+1) [6a+1 ] + bR hl(%) <«
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(A) Graph on the interval (B) Graph on the interval
0 o< ) () _ - (3)
~ (%) in(5) ~ 7 n(3)

(C) Graph on the interval (D) Graph on the interval
In($) In(%) In(8) In(§)
<a< . < 53 -
(1) =% = () (1) =% = (p)

—— Left term of the inequality (11)
4[| —Right term of the inequaliy (11;

(E) Graph on the interval
NE
m(3) < o <10,

6

ln(—)

FIGURE 1. Graph of both sides of (11) in Example 1, de-
pending on «, computed and plotted with MATLAB.

As one can see from Figure (1A) to Figure (1E), the left-hand side of
(11) in Example 1 is always below the right-hand side of this equation, for
all values of a € (0, 10].
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Corollary 1. If we assign o = 1 in Theorem 4, then we obtain the Euler—
Maclaurin-type inequality

slr(s b)“f(“'z”) s (7)) o [0

< 250- /

Theorem 5. Suppose that the assumptions of Lemma 1 are satisfied and
the function |f'|?, ¢ > 1 is convex on [a,b]. Then

o () v (57) v (57

- S U 0+ I S )
< (b;a) [(901 (o, p) + ¢4 (a,p)) [(HW (@)’72+|f/ - )q
(13) (@7 + 1L 1f (B)\ e
(e

2|f' (a)|* + | W)é

)

1
1 »
epdt|] = ———
. ) <(Oép+1)6“p“> ’

+ (2 (o, p) + @3 (o, p)) [(

Q

n (f’ (a)lqﬂ;QIf’ (b)lq>

1 1 _
Here, 5—!-5—1 and

/

N

=

P

\\

1

1)
)
g

1
(1 —t*)P

1
p

=l
= (e
= (e
= ()

\
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Proof. If we apply Holder inequality in (12), then we readily obtain

‘é [3f <5a;—b> iy <a—;b> +3f (az%ﬂ
_ ;(g}o‘jaii (TS f (0) + T f (a)]

b=a) [( 1% ew N (1510 Y

s {(0 Itldt> {(/0 |/ (th+ (1 —t)a)| dt)
+</06f'(ta+(1t)b)th>q]

ta2pdt>p|:</;}f’(tb—|—(lt)a)}th>q
+</12f/(ta+(1t)b)th>q]

+</; taZpdt>p{</;}f’(tb+(lt)a)}th>q
"‘(ﬁsf/(ta—i—(lt)b)th)q]

" (/51 |ta_1|pdt>p |:</51f/(tb+(1t)a)th>q

+<ﬁ}f’(ta+(1t)b)}th>q”.

Since it is known that |f’|? is convex, we get

‘é [3f <5a6+b> vy <a72Lb> +3f (az%)}
_ZF((ba_*a;Z [T f (6) + T f (a)]

1

+
~//
@N

1

1

b—a 1 7 3 , . / . 7
=72 |:<(04p+1)60tp+1> !(/ﬂ L O+ 1=t [f (a) dt)
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-+<Aﬁﬂf N+ (@ —=t)|f (b qﬁ>1
+</ft“§pﬁ>p{<ﬁ2ﬂf N+ 1A=t |f (a Vﬁ)q
+<[2tfmfﬂ(1ﬂf%®qﬁ>1
s p z s i
+<[ tag‘ dt) {(ﬁ t|f’(b)\q+(1t)\f’(a)\th>
+</16tf’(a)q+(1t)f’(b)th>q}
1 5 1 a
+<ﬂ\w—4pﬁ) {(ﬁt”ﬂ@q+(1wf%@qﬁ)
1 7
+ (/;tU”mﬂq+(1—t)U”wﬂqm> ]]
1 »
ap+1 6°‘p+1 —l—(/g (l—ta)l?dt>
11]f (a Iq+|f’ 1 (@7 + 111 ()" 7
[( > ()
(e

x[<2|f’ W'+ 1 (0 |> +<f/(a)q+92f’(b)q>;”.

Thus, the proof of Theorem 5 is completed.

6
o — =

1
p P
)

8

_l_
~~
NM—‘\
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Example 2. Let us consider a function f : [a,b] = [0,1] — R given by
f(z) = 22 and ¢ = 2 in Theorem 5. Then, the left-hand side of (13)
becomes

1 5a + b a+b a+ 5b
s (6 +ar (55) + 0 (%57))

I'(a+1)

SO g s+ a1 0)

1 (6 ! a—1 ,2 ! 1,2 1 Oé2+Oé+2
. 1— ¢ a - .
‘3 2[/0 (1-1) dt*/ot tdt} 37 2@+ 1) (@t2)

The right hand-side of (13) reduces to

; [m @2+ 012 UL g 09) 4 s @02

2(1+v2)

3

9

where

I

—~
[\}
Q
+
=
|
[=2]
N
Q
+
|
N——
(NI

e [1- (0] - 2 [1- @] +1)2

T T T
Left terms of the inequality (13)

0.6 — Right terms of the inequality (13) | -

FIGURE 2. Graph of both sides of (13) in Example 2, de-
pending on «, computed and plotted with MATLAB.
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As one can see in Figure 2, the left-hand side of (13) in Example 2 is
always below the right-hand side of this equation for all values of a € (0, 10].

Corollary 2. If we let @« = 1 in Theorem 5, then we obtain the following
Euler—Maclaurin-type inequality:

é [Sf <5a6+b> +2f (a;rb> +3f <a25b>} — bia/abf(t)dt’
( 1 >i [(mf'<a>|q+|f'<b>|Q>i
(p+ 1) 6rF1 72

n <|f’ (@) +11]f (b)yq>§]

< (b—a)

72
(ot (G ) [y ey

" <|f/<a>Q+92|f'<b>|‘I>3” |

Theorem 6. Let us suppose that the assumptions of Lemma 1 hold and
the function |f'|?, ¢ > 1 is convex on [a,b]. Then, the following inequality
holds:

1 5a + b a+b a+ 5b
sl () o (57) +or (557)
r

a [y f (0) + T f (a)]

| —
—~
2
iy
—~
Q
SN—
~—
Q|
L —
—~
)
ot
—
Q
~—
5
<
—~
=
~—
£
_l’_
—~
)
_
—
QU=
|
2
ot
—
Q
SN—
~—
5
<
—~
Q
SN—
Q
SN—
Q=
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Here, Q1 (o), Q2 (), Q3 () and Qq () are given in Theorem 4 and

o

Qs (a) :/6 12| tdt =
0

Q6 (o) = ﬁé

In( 2
ats (5t — ) ~ 30 0<a<gi)

(a + 2) 6at2’

3
> — Sl tdt
8‘

967 n(g)

1 1 1 1 In(
24 + af_;'_g (6a+2 - 2a+2) ’

5

6 )
> — S| tdt
d

S
S
I
e

6

Lo 11 1 5\

Proof. If we use power-mean inequality in (12), then we have

’; [3f <5a6+b> Y (a;rb> +3f (azs)b)]
_H (& f (b) + J2 [ (a)]

1

1 1—-= 1 L

(b—a) 5 [T o Cnalia )

<& (/0 |t|dt> (/0 2] £t + (1 — t) a) dt>
1-1 1 %
\t“]dt) (/06 [t | f (ta+ (1 —¢) b)\th>

1-1 1

« 3 ! 2

tg\dt) ([

6

+(/j
(f

t — 2‘ |f (tb+ (1 t)a)\th>

— 3\VI42 1 (1 1 5 In(2) n(2)
B R) e (et ae) 8. <a< 3

1
q
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- / t“—% ) </ t“—% |f (ta+ (1 - \th>1
+ / t“—g ) </ t“—g ‘f’(tb—{—(l—t)a)‘th)}]
+ / t“—g ) </ ta—g |f' (ta + (1 - \"dt)l

+

(4

[/

( |
( t —1|dt> </1]t —1|f b+ (1-t)a th)i
+< t* —1ydt> (/1175 — 1 |f' (ta+(1—1t)b th)q].

Since |f’|? is convex, we have

s (5 e (7)o (7))

S R 04 S @)

<<b2){(/ tdt)léK/oét“[tf 7+ (1= 1) | (@)]] at >é
( ] [t (@) + (@ —1) | £/ (b)|"] d )]
s [</ e furor-warons)
([ r-Fer@ra-nire u)q]
=) {</ e uror-warons)
([ ]r-Fer@rsa-oire u)q]
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| S :
+<ﬂ) ]t"‘—l]dt) (/5 yta—1|[t\f’(b)\qﬂl—t)\f’(a)\‘ﬂdt)

6

1 :
+</5 1 [t @]+ (- 6| )] dt)

Finally, this finishes the proof of Theorem 6. (|

Corollary 3. Consider o« = 1 in Theorem 6. Then, the following Fuler—
Maclaurin-type inequality holds:

[ (35 o (452) v (5] -2 [ 0]

<o [(If’(b)lq+98\f’(a)!q)q (L IS0 )

(2 (o

3611 ()|’ + 8631 ()] 7
+ (FHEEEEERE ).
Conclusion. Some Euler-Maclaurin-type inequalities are presented for the
case of differentiable convex functions by using Riemann—Liouville fractional
integrals. In addition, we give an example using graphs in order to indicate
that our main result is correct. Our results can be extended by mathemati-
cians in future studies by applying different variations of convex function
classes.
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