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On implicative BE algebras

Abstract. We consider some generalizations of BCK algebras (RML, BE,
aBE, BE** and aBE** algebras). We investigate the property of implicativ-
ity for these algebras. We prove that for any implicative BE** algebra the
commutativity property is equivalent to the property of antisymmetry and
show that implicative aBE** algebras are commutative BCK algebras. We
also show that the class of implicative BE** algebras is a variety.

1. Introduction. In 1966, Y. Imai and K. Iséki [3] introduced a new no-
tion called a BCK algebra. It is an algebraic formulation of the BCK-
propositional calculus system of C. A. Meredith [12], which generalizes the
concept of implicative algebras (see [1]). Hundred of papers were written
on BCK algebras, and the books [11] and [4]. In [10], as a generalization
of BCK algebras, H. S. Kim and Y. H. Kim defined BE algebras. In 2008,
A. Walendziak [14] defined commutative BE algebras and proved that they
are BCK algebras. A. Iorgulescu [5] introduced new generalizations of BCK
algebras (RML, aBE, BE**, aBE** algebras and many others).
In 1978, K. Iséki and S. Tanaka [8] introduced the notion of implicativity
in the theory of BCK algebras. The present paper is a continuation of the
author’s paper [15], where the property of implicativity for various gener-
alizations of BCK algebras was studied. Here we consider RML, BE, aBE,
BE** and aBE** algebras and investigate the implicative property for these
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algebras. We prove that for any implicative BE** algebra the commutativ-
ity property is equivalent to the property of antisymmetry and show that
implicative aBE** algebras are commutative BCK algebras. We also show
that the class of implicative BE** algebras is a variety.

2. Preliminaries. Let A = (A,→, 1) be an algebra of type (2, 0). We
consider the following list of properties ([5]) that can be satisfied by A:
(An) (Antisymmetry) x → y = 1 = y → x =⇒ x = y,
(BB) (y → z) → [(z → x) → (y → x)] = 1,
(D) y → ((y → x) → x) = 1,
(Ex) (Exchange) x → (y → z) = y → (x → z),
(K) x → (y → x) = 1,
(L) (Last element) x → 1 = 1,
(M) 1 → x = x,
(Re) (Reflexivity) x → x = 1,
(*) y → z = 1 =⇒ (x → y) → (x → z) = 1,
(**) y → z = 1 =⇒ (z → x) → (y → x) = 1,
(Tr) (Transitivity) x → y = 1 = y → z =⇒ x → z = 1.

Lemma 2.1 ([5], Proposition 2.1). Let A = (A,→, 1) be an algebra of type
(2, 0). Then the following hold:

(i) (M) + (BB) imply (Re), (**),
(ii) (M) + (BB) + (An) imply (Ex),
(iii) (M) + (**) imply (Tr),
(iv) (Re) + (Ex) imply (D),
(v) (Re) + (L) + (Ex) imply (K),
(vi) (Re) + (Ex) + (Tr) imply (**),
(vii) (M) + (*) imply (Tr).

Definition 2.2 ([5]).

1. An RML algebra is an algebra A=(A,→, 1) verifying (Re), (M), (L).
2. A BE algebra is a RML algebra verifying (Ex).
3. An aBE algebra is a BE algebra verifying (An).
4. A BE** algebra is a BE algebra verifying (**).
5. An aBE** algebra is a BE** algebra verifying (An).
6. A BCK algebra is an algebra A = (A,→, 1) verifying (An), (BB),
(M), (L).

Denote by RML, BE, aBE, BE**, aBE** and BCK the classes of
RML, BE, aBE, BE**, aBE** and BCK algebras, respectively. By definition
and Lemma 2.1 (i) and (ii), we have

BCK ⊂ aBE** ⊂ aBE ⊂ BE ⊂ RML and aBE** ⊂ BE** ⊂ BE.
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The interrelationships between the classes of algebras mentioned before are
visualized in Figure 1. (An arrow indicates proper inclusion, that is, if X
and Y are classes of algebras, then X −→Y means X⊂Y.)
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Let A = (A,→, 1) be an algebra of type (2, 0). We define the binary
relation ≤ by: for all x, y ∈ A,

x ≤ y ⇐⇒ x → y = 1.

It is known that ≤ is an order relation in BCK algebras. By definition,
in RML and BE algebras, ≤ is a reflexive relation; in aBE algebras, ≤ is
reflexive and antisymmetric. By Lemma 2.1 (iii), in BE** algebras, ≤ is
reflexive and transitive (i.e., it is a pre-order relation). Lastly, in aBE**
algebras, ≤ is an order relation.
In [13], S. Tanaka introduced the notion of commutativity in the theory
of BCK algebras. A BCK algebra A = (A,→, 1) is called commutative if,
for all x, y ∈ A,

(Com) (x → y) → y = (y → x) → x.

H. Yutani [17] proved that the class of commutative BCK algebras is
equationally definable. Commutative BCI and BE algebras were considered
in [7] and [14, 2], respectively. K. Iséki [7] proved that any commutative
BCI algebra is a BCK algebra. For BE algebras, this was shown in [14].
The property of commutativity for other generalizations of BCK algebras
was investigated in [16].
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As in the case of BCK algebras, we define:

Definition 2.3. An RML algebra A = (A,→, 1) is called commutative if it
satisfies (Com).

Lemma 2.4. Let A = (A,→, 1) be an algebra of type (2, 0). Then:
(i) (Com) + (M) imply (An),
(ii) (Com) + (K) imply (D),
(iii) (Com) + (Re) + (L) + (Ex) imply (BB).

Proof. The statements (i) and (ii) are proved in [16] (see Proposition 3.3).
(iii) Let A verify (Com), (Re), (L) and (Ex). By Lemma 2.1 (v), A
verifies (K). Let x, y, z ∈ A. We have

(y → z) → [(z → x) → (y → x)]

(Ex)
= (y → z) → [y → ((z → x) → x)]

(Com)
= (y → z) → [y → ((x → z) → z)]

(Ex)
= (y → z) → [(x → z) → (y → z)]

(K)
= 1,

that is, (BB) holds in A. □

3. Implicative BE algebras. The well-known implicative and positive
implicative BCK algebras were introduced by K. Iséki and S. Tanaka [8].
Let A = (A,→, 1) be an algebra of type (2, 0). We first consider the
following properties:

(Im) (x → y) → x = x,

(pi) y → (y → x) = y → x,

(pimpl) x → (y → z) = (x → y) → (x → z).

Remark 3.1. Note that from Theorem 8 of [8] it follows that for BCK alge-
bras, (pimpl) and (pi) are equivalent. By Theorem 9 of [8], in commutative
BCK algebras, we have (Im) ⇐⇒ (pi) ⇐⇒ (pimpl).

Proposition 3.2. Let A = (A,→, 1) be an algebra of type (2, 0). Then
(i) (Re) + (Im) imply (M),
(ii) (M) + (Im) imply (L),
(iii) (Im) implies (pi),
(iv) (Re) + (M) + (pimpl) + (An) imply (Ex),
(v) (Re) + (Im) + (BB) + (An) imply (pimpl),
(vi) (Re) + (pimpl) imply (L),
(vii) (M) + (K) + (Com) + (pimpl) imply (Im).

Proof. (i)–(iii) follow from Proposition 3.5 of [15].
(iv) follows from Theorem 6.16 of [5].
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(v) By above (i)–(iii), A satisfies (M), (L) and (pi). By Lemma 2.1 (ii)
and (v), A also satisfies (Ex) and (K). Let x, y, z ∈ A. We have

(x → (y → z)) → [(x → y) → (x → z)]

(Ex)
= (x → y) → [(x → (y → z)) → (x → z)]

(Ex)
= (x → y) → [(y → (x → z)) → (x → z)]

(pi)
= (x → y) → [(y → (x → z)) → (x → (x → z))]

(BB)
= 1.

Then

(3.1) x → (y → z) ≤ (x → y) → (x → z).

On the other hand, from (K) we see that y → (x → y) = 1, and we obtain

[(x → y) → (x → z)] → (x → (y → z))

(Ex)
= [(x → y) → (x → z)] → (y → (x → z))

(M)
= [y → (x → y)] → [((x → y) → (x → z)) → (y → (x → z))]

(BB)
= 1.

Hence

(3.2) (x → y) → (x → z) ≤ x → (y → z).

Applying (An), from (3.1) and (3.2), we get (pimpl).
(vi) follows from Proposition 6.4 (i) of [5].
(vii) By Lemma 2.4, A satisfies (An) and (D). Let x, y, z ∈ A. We have

((x → y) → x) → x
(Com)
= (x → (x → y)) → (x → y)

(pimpl)
= x → ((x → y) → y)

(D)
= 1.

Therefore, (x → y) → x ≤ x. On the other hand, from (K) we see that
x ≤ (x → y) → x. Applying (An), we get (Im). □

Lemma 3.3 ([15], Lemma 3.8). Let A = (A,→, 1) be an algebra of type
(2, 0). Then

(Re) + (Com) + (Im) + (BB) ⇐⇒ (Re) + (Com) + (Im) + (Ex).

As in the case of BCK algebras, we now define:

Definition 3.4. An RML algebra A is called implicative if it satisfies (Im).
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Example 3.5 ([15], Example 3.24). Consider the set A = {a, b, c, d, 1} and
the operation → given by the following table:

→ a b c d 1
a 1 b b d 1
b a 1 a a 1
c 1 1 1 1 1
d a 1 1 1 1
1 a b c d 1

We can observe that the properties (Im), (Re), (M) and (L) are satisfied.
Hence, (A,→, 1) is an implicative RML algebra. It does not satisfy (An)
for (x, y) = (c, d); (Ex) for (x, y, z) = (a, b, d); (Tr) for (x, y, z) = (d, c, a);
(**) for (x, y, z) = (a, d, c).

Example 3.6. Let A = {a, b, c, 1} and → be defined as follows:
→ a b c 1
a 1 b b 1
b a 1 1 1
c 1 1 1 1
1 a b c 1

It is easy to check that the properties (Im), (Re), (M), (L) and (Ex) are
satisfied; (An) is not satisfied for x = b, y = c; (**) is not satisfied for x = a,
y = b, z = c. Therefore, (A,→, 1)is an implicative BE algebra without (An)
and (**).

Example 3.7. Consider the set A = {a, b, c, 1} and the operation → given
by the following table:

→ a b c 1
a 1 b c 1
b a 1 1 1
c a 1 1 1
1 a b c 1

The algebra A = (A,→, 1) satisfies properties (Im), (Re), (M), (L), (Ex),
(**). It does not satisfy (An) for (x, y) = (b, c). Hence, A is an implicative
BE** algebra without (An).

Example 3.8 ([15], Example 3.34). Let A = {a, b, c, 1} and → be defined
as follows:

→ a b c 1
a 1 b b 1
b a 1 a 1
c 1 1 1 1
1 a b c 1

We can observe that the properties (Im), (An), (Re), (M), (L), (BB) and
(Ex) are satisfied. Therefore, A = (A,→, 1) is an implicative BCK algebra.
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Denote by im-RML the class of all implicative RML algebras. Similarly,
if X is a subclass of the class RML, then im-X denotes the class of all
implicative algebras belonging to X. Examples 3.5–3.8 show that

im-BCK ⊆ im-aBE** ⊂ im-BE** ⊂ im-BE ⊂ im-RML.

Proposition 3.9 ([15], Proposition 3.14). Let A = (A,→, 1) be an algebra
verifying (Re), (D), (**) and (Im). Then

(3.3) y ≤ x =⇒ (x → y) → y ⩽ x

for all x, y ∈ A.

Theorem 3.10. If A = (A,→, 1) is an implicative BE** algebra, then A
is commutative if and only if it satisfies (An).

Proof. Let A be an implicative BE** algebra. If A is commutative, then
A satisfies (An) by Lemma 2.4 (i). Conversely, suppose that (An) holds
in A. From Lemma 2.1 (iii)–(v) it follows that A satisfies (Tr), (D) and
(K). By Proposition 3.9, A satisfies (3.3). Let x, y ∈ A. From (K) we have
x ≤ (y → x) → x. Applying (**) twice, we obtain

(3.4) (x → y) → y ≤ (((y → x) → x) → y) → y.

By (D), y ≤ (y → x) → x, and hence, using (3.3), we get

(3.5) (((y → x) → x) → y) → y ≤ (y → x) → x.

Since A satisfies (Tr), from inequalities (3.4) and (3.5) we have

(x → y) → y ≤ (y → x) → x.

Hence, by (An), we obtain (Com). □

Proposition 3.11. In aBE** algebras, we have

(Im) ⇐⇒ (Com) + (pimpl).

Proof. Let A = (A,→, 1) be an aBE** algebra. Assume that A satisfies
(Im). From Theorem 3.10 we conclude that (Com) holds in A. Applying
Lemma 2.4 (iii), we see thatA satisfies (BB). By Proposition 3.2 (v), (pimpl)
holds in A.
Conversely, suppose that A satisfies (Com) and (pimpl). By Lemma
2.1 (v), (Re) + (L) + (Ex) imply (K). Then, from Proposition 3.2 (vii) we
deduce that A satisfies (Im). □

Remark 3.12. Since every BCK algebra is an aBE** algebra, from Propo-
sition 3.11 we obtain Theorem 9 of [8].

Corollary 3.13. Any implicative aBE** algebra is a commutative BCK
algebra.
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Proof. Let A be an implicative aBE** algebra. By Proposition 3.11, A is
commutative. From Lemma 3.3 we see that A verifies (BB). Hence A is a
BCK algebra. □

Remark 3.14. Note that from Corollary 3.13 we deduce that im-BCK =
im-aBE**.

By Proposition 3.2 (i) and (ii), we obtain:

Proposition 3.15. An algebra A = (A,→, 1) is an implicative BE algebra
if and only if it satisfies the equations (Re), (Ex) and (Im).

Lemma 3.16. If A = (A,→, 1) is an implicative BE** algebra, then it
satisfies the following condition:

(W) (((y → x) → x) → z) → (y → z) = 1.

Proof. By Lemma 2.1 (iv), A satisfies (D). Let x, y, z ∈ A. From (D) it
follows that y ≤ (y → x) → x. Applying (**), we obtain ((y → x) → x) →
z ≤ y → z. Hence we have (W). □

The next theorem shows that the class of implicative BE** algebras is a
variety.

Theorem 3.17. An algebra A = (A,→, 1) is an implicative BE** algebra
if and only if it satisfies the equations (Re), (Ex), (Im) and (W).

Proof. If A is an implicative BE** algebra, then it satisfies (Re), (Ex),
(Im) and, by Lemma 3.16, (W).
Conversely, let A satisfy (Re), (Ex), (Im) and (W). Obviously, A is an
implicative BE algebra. To prove (**), let x, y, z ∈ A and y ≤ x. By (M)
and (W), x → z ≤ y → z, that is, A satisfies (**). Thus A is an implicative
BE** algebra. □

Recall the definition of Tarski algebras. A Tarski algebra is an algebra
A = (A,→, 1) of type (2, 0) satisfying the following axioms ([9]): for all
x, y, z ∈ A,
(T1) 1 → x = x,
(T2) x → x = 1,
(T3) (x → y) → y = (y → x) → x,
(T4) x → (y → z) = (x → y) → (x → z).

Note that (T1) is (M), (T2) is (Re), (T3) is (Com) and (T4) is (pimpl).

Theorem 3.18. Let A = (A,→, 1) be an algebra of type (2, 0). The follow-
ing conditions are equivalent:
(i) A is an implicative aBE** algebra,
(ii) A satisfies (Re) + (Com) + (Im) + (Ex),
(iii) A satisfies (Re) + (Com) + (Im) + (BB),
(iv) A is a Tarski algebra.



On implicative BE algebras 53

Proof. (i) implies (ii) and (ii) implies (iii) by Proposition 3.11 and Lem-
ma 3.3, respectively. Now let A satisfy (Re), (Com), (Im) and (BB). By
Proposition 3.2 (i), (Re) + (Im) imply (M), thus, (T1) = (M) holds. By
Lemma 2.4 (i), (Com) + (M) imply (An); then, by Proposition 3.2 (v),
(Re) + (Im) + (BB) + (An) imply (pimpl); thus, (T4) = (pimpl) holds.
Consequently, A is a Tarski algebra.
Finally, let A satisfy (M), (Re), (Com) and (pimpl). By Lemma 2.4 (i),
(Com) + (M) imply (An); thus, (An) holds. By Proposition 3.2 (vi), (Re)
+ (pimpl) imply (L); thus, (L) holds. By Proposition 3.2 (iv), (Re) + (M)
+ (pimpl) + (An) imply (Ex); thus, (Ex) holds.
By Lemma 2.4 (iii), (Com) + (Re) + (L) + (Ex) imply (BB); then, by
Lemma 2.1 (i), (M) + (BB) imply (**); thus, (**) holds. By Lemma 2.1
(v), (Re) + (L) + (Ex) imply (K); then, by Proposition 3.2 (vii), (M) +
(K) + (Com) + (pimpl) imply (Im); thus (Im) holds.
Consequently, A is an implicative aBE** algebra, that is, (i) holds. □

Corollary 3.19. Let A be an implicative aBE algebra satisfying (Tr). Then
A is a Tarski algebra.

Proof. By Lemma 2.1 (vi), A satisfies (**). Then A is an implicative
aBE** algebra. From Theorem 3.18 we see that A is a Tarski algebra. □

Remark 3.20. IfA is an algebra satisfying (M) and (*), then it also satisfies
(Tr) by Lemma 2.1 (vii). Therefore, implicative aBE algebras with (*) are
Tarski algebras.

Open Problem 3.21. Is there an implicative aBE algebra not satisfying
(Tr)?
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