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On implicative BE algebras

ABSTRACT. We consider some generalizations of BCK algebras (RML, BE,
aBE, BE** and aBE** algebras). We investigate the property of implicativ-
ity for these algebras. We prove that for any implicative BE** algebra the
commutativity property is equivalent to the property of antisymmetry and
show that implicative aBE** algebras are commutative BCK algebras. We
also show that the class of implicative BE** algebras is a variety.

1. Introduction. In 1966, Y. Imai and K. Iséki [3] introduced a new no-
tion called a BCK algebra. It is an algebraic formulation of the BCK-
propositional calculus system of C. A. Meredith [12], which generalizes the
concept of implicative algebras (see [1]). Hundred of papers were written
on BCK algebras, and the books [11] and [4]. In [10], as a generalization
of BCK algebras, H. S. Kim and Y. H. Kim defined BE algebras. In 2008,
A. Walendziak [14] defined commutative BE algebras and proved that they
are BCK algebras. A. Iorgulescu [5] introduced new generalizations of BCK
algebras (RML, aBE, BE** aBE** algebras and many others).

In 1978, K. Iséki and S. Tanaka [8] introduced the notion of implicativity
in the theory of BCK algebras. The present paper is a continuation of the
author’s paper [15], where the property of implicativity for various gener-
alizations of BCK algebras was studied. Here we consider RML, BE, aBE,
BE** and aBE** algebras and investigate the implicative property for these

2010 Mathematics Subject Classification. 03G25, 06 A06.
Key words and phrases. BE algebra, BE** algebra, BCK algebra, commutativity,
implicativity.



46 A. Walendziak

algebras. We prove that for any implicative BE** algebra the commutativ-
ity property is equivalent to the property of antisymmetry and show that
implicative aBE** algebras are commutative BCK algebras. We also show
that the class of implicative BE** algebras is a variety.

2. Preliminaries. Let A = (A,—,1) be an algebra of type (2,0). We
consider the following list of properties ([5]) that can be satisfied by A:

(An) (Antisymmetry) z - y=1=y >z = x =y,

(BB) (y— 2) = [(= = o) — (y = o)) = 1,
D) y— (9> 2) ) =1,

(E )(Exchange)x—)(y—)z)-y—)(x—)z)

(K) 2 (y > 2) = 1,

(L) (Last element) z — 1 =1,

M) 1 =z =z,

(Re) (Reflexivity) x — =z =1,
My—z=1=(r—y) = (r—=2) =1,
My—z=1= (z—2)—> (y—z) =1,

(Tr) (Transitivity) x—>y—1—y—>zz:c—>z—1

Lemma 2.1 ([5], Proposition 2.1). Let A= (A,—,1) be an algebra of type
(2,0). Then the following hold:

() (M) + (BB) imply (Re), (**),
(i) (M) + (BB) + (An) imply (Ex),
(i) (M) + (**) imply (Tv),
(iv) (Re) + (Ex) imply (D),
V) (Re) + (L) + (Ex) imply (K),
(vi) (Re) + (Ex) + (Tr) imply (**),
(vil) (M) + (*) imply (Tr).

Definition 2.2 ([5]).

1. An RML algebra is an algebra A= (A, —, 1) verifying (Re), (M), (L).

2. A BFE algebra is a RML algebra verifying (Ex).

3. An aBE algebra is a BE algebra verifying (An).

4. A BE** algebra is a BE algebra verifying (**).

5. An aBE** algebra is a BE** algebra verifying (An).

6. A BCK algebra is an algebra A = (A, —, 1) verifying (An), (BB),
(M), (L),

Denote by RML, BE, aBE, BE** aBE** and BCK the classes of
RML, BE, aBE, BE** aBE** and BCK algebras, respectively. By definition
and Lemma 2.1 (i) and (ii), we have

BCK C aBE** C aBE ¢ BE ¢ RML and aBE** ¢ BE** C BE.
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The interrelationships between the classes of algebras mentioned before are
visualized in Figure 1. (An arrow indicates proper inclusion, that is, if X
and Y are classes of algebras, then X — Y means X CY.)

RML

BE

aBE BE**

aBE**

BCK

Figure 1

Let A = (A,—,1) be an algebra of type (2,0). We define the binary
relation < by: for all z,y € A,

r<y<=zx—y=1

It is known that < is an order relation in BCK algebras. By definition,
in RML and BE algebras, < is a reflexive relation; in aBE algebras, < is
reflexive and antisymmetric. By Lemma 2.1 (iii), in BE** algebras, < is
reflexive and transitive (i.e., it is a pre-order relation). Lastly, in aBE**
algebras, < is an order relation.

In [13], S. Tanaka introduced the notion of commutativity in the theory
of BCK algebras. A BCK algebra A = (A, —, 1) is called commutative if,
for all x,y € A,

(Com) (x—y)—y=(y—x)—

H. Yutani [17] proved that the class of commutative BCK algebras is
equationally definable. Commutative BCI and BE algebras were considered
in [7] and [14, 2], respectively. K. Iséki [7] proved that any commutative
BCI algebra is a BCK algebra. For BE algebras, this was shown in [14].
The property of commutativity for other generalizations of BCK algebras
was investigated in [16].
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As in the case of BCK algebras, we define:

Definition 2.3. An RML algebra A = (A, —, 1) is called commutative if it
satisfies (Com).

Lemma 2.4. Let A= (A,—,1) be an algebra of type (2,0). Then:
(i) (Com) + (M) imply (An),

(i) (Com) + (K) imply (D),

(iii) (Com) + (Re) + (L) + (Ex) imply (BB).
Proof. The statements (i) and (ii) are proved in [16] (see Proposition 3.3).

(iii) Let A verify (Com), (Re), (L) and (Ex). By Lemma 2.1 (v), A
verifies (K). Let z,y,z € A. We have

(y—=2) = [(z=2) = (y = )]

o) oo (2= 2) - a)]

Ay 2) 5y (2> 2) — 2)]

s sl@o) w2 P,

that is, (BB) holds in A. O

3. Implicative BE algebras. The well-known implicative and positive
implicative BCK algebras were introduced by K. Iséki and S. Tanaka [8].

Let A = (A,—,1) be an algebra of type (2,0). We first consider the
following properties:

(Im) (z—y) > x=ux,

() y—=(y—2)=y—u,
(pimpl) z—= (y—2)=(z—y) = (x = 2).

Remark 3.1. Note that from Theorem 8 of [8] it follows that for BCK alge-
bras, (pimpl) and (pi) are equivalent. By Theorem 9 of [8], in commutative
BCK algebras, we have (Im) <= (pi) <= (pimpl).
Proposition 3.2. Let A= (A, —,1) be an algebra of type (2,0). Then
(i) (Re) + (Im) imply (M),

) + (Im) imply (L),
Im) implies (pi),
Re) + (M) + (pimpl) + (An) imply (Ex),
Re) + (Im) + (BB) + (An) imply (pimpl),
Re) + (pimpl) imply (L),
M) + (K) + (Com) + (pimpl) imply (Im).
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Proof. (i)-(iii) follow from Proposition 3.5 of [15].
(iv) follows from Theorem 6.16 of [5].
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(v) By above (i)-(iii), A satisfies (M), (L) and (pi). By Lemma 2.1 (ii)
and (v), A also satisfies (Ex) and (K). Let z,y,z € A. We have

(
(= (y = 2) = @ = y) = (= 2)]
D@y =@ y—2) =@ 2)
D@ =y) =1y @ 2) = (@ 2)]
D@y sly—@—2) =@ @—2) 2L
Then
(3.1) z—(y—z2) < (@—y) = (2 2)

On the other hand, from (K) we see that y — (z — y) = 1, and we obtain

[(z = y) = (@ = 2)] = (z = (y = 2)

(E:X)[(x—>y)—>(ac—>z)}%(y%(ﬂf—ﬁz))
Y y—=(z—=y))=[((z—=y) = (@—=2) = (y—=(z—2))
(BB)
="1.
Hence
(3.2) (e =) > (@2 <z (y—2).

Applying (An), from (3.1) and (3.2), we get (pimpl).
(vi) follows from Proposition 6.4 (i) of [5].
(vii) By Lemma 2.4, A satisfies (An) and (D). Let x,y,z € A. We have

(eoy)=2) o2 2 @s(@oy) = (@ —y)

(D)

PG S (@) ) 2

1.

Therefore, (z — y) — = < x. On the other hand, from (K) we see that
x < (x — y) — x. Applying (An), we get (Im). O

Lemma 3.3 ([15], Lemma 3.8). Let A = (A, —,1) be an algebra of type
(2,0). Then

(Re) + (Com) + (Im) + (BB) <= (Re) + (Com) + (Im) + (Ex).
As in the case of BCK algebras, we now define:

Definition 3.4. An RML algebra A is called implicative if it satisfies (Im).



50 A. Walendziak

Example 3.5 ([15], Example 3.24). Consider the set A = {a,b,¢,d, 1} and
the operation — given by the following table:

—la b ¢ d 1
a |1 b b d1l
b la 1l a a1
c |1 1 1 11
dla 1 1 11
1 |a b c d1
We can observe that the properties (Im), (Re), (M) and (L) are satisfied.

Hence, (A,—,1) is an implicative RML algebra. It does not satisfy (An)
for (z,y) = (¢, d); (Ex) for (2,y,2) = (a,b,d); (Tr) for (2,y,2) = (d,¢,a);
(%) for (2,9,7) = (a )

Example 3.6. Let A = {a,b,c,1} and — be defined as follows:

—>‘ab c 1
al|l b b 1
bla 1 1 1
cl|l 1 11
1l |la b ¢ 1

It is easy to check that the properties (Im), (Re), (M), (L) and (Ex) are
satisfied; (An) is not satisfied for z = b, y = ¢; (**) is not satisfied for z = a,
y = b, z = ¢. Therefore, (A, —, 1)is an implicative BE algebra without (An)
and (**).

Example 3.7. Consider the set A = {a,b,c, 1} and the operation — given
by the following table: ‘

Q@ 2 =
== oS

o ool
— = olo
[

a b ¢ 1

The algebra A = (A, —, 1) satisfies properties (Im), (Re), (M), (L), (Ex),
(**). It does not satisfy (An) for (z,y) = (b,c). Hence, A is an implicative
BE** algebra without (An).

Example 3.8 ([15], Example 3.34). Let A = {a,b,c,1} and — be defined
as follows:

—>‘a b ¢ 1
all b b 1
bla 1 a 1
cll1 1 11
lla b ¢ 1

We can observe that the properties (Im), (An), (Re), (M), (L), (BB) and
(Ex) are satisfied. Therefore, A = (A, —, 1) is an implicative BCK algebra.
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Denote by im-RML the class of all implicative RML algebras. Similarly,
if X is a subclass of the class RML, then im-X denotes the class of all
implicative algebras belonging to X. Examples 3.5-3.8 show that

im-BCK C im-aBE** C im-BE** C im-BE C im-RML.

Proposition 3.9 ([15], Proposition 3.14). Let A = (A, —, 1) be an algebra
verifying (Re), (D), (**) and (Im). Then

(3.3) y<r=(r—>y)2y<ze
for all x,y € A.

Theorem 3.10. If A = (A,—,1) is an implicative BE** algebra, then A
is commutative if and only if it satisfies (An).

Proof. Let A be an implicative BE** algebra. If A is commutative, then
A satisfies (An) by Lemma 2.4 (i). Conversely, suppose that (An) holds
in A. From Lemma 2.1 (iii)—(v) it follows that A satisfies (Tr), (D) and
(K). By Proposition 3.9, A satisfies (3.3). Let x,y € A. From (K) we have
x < (y — x) — x. Applying (**) twice, we obtain
(3.4) =y =y<(((y—=2)=z) =y =y
By (D), y < (y — x) — x, and hence, using (3.3), we get
Since A satisfies (Tr), from inequalities (3.4) and (3.5) we have
(x—=y)—y<(y—z) >z
Hence, by (An), we obtain (Com). O
Proposition 3.11. In aBE** algebras, we have
(Im) <= (Com) + (pimpl).

Proof. Let A = (A,—,1) be an aBE** algebra. Assume that A satisfies
(Im). From Theorem 3.10 we conclude that (Com) holds in A. Applying
Lemma 2.4 (iii), we see that A satisfies (BB). By Proposition 3.2 (v), (pimpl)
holds in A.

Conversely, suppose that A satisfies (Com) and (pimpl). By Lemma
2.1 (v), (Re) + (L) + (Ex) imply (K). Then, from Proposition 3.2 (vii) we
deduce that A satisfies (Im). O

Remark 3.12. Since every BCK algebra is an aBE** algebra, from Propo-
sition 3.11 we obtain Theorem 9 of [8].

Corollary 3.13. Any implicative aBE** algebra is a commutative BCK
algebra.
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Proof. Let A be an implicative aBE** algebra. By Proposition 3.11, A is
commutative. From Lemma 3.3 we see that A verifies (BB). Hence A is a
BCK algebra. O

Remark 3.14. Note that from Corollary 3.13 we deduce that im-BCK =
im-aBE**.

By Proposition 3.2 (i) and (ii), we obtain:

Proposition 3.15. An algebra A = (A, —,1) is an implicative BE algebra
if and only if it satisfies the equations (Re), (Ex) and (Im).

Lemma 3.16. If A = (A, —,1) is an implicative BE** algebra, then it
satisfies the following condition:

W) ((y—==x)—2x)—2)—=y—2)=1

Proof. By Lemma 2.1 (iv), A satisfies (D). Let z,y,z € A. From (D) it
follows that y < (y — z) — x. Applying (**), we obtain ((y — z) = x) —
z <y — z. Hence we have (W). O

The next theorem shows that the class of implicative BE** algebras is a
variety.

Theorem 3.17. An algebra A = (A, —,1) is an implicative BE** algebra
if and only if it satisfies the equations (Re), (Ex), (Im) and (W).

Proof. If A is an implicative BE** algebra, then it satisfies (Re), (Ex),
(Im) and, by Lemma 3.16, (W).

Conversely, let A satisfy (Re), (Ex), (Im) and (W). Obviously, A is an
implicative BE algebra. To prove (**), let z,y,z € A and y < z. By (M)
and (W), x — z <y — z, that is, A satisfies (**). Thus A is an implicative
BE** algebra. O

Recall the definition of Tarski algebras. A Tarski algebra is an algebra
A = (A, —,1) of type (2,0) satisfying the following axioms ([9]): for all
x,y,z € A,

(T1) 1 —»z ==z,
(T2) 2 >z =1,
(T3) (¢ =+ y) > y=(y > 2) >,
(T4) 2 = (y — 2) =(x = y) — (m—>z
Note that (T1) is (M), (T2) is (Re), (T3) is (Com) and (T4) is (pimpl).
Theorem 3.18. Let A = (A, —,1) be an algebra of type (2,0). The follow-
ing conditions are equivalent:

(i) A is an implicative aBE** algebra,

(ii) A satisfies (Re) + (Com) + (Im) + (Ex),

(iii) A satisfies (Re) + (Com) + (Im) + (BB),

(iv) A is a Tarski algebra.
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Proof. (i) implies (ii) and (ii) implies (iii) by Proposition 3.11 and Lem-
ma 3.3, respectively. Now let A satisfy (Re), (Com), (Im) and (BB). By
Proposition 3.2 (i), (Re) + (Im) imply (M), thus, (T1) = (M) holds. By
Lemma 2.4 (i), (Com) + (M) imply (An); then, by Proposition 3.2 (v),
(Re) + (Im) + (BB) + (An) imply (pimpl); thus, (T4) = (pimpl) holds.
Consequently, A is a Tarski algebra.

Finally, let A satisfy (M), (Re), (Com) and (pimpl). By Lemma 2.4 (i),
(Com) + (M) imply (An); thus, (An) holds. By Proposition 3.2 (vi), (Re)
+ (pimpl) imply (L); thus, (L) holds. By Proposition 3.2 (iv), (Re) + (M)
+ (pimpl) + (An) imply (Ex); thus, (Ex) holds.

By Lemma 2.4 (iii), (Com) + (Re) + (L) + (Ex) imply (BB); then, by
Lemma 2.1 (i), (M) + (BB) imply (**); thus, (**) holds. By Lemma 2.1
(v), (Re) + (L) + (Ex) imply (K); then, by Proposition 3.2 (vii), (M) +
(K) + (Com) + (pimpl) imply (Im); thus (Im) holds.

Consequently, A is an implicative aBE** algebra, that is, (i) holds. O

Corollary 3.19. Let A be an implicative aBE algebra satisfying (Tr). Then
A is a Tarski algebra.

Proof. By Lemma 2.1 (vi), A satisfies (**). Then A is an implicative
aBE** algebra. From Theorem 3.18 we see that A is a Tarski algebra. [J

Remark 3.20. If A is an algebra satisfying (M) and (*), then it also satisfies
(Tr) by Lemma 2.1 (vii). Therefore, implicative aBE algebras with (*) are
Tarski algebras.

Open Problem 3.21. Is there an implicative aBE algebra not satisfying
(Tr)?
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