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The Legendre maps from two Lagrangians
or from a Lagrangian and a p-form

Abstract. Let FMm,n denote the category of fibered manifolds with m-
dimensional bases and n-dimensional fibres and their fibered local diffeomor-
phisms. We prove that if m,n and s are positive integers, then any FMm,n-
natural operator C transforming tuples (λ1, λ2) of Lagrangians λ1, λ2 : JsY →∧m T ∗M on FMm,n-objects Y → M into Legendre maps C(λ1, λ2) : J

sY →
SsTM ⊗V ∗Y ⊗

∧m T ∗M on Y is of the form C(λ1, λ2) = c1Λ(λ1)+ c2Λ(λ2),
c1, c2 ∈ R, where Λ is the Legendre operator. We also prove that if m,n, s
and p are positive integers, then any FMm,n-natural operator C transform-
ing tuples (λ, η) of Lagrangians λ : JsY →

∧m T ∗M and p-forms η ∈ Ωp(M)
into Legendre maps C(λ, η) : JsY → SsTM ⊗V ∗Y ⊗

∧m T ∗M is of the form
C(λ, η) = cΛ(λ), c ∈ R, where Λ is the Legendre operator.

1. Introduction. All manifolds considered in this paper are assumed to
be finite dimensional and smooth (i.e. of class C∞). Mappings between
manifolds are assumed to be smooth (of class C∞).
For a fibred manifold Y → M , we have the s-jet prolongation JsY of

Y → M (for a positive integer s) and the vertical bundle V Y → Y and its
dual bundle V ∗Y → Y and the tangent bundle TM and its symmetric sth
product SsTM and the cotangent bundle T ∗M and its mth inner product∧m T ∗M . Given fibred manifolds Z1 → M and Z2 → M , let C∞

M (Z1, Z2)
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denote the space of all base preserving fibred maps of Z1 into Z2. Let
m = dim(M). Elements from C∞

M (JsY,
∧m T ∗M) are called (sth order) La-

grangians on Y →M and elements from C∞
Y (JsY, SsTM⊗V ∗Y ⊗

∧m T ∗M)
are called sth order Legendre maps on Y →M .
Let FMm,n be the category of fibred manifolds withm-dimensional bases
and n-dimensional fibres and their fibred local diffeomorphisms. Any sth or-
der Lagrangian λ : JsY →

∧m T ∗M on an FMm,n-object Y →M induces
canonically the Legendre map Λ(λ) : JsY → SsTM ⊗ V ∗Y ⊗

∧m T ∗M .
Then we have the so-called Legendre operator

Λ : C∞
M

(
JsY,

m∧
T ∗M

)
→ C∞

Y

(
JsY, SsTM ⊗ V ∗Y ⊗

m∧
T ∗M

)
.

In [6], it is proved that if m, n and s are positive integers, then any
regular local FMm,n-natural operator

A : C∞
M

(
JsY,

m∧
T ∗M

)
→ C∞

Y

(
JsY, SsTM ⊗ V ∗Y ⊗

m∧
T ∗M

)
is of the form cΛ, c ∈ R, where Λ is the Legendre operator.
In [1], we deduced that if m, n and s are positive integers with m ≥ 3,
then any local FMm,n-natural regular operator

B : C∞
M

(
JsY,

m∧
T ∗M

)
×C∞(M,R) → C∞

Y

(
JsY, SsTM⊗V ∗Y ⊗

m∧
T ∗M

)
(transforming an sth order Lagrangian λ on a FMm,n-object Y → M and
a map g : M → M into an sth order Legendre map B(λ, g) on Y → M) is
of the form

B(λ, g)|jsxoσ = h(g(xo)) · Λ(λ)|jsxoσ
for a map h : R → R, where Λ is the Legendre operator.
In the present paper, we study how a tuple (λ1, λ2) of Lagrangians λ1
and λ2 on a FMm,n-object Y →M can induce canonically a Legendre map
C(λ1, λ2) on Y →M . The main result is the following theorem.

Theorem 1.1. Let m,n, s be positive integers. Any regular local FMm,n-
natural operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
× C∞

M

(
JsY,

m∧
T ∗M

)
→ C∞

Y

(
JsY, SsTM ⊗ V ∗Y ⊗

m∧
T ∗M

)
is of the form C(λ1, λ2) = c1Λ(λ1) + c2Λ(λ2), c1, c2 ∈ R, where Λ is the
Legendre operator.
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The proof of the above theorem will be given in Section 3.
We recall that the s-jet prolongation JsY of a fibred manifold Y →M is
the space of all s-jets jsxσ at x ∈M of local sections σ :M → Y of Y →M .
There is the source projection JsY →M defined by jsxσ 7→ x. Consequently,
JsY is the fibre manifold with the base M . Let Y → M and Y 1 → M1

be fibred manifolds with m-dimensional bases M and M1. Any fibred map
f : Y → Y 1 with the base map f : M → M1 being local diffeomorphism
induces Jsf : JsY → JsY1 given by Jrf(jsxo

σ) = jsf(xo)
(f ◦ σ ◦ f−1), jsxo

σ ∈
Js
xo
Y , xo ∈M .
The concept of natural operators can be found in [3]. In our case,
the FMm,n-naturality (invariance) of C means that for any FMm,n-map
f : Y → Y1 with the base map f : M → M1 and Lagrangians λ1, λ2 ∈
C∞
M (JsY,

∧m T ∗M) and λ′1, λ
′
2 ∈ C∞

M1
(JsY1,

∧m T ∗M1), if λ1 and λ′1 are f -
related (i.e.

∧m T ∗f ◦ λ1 = λ′1 ◦ Jsf) and λ2 and λ′2 are f -related, then so
are C(λ1, λ2) and C(λ′1, λ

′
2) (i.e. (S

sTf ⊗ V ∗f ⊗
∧m T ∗f) ◦ C(λ1, λ2) =

C(λ′1, λ
′
2) ◦ Jsf). The locality of C means that C(λ1, λ2)ρ depends on

germρ(λ1, λ2) for any ρ ∈ JsY and λ1, λ2 ∈ C∞
M (JsY,

∧m T ∗M). The regu-
larity means that C transforms smoothly parametrized families of tuples of
Lagrangians into smoothly parametrized families of Legendre maps.
The Legendre map Λ(λ) : JsY → SsTM ⊗ V ∗Y ⊗

∧m T ∗M of a La-
grangian λ : JsY →

∧m T ∗M on a FMm,n-object Y → M can be con-
structed as follows (see, e.g. [1]). Let δλ : C∞

JsY (J
sY, V ∗JsY ⊗

∧m T ∗M)
denote the vertical differential of λ, i.e. the composition of the restric-
tion δ̃λ : V JsY → V

∧m T ∗M =
∧m T ∗M ×M

∧m T ∗M of the differen-
tial dλ : TJsY → T

∧m T ∗M of λ to the vertical sub-bundles with the
second (essential) factor projection

∧m T ∗M ×M
∧m T ∗M →

∧m T ∗M .
Then Λ(λ) : SsT ∗M ⊗ V Y →

∧m T ∗M is defined to be the restriction of
δλ : V JsY →

∧m T ∗M to the vector-subbundle SsT ∗M ⊗ V Y ⊂ V JsY ,
the kernel of V πss−1 : V JsY → V Js−1Y , where πss−1 : JsY → Js−1Y is the
jet projection.
The Legendre map (transformation) Λ(λ) plays an important role in ana-
lytical mechanics, especially in the case of regular Lagrangians λ the trans-
formation Λ(λ) can be considered as the corresponding Js−1Y -preserving
diffeomorphism between JsY and (πs−1

0 )∗(SsTM ⊗ V ∗Y ⊗
∧m T ∗M) (then

it joints the Lagrange and Hamilton formalisms in fibred manifolds), see [2].
In Section 4, modifying respectively the proof of Theorem 1.1, we also
prove the following p-form version of the mentioned above result of [1].

Theorem 1.2. Let m,n, s, p be positive integers. Any regular local FMm,n-
natural operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
× Ωp(M) → C∞

Y

(
JsY, SsTM ⊗ V ∗Y ⊗

m∧
T ∗M

)
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(transforming tuples (λ, η) of Lagrangians λ on FMm,n-objects Y → M
and p-forms η on M into Legendre maps C(λ, η) on Y →M) is of the form
C(λ, η) = cΛ(λ), c ∈ R, where Λ is the Legendre operator.

2. Preparation. From now on, let N = {0, 1, 2, . . . } and let Rm,n be
the trivial (affine) bundle Rm × Rn → Rm and let x1, . . . , xm, y1, . . . , yn

be the usual coordinates on Rm,n. Let dxµ = dx1 ∧ · · · ∧ dxm. Given
α = (α1, . . . , αm) ∈ Nm, let xα := (x1)α1 · · · · · (xm)αm . Given i = 1, . . . ,m
let 1i := (0, . . . , 0, 1, 0, . . . , 0) ∈ Nm, where 1 occupies ith position.
On Js(Rm,n) we have the induced coordinates ((xi), (yjα)), where i =

1, . . . ,m and j = 1, . . . , n and α = (α1, . . . αm) ∈ Nm are such that |α| =
α1 + · · ·+ αm ≤ s. They are defined by

xi(jsxo
σ) := xio and yjα(j

s
xo
σ) := (∂ασ

j)(xo)

for any jsxo
σ = jsxo

(σ1, . . . , σn) ∈ Js
xo
(Rm,n) = Js

xo
(Rm,Rn), xo ∈ Rm,

where ∂α is the iterated partial derivative as indicated multiplied by 1
α! .

Lemma 2.1 ([4]). Let i = 1, . . . ,m and j = 1, . . . , n and α = (α1, . . . , αm) ∈
Nm be such that |α| ≤ s.
(i) For any τ = (τ1, . . . , τn) ∈ (R \ {0})n, we have

(Jsψτ )∗y
j
α = τ jyjα ,

where ψτ = (x1, . . . , xm, 1
τ1
y1, . . . , 1

τn y
n) is the FMm,n-map.

(ii) For any t ∈ R \ {0}, we have

(Jsφi
t)∗y

j
α = t−αiyjα ,

where φi
t = (x1, . . . , 1tx

i, . . . , xm, y1, . . . , yn) is the FMm,n-map.

3. Proof of Theorem 1.1.

Proof. Using the invariance of C with respect to the FMm,n-charts, we
conclude that C is determined by the collection of values

⟨C(λ1, λ2)ρ,⊗sd0ω ⊗ v⟩ ∈
m∧
T ∗
0R

m

for all λ1, λ2 ∈ C∞
Rm(Js(Rm,n),

∧m T ∗Rm) and d0ω ∈ T ∗
0R

m and v ∈
T0R

n = V(0,0)R
m,n and ρ = js0(σ) ∈ Js

0(R
m,Rn)0 = Js

(0,0)(R
m,n). (The

phrase “C is determined by...” means that if C ′ is an another operator in
question giving the same as C collection of values, then C = C ′.)
Given ρ = js0(σ) ∈ Js

0(R
m,Rn)0 = Js

(0,0)(R
m,n), there is an FMm,n-

map ν : Rm,n → Rm,n sending js0(σ) to θ := js0(0) ∈ Js
0(R

m,Rn)0 =
Js
(0,0)(R

m,n). (Indeed, we can put ν := (x, y−σ(x)), where x = (x1, . . . , xm)

and y = (y1, . . . , yn).) Then we can additionally assume ρ = θ := js0(0).
One can additionally assume v ̸= 0. Then using the invariance of C
with respect to an FMm,n-map Φ of the form idRm × ϕ with a respective
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linear isomorphism ϕ : Rn → Rn, one can additionally assume v = ∂
∂y1 |(0,0)

(because Φ preserves θ).
Similarly, one can additionally assume d0ω ̸= 0. Then using the in-
variance of C with respect to a FMm,n-map Φ of the form χ × idRn with
a respective linear isomorphism χ : Rm → Rm, one can additionally assume
d0ω = d0x

m (because Φ preserves θ and v = ∂
∂y1 |(0,0)

).

One can write λ1 = L1((x
i), (yjα))dxµ+f1(x

1, . . . , xm)dxµ, where f1 is an
arbitrary real valued map and L1 is an arbitrary admissible map, i.e. such
that L1((x

i), (0)) = 0. Similarly, one can write λ2 = L2((x
i), (yjα))dxµ +

f2(x
1, . . . , xm)dxµ, where f2 is an arbitrary real valued map and L2 is an

arbitrary admissible map, i.e. such that L2((x
i), (0)) = 0.

Because of the locality of C, applying the result of [5], one can addi-
tionally assume that L1 and L2 and f1 and f2 are arbitrary polynomials in
((xi), (yjα)) and in (xi) (respectively) of degree ≤ q, where q is an arbitrary
positive integer.
Using the invariance of C with respect to ψτ =(x1, . . . , xm, 1

τ1
y1, . . . , 1

τn y
n)

being FMm,n-map for any (τ1, . . . , τn) ∈ (R \ {0})n, one can obtain the
homogeneity condition〈

C(L1((x
i), (τ jyjα))dx

µ + f1(x
1, . . . , xm)dxµ, L2((x

i), (τ jyjα))dx
µ

+ f2(x
1, . . . , xm)dxµ, )θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
= τ1

〈
C(L1((x

i), (yjα))dx
µ + f1(x

1, . . . , xm)dxµ, L2((x
i), (yjα))dx

µ

+ f2(x
1, . . . , xm)dxµ, )θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
,

see Lemma 2.1 (i). Then, applying the homogeneous function theorem (see
[3]), we conclude that〈

C(L1dx
µ + f1dx

µ, L2dx
µ + f2dx

µ)θ,⊗sd0x
m ⊗ ∂

∂y1 |(0,0)

〉
depends linearly on admissible (L1, L2) (i.e. for any (f1, f2) the map

(L1, L2) →
〈
C(L1dx

µ + f1dx
µ, L2dx

µ + f2dx
µ)θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
,

where L1, L2 are admissible, is linear), and that C is determined by the
collection of values〈
C(xβy1αdx

µ+f1(x
1, . . . , xm)dxµ, f2(x

1, . . . , xm)dxµ)θ,⊗sd0x
m⊗ ∂

∂y1 |(0,0)

〉
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and〈
C(f1(x

1, . . . , xm)dxµ, xβy1αdx
µ+f2(x

1, . . . , xm)dxµ)θ,⊗sd0x
m⊗ ∂

∂y1 |(0,0)

〉
for all α, β ∈ Nm with |β| ≤ q and |α| ≤ s and all f1 and f2 as above.
We can see that φi

t := (x1, . . . , 1tx
i, . . . , xm, y1, . . . , yn) preserves C and

θ and ∂
∂y1 |(0,0)

and it sends xβ into tβixβ and it sends xi into txi and it

preserves x1, . . . , xi−1, xi+1, . . . , xm and it sends y1α into t
−αiy1α and it sends

dxµ into tdxµ and it sends ⊗sd0x
m into tδims⊗sd0x

m (the Kronecker delta),
see Lemma 2.1 (ii). So, using the invariance of C with respect to φi

t and
the fact that

〈
C(L1dx

µ + f1dx
µ, f2dx

µ)θ,
∂

∂y1 |(0,0)

〉
depends linearly on ad-

missible (L1, L2), we get the condition

tκi

〈
C(xβy1αdx

µ + tf1(x
1, . . . , txi, . . . , xm)dxµ,

tf2(. . . , tx
i, . . . )dxµ)θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
=

〈
C(xβy1αdx

µ + f1(x
1, . . . , xm)dxµ,

f2(x
1, . . . , xm)dxµ)θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
,

where
κi = βi − αi + δims .

Then putting t→ 0, we obtain〈
C(xβy1αdx

µ + f1(x
1, . . . , xm)dxµ,

f2(x
1, . . . , xm)dxµ)θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
= 0

for any β, α ∈ Nm with both |α| ≤ s and κi > 0 for some i = 1, . . . ,m.
Moreover,〈

C(xβy1αdx
µ + f1(x

1, . . . , xm)dxµ,

f2(x
1, . . . , xm)dxµ)θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
=

〈
C(xβy1αdx

µ, 0dxµ)θ,⊗sd0x
m ⊗ ∂

∂y1 |(0,0)

〉
if additionally κi = 0 for some i = 1, . . . ,m.
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Similarly, we obtain〈
C(f1(x

1, . . . , xm)dxµ, xβy1αdx
µ + f2(x

1, . . . , xm)dxµ)θ,

⊗s d0x
m ⊗ ∂

∂y1 |(0,0)

〉
= 0

for any β, α ∈ Nm with both |α| ≤ s and κi > 0 for some i = 1, . . . ,m.
Moreover,〈
C(f1(x

1, . . . ,xm)dxµ,xβy1αdx
µ+ f2(x

1, . . . ,xm)dxµ)θ,⊗sd0x
m⊗ ∂

∂y1 |(0,0)

〉
=

〈
C(0dxµ,xβy1αdx

µ)θ,⊗sd0x
m⊗ ∂

∂y1 |(0,0)

〉
if additionally κi = 0 for some i= 1, . . . ,m.
Consequently, C is determined by the collection of values〈
C(xβy1αdx

µ+ f1(x
1, . . . ,xm)dxµ,f2(x

1, . . . ,xm)dxµ)θ,⊗sd0x
m⊗ ∂

∂y1 |(0,0)

〉
and〈
C(f1(x

1, . . . ,xm)dxµ,xβy1αdx
µ+ f2(x

1, . . . ,xm)dxµ)θ,⊗sd0x
m⊗ ∂

∂y1 |(0,0)

〉
for all f1,f2 as above and for all α,β∈Nm with |α|≤s and κ1≤0, . . . , κm≤0,
i.e. for all f1 and f2 as above and for β = (0, . . . ,0) and α= (0, . . . ,0,s).
Consequently, C is determined by the collection of values〈

C(y1(0,...,0,s)dx
µ,0dxµ)θ,⊗sd0x

m⊗ ∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m

and 〈
C(0dxµ,y1(0,...,0,s)dx

µ)θ,⊗sd0x
m⊗ ∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m .

Consequently, the vector space of all C in question is of dimension ≤ 2.
So, the dimension argument ends the proof of our theorem. □

4. Proof of Theorem 1.2.

Schema of the proof. We will proceed quite similarly as in Section 3.
Using the invariance of C with respect to the FMm,n-charts, C is deter-
mined by the collection of values〈

C(λ, η)θ,⊗sd0x
m ⊗ ∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m

for all λ ∈ C∞
Rm(Js(Rm,n),

∧m T ∗Rm) and η ∈ Ωp(Rm), where θ := js0(0).
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One can write λ = L((xi), (yjα))dxµ + f(x1, . . . , xm)dxµ, where f is an
arbitrary real valued map and L is an arbitrary admissible map, i.e. such
that L((xi), (0)) = 0. Because of the locality of C, applying the result of
[5], one can additionally assume that L and f and the coefficients of η are
arbitrary polynomials in ((xi), (yjα)) and in (xi) (respectively) of degree ≤ q,
where q is an arbitrary positive integer.
Using the invariance of C with respect to ψτ =(x1, . . . , xm, 1

τ1
y1, . . . , 1

τn y
n)

being FMm,n-map for any (τ1, . . . , τn) ∈ (R\{0})n, we get the homogeneity
condition〈
C(L((xi), (τ jyjα))dx

µ + f(x1, . . . , xm)dxµ, η)θ,⊗sd0x
m ⊗ ∂

∂y1 |(0,0)

〉
= τ1

〈
C(L((xi), (yjα))dx

µ + f(x1, . . . , xm)dxµ, η)θ,⊗sd0x
m ⊗ ∂

∂y1 |(0,0)

〉
,

see Lemma 2.1 (i). Then, applying the homogeneous function theorem (see
[3]), we conclude that ⟨C(Ldxµ + f(x1, . . . , xm)dxµ, η)θ,⊗sd0x

m ⊗ ∂
∂y1 |(0,0)

⟩
depends linearly on admissible L, and that C is determined by the collection
of values〈

C(xβy1αdx
µ + f(x1, . . . , xm)dxµ, η)θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
for all α, β ∈ Nm with |β| ≤ q and |α| ≤ s and all f and η as above.
Then, by the invariance of C with respect to φi

t := (x1, . . . , 1tx
i, . . . , xm,

y1, . . . , yn), we get the condition

tκi

〈
C(xβy1αdx

µ + tf(x1, . . . , txi, . . . , xm)dxµ, (φi
t)∗η)θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
=

〈
C(xβy1αdx

µ + f(x1, . . . , xm)dxµ, η)θ,⊗sd0x
m ⊗ ∂

∂y1 |(0,0)

〉
,

where κi := βi − αi + δims, t > 0, i = 1, . . . ,m.
Then putting t→ 0, we obtain〈

C(xβy1αdx
µ + f(x1, . . . , xm)dxµ, η)θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
= 0

for any β, α ∈ Nm with both |α| ≤ s and κi > 0 for some i = 1, . . . ,m.
Moreover,〈

C(xβy1αdx
µ + f(x1, . . . , xm)dxµ, η)θ,⊗sd0x

m ⊗ ∂

∂y1 |(0,0)

〉
=

〈
C(xβy1αdx

µ, (x1, . . . , 0xi, . . . , xm)∗η)θ,⊗sd0x
m ⊗ ∂

∂y1 |(0,0)

〉
if κi = 0, where i = 1, . . . ,m.



The Legendre maps from two Lagrangians... 21

Consequently, C is determined by the value〈
C(y1(0,...,0,s)dx

µ, 0)θ,⊗sd0x
m ⊗ ∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m .

Consequently, the vector space of all C in question is of dimension ≤ 1.
So, the dimension argument ends the proof of our theorem. □

5. Generalizations. Theorem 1.1 can be generalized to the following:

Theorem 5.1. Let m,n, s be positive integers. Any regular local FMm,n-
natural operator

D : C∞
M

(
JsY,

m∧
T ∗M

)
× · · · × C∞

M

(
JsY,

m∧
T ∗M

)
→ C∞

Y

(
J2sY, SsTM ⊗ V ∗Y ⊗

m∧
T ∗M

)
is of the form D(λ1, . . . , λk) = c1Λ(λ1) + · · · + ckΛ(λk), c1, . . . , ck ∈ R,
where Λ is the Legendre operator.

Proof. The proof of Theorem 5.1 is an obvious modification of the one of
Theorem 1.1 and it is left to the reader. □

Theorem 1.2 can be generalized to the following:

Theorem 5.2. Let m,n, s, p1, . . . , pk be positive integers. Any regular local
FMm,n-natural operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
× Ωp1(M)× · · · × Ωpk(M)

→ C∞
Y

(
JsY, SsTM ⊗ V ∗Y ⊗

m∧
T ∗M

)
is of the form C(λ, η1, . . . , ηk) = cΛ(λ), c ∈ R, where Λ is the Legendre
operator.

Clearly, Theorem 5.2 is an immediate consequence of the following more
general:

Theorem 5.3. Let m,n, s be positive integers and let F : Mf → VB be
a vector bundle functor with the point property. Any regular local FMm,n-
natural operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
×C∞

M ((FM)∗) → C∞
Y

(
JsY, SsTM⊗V ∗Y⊗

m∧
T ∗M

)
where C∞

M ((FM)∗) is the space of all smooth section of the vector bundle
(FM)∗ → M (dual to FM → M), is of the form C(λ, η) = cΛ(λ), c ∈ R,
where Λ is the Legendre operator.



22 M. Doupovec, J. Kurek and W. M. Mikulski

Proof. The proof of Theorem 5.3 is an obvious modification of the (pre-
sented in Section 4) proof of Theorem 1.2, and it is left to the reader. □

The most general result of this kind is the following:

Theorem 5.4. Let m,n, s be positive integers and let F : Mf → VB be
a vector bundle functor with the point property. Any regular local FMm,n-
natural operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
× · · · × C∞

M

(
JsY,

m∧
T ∗M

)
× C∞

M ((FM)∗)

→ C∞
Y

(
JsY, SsTM ⊗ V ∗Y ⊗

m∧
T ∗M

)
is of the form C(λ1, . . . , λk, η) = c1Λ(λ1) + · · · + ckΛ(λk), c1, . . . , ck ∈ R,
where Λ is the Legendre operator.

Proof. The proof of Theorem 5.4 is an obvious modification of the compi-
lation of both the proof of Theorem 1.1 and the proof of Theorem 1.2, and
it is left to the reader. □

Because of the result from [1] mentioned in Introduction, the point prop-
erty of F in the above theorems is essential.

6. Final observations. Let ABm,n denote the category of all affine bun-
dles A → M with m-dimensional bases and n-dimensional fibres and their
affine bundle isomorphisms onto open images. We have the following:

Theorem 6.1. Let m,n, s be positive integers. Any regular local ABm,n-
natural (i.e. invariant with respect to ABm,n-maps) operator

C : C∞
M

(
JsA,

m∧
T ∗M

)
× C∞

M

(
JsA,

m∧
T ∗M

)
→ C∞

A

(
J2sA,SsTM ⊗ V ∗A⊗

m∧
T ∗M

)
is of the form C(λ1, λ2) = c1Λ(λ1) + c2Λ(λ2), c1, c2 ∈ R, where Λ is the
Legendre operator.

Theorem 6.2. Let m,n, s, p be positive integers. Any regular local ABm,n-
natural operator

C : C∞
M

(
JsA,

m∧
T ∗M

)
× Ωp(M) → C∞

A

(
JsA,SsTM ⊗ V ∗A⊗

m∧
T ∗M

)
is of the form C(λ, η) = cΛ(λ), c ∈ R, where Λ is the Legendre operator.

Proof. All FMm,n-maps we used in the proofs of Theorems 1.1 and 1.2 are
ABm,n-maps, except FMm,n-charts. But they may be replaced by ABm,n-
charts if we consider ABm,n-natural operators. □
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Clearly, the ABm,n-versions of Theorems 5.1–5.4 hold, too.
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