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The Legendre maps from two Lagrangians
or from a Lagrangian and a p-form

ABSTRACT. Let FM,, , denote the category of fibered manifolds with m-
dimensional bases and n-dimensional fibres and their fibered local diffeomor-
phisms. We prove that if m,n and s are positive integers, then any F M, -
natural operator C' transforming tuples (A1, A2) of Lagrangians A1, A2 : J°Y —
A" T*M on FM,, n-objects Y — M into Legendre maps C(A1, A2) : J°Y —
S TMRVY QN T*M onY is of the form C(A1,A2) = ciA(A1) + c2A(A2),
c1,c2 € R, where A is the Legendre operator. We also prove that if m,n,s
and p are positive integers, then any FM,, n-natural operator C' transform-
ing tuples (), n) of Lagrangians A : J°Y — A" T*M and p-forms n € QP (M)
into Legendre maps C(\,n) : J°Y — S*TM @ V*Y @ A" T* M is of the form
C(\,n) = cA(X), ¢ € R, where A is the Legendre operator.

1. Introduction. All manifolds considered in this paper are assumed to
be finite dimensional and smooth (i.e. of class C*>°). Mappings between
manifolds are assumed to be smooth (of class C*).

For a fibred manifold Y — M, we have the s-jet prolongation J°Y of
Y — M (for a positive integer s) and the vertical bundle VY — Y and its
dual bundle V*Y — Y and the tangent bundle T'M and its symmetric sth
product S*T'M and the cotangent bundle T*M and its mth inner product
A" T*M. Given fibred manifolds Z; — M and Zy — M, let C53(Z1, Z2)
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denote the space of all base preserving fibred maps of Z; into Zy. Let
m = dim(M). Elements from C$3(J*Y, A" T* M) are called (sth order) La-
grangians on Y — M and elements from C{°(J°Y, S*TM @V*Y @ N™ T* M)
are called sth order Legendre maps on ¥ — M.

Let F My, be the category of fibred manifolds with m-dimensional bases
and n-dimensional fibres and their fibred local diffeomorphisms. Any sth or-
der Lagrangian X : J°Y — A" T*M on an FM,, ,-object Y — M induces
canonically the Legendre map A()\) : J°Y — STM @ V*Y @ N\"T*M.
Then we have the so-called Legendre operator

A:CSS (JSY, /\ T*M) — O (JSY, SSTM @ V'Y @ /\ T*M> .

In [6], it is proved that if m, n and s are positive integers, then any
regular local FM,, ,-natural operator

A:CY <JSY, N T*M) — O (JSY, STM VY ® \ T*M>

is of the form cA, ¢ € R, where A is the Legendre operator.
In [1], we deduced that if m, n and s are positive integers with m > 3,
then any local FM,, ,-natural regular operator

B:C% <JSY, A T*M) x C®°(M,R) — C° <JSY, S TMRVY o\ T*M)

(transforming an sth order Lagrangian A on a FM,, ,-object Y — M and
amap g : M — M into an sth order Legendre map B(\,g) on Y — M) is
of the form

B<)‘7g)\jgoa = h(g($0)> ! A<)‘)|j;00

for a map h : R — R, where A is the Legendre operator.

In the present paper, we study how a tuple (A1, A2) of Lagrangians A\;
and A2 on a FM,, ,-object Y — M can induce canonically a Legendre map
C(M\,A2) on' Y — M. The main result is the following theorem.

Theorem 1.1. Let m,n,s be positive integers. Any regular local F My, -
natural operator

C:C (JSY, A T*M> x CR2 <J5Y, A T*M)
— 05 (JSY, S*TM @ V*Y © /\T*M)

is of the form C(A\1,\2) = c1A(M\1) + c2aA(N\2), c1,c0 € R, where A is the
Legendre operator.
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The proof of the above theorem will be given in Section 3.

We recall that the s-jet prolongation J®Y of a fibred manifold Y — M is
the space of all s-jets j50 at € M of local sections 0 : M — Y of Y — M.
There is the source projection J*Y — M defined by jio — x. Consequently,
J®Y is the fibre manifold with the base M. Let Y — M and Y' — M,
be fibred manifolds with m-dimensional bases M and M;. Any fibred map
f:Y — Y! with the base map f : M — M; being local diffeomorphism
induces J*f : JY — J*Y1 given by J" f(j3,0) = j§,(fooo 1), j5,0 €
Jp Y, wo € M. B

The concept of natural operators can be found in [3]. In our case,
the FM,, n-naturality (invariance) of C' means that for any FM,, ,-map
f Y — Y] with the base map f : M — M; and Lagrangians Aj, Ao €
Cr(J°Y, A" T*M) and A}, Ny € C3p, (J°Y1, A" T*My), if A1 and A are f-
related (i.e. A" T*f oA =N oJ°f) and A9 and )} are f-related, then so
are C(A1,A2) and C(N},Ay) (ie. (S*Tf @ V*f @ A" T*f) o C(A1,A2) =
C(N,\y) o J®f). The locality of C means that C(A1,2), depends on
germ, (A1, A2) for any p € J°Y and A1, Ay € C3p(J°Y, N T*M). The regu-
larity means that C transforms smoothly parametrized families of tuples of
Lagrangians into smoothly parametrized families of Legendre maps.

The Legendre map A(\) : J°Y — STM @ V*Y @ A" T*M of a La-
grangian A : J°Y — A" T*M on a FM,, ,-object Y — M can be con-
structed as follows (see, e.g. [1]). Let oA : C3y (JY, V*JY @ A" T*M)
denote the vertical differential of A, i.e. the composition of the restric-
tion oA : VJY — VA" T*M = N T*M x3; N T*M of the differen-
tial d\ : TJY — T N"T*M of X\ to the vertical sub-bundles with the
second (essential) factor projection A" T*M xp A" T*M — N\"T*M.
Then A(N) : S*T*M @ VY — N™T*M is defined to be the restriction of
X 1 VJY — N"T*M to the vector-subbundle S*T*M @ VY C VJ°Y,
the kernel of Vrs_; : VJY — VJ*71Y, where n5_; : J°Y — J*71Y is the
jet projection.

The Legendre map (transformation) A(X) plays an important role in ana-
lytical mechanics, especially in the case of regular Lagrangians A the trans-
formation A()) can be considered as the corresponding J*~'Y-preserving
diffeomorphism between J°Y and (7§~ 1)*(S*TM @ V*Y @ A\™ T*M) (then
it joints the Lagrange and Hamilton formalisms in fibred manifolds), see [2].

In Section 4, modifying respectively the proof of Theorem 1.1, we also
prove the following p-form version of the mentioned above result of [1].

Theorem 1.2. Let m,n, s, p be positive integers. Any reqular local F My, -
natural operator

C:C (JSY, A T*M) x QP (M) — C5° (JSY, STM VY ® N T*M>



16 M. Doupovec, J. Kurek and W. M. Mikulski

(transforming tuples (X\,n) of Lagrangians A on F My, n-objects Y — M
and p-forms n on M into Legendre maps C(\,n) on'Y — M ) is of the form
C(\,n) =cA(N), c € R, where A is the Legendre operator.

2. Preparation. From now on, let N = {0,1,2,...} and let R™" be
the trivial (affine) bundle R™ x R™ — R™ and let z!,..., 2™, y!, ..., y"
be the usual coordinates on R™". Let daz* = da' A --- A dz™. Given
a=(a1,...,ap,) € N let 2% := (x)® . .... (2™)% . Giveni=1,...,m
let 1, :==(0,...,0,1,0,...,0) € N™, where 1 occupies ith position.

On J*(R™") we have the induced coordinates ((z%), (y4)), where i =
1I,...,mand j =1,...,n and « = (aq,...qy,) € N™ are such that |a| =
a1+ -+ ap < s. They are defined by

2'(j3,0) = ap and y2,(j3,0) = (8a0”)(z,)

for any j; o = jjo(al,...,a") e J;, R™") = J; (R™R"), z, € R,
where J, is the iterated partial derivative as indicated multiplied by 5

Lemma 2.1 ([4]). Leti=1,...,mandj=1,....,nanda = (aq,...,0m) €
N™ be such that |a] < s.
(i) For any 7 = (t1,...,7") € (R\ {0})", we have

(J5r )t = Ty,
1

where P = (z*, ..., 2™, T—llyl, e %ny”) is the F My, n-map.
(ii) For any t € R\ {0}, we have
(Jo@h)wd = 17,
where o} = (2',..., %xi, o™yt oo y") s the F Moy n-map.
3. Proof of Theorem 1.1.

Proof. Using the invariance of C' with respect to the F.M,, ,-charts, we
conclude that C' is determined by the collection of values

(C(M, A2)p, @ dow @ v) € \ TER™

for all A, A2 € Cn(J*(R™™), A" T*R™) and doyw € TyR™ and v €
THR" = VgoR™" and p = ji(o) € J5(R™,R")g = J(SQO)(R’”’”). (The
phrase “C is determined by...” means that if C’ is an another operator in
question giving the same as C collection of values, then C' = C".)

Given p = ji(o) € J;(R™ R")g = J('5070)(Rm’”), there is an F My, -
map v : R™" — R™" sending jj(o) to 6 := j5(0) € JS(R™ R")y =
J(0,0) (R™™). (Indeed, we can put v := (x,y—o(z)), where z = (z!,...,2™)
and y = (y',...,4y").) Then we can additionally assume p = 6 := j§(0).

One can additionally assume v # 0. Then using the invariance of C
with respect to an FM,, ,-map ® of the form idr» X ¢ with a respective
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linear isomorphism ¢ : R® — R", one can additionally assume v = 8%1‘(0 0

(because ® preserves 6).

Similarly, one can additionally assume dow # 0. Then using the in-
variance of C' with respect to a F M, ,-map ® of the form x x idr» with
a respective linear isomorphism y : R™ — R, one can additionally assume

dow = doz™ (because ® preserves f and v = 8%%(0 o)) '

One can write A\; = L1 ((z?), (y4))dz* + fi(z, ..., 2™)dz*, where f; is an
arbitrary real valued map and L; is an arbitrary admissible map, i.e. such
that Li((x%),(0)) = 0. Similarly, one can write Ay = Lo((z%), (y4))dz* +
fo(xl, ..., 2™)dx", where fo is an arbitrary real valued map and Ls is an
arbitrary admissible map, i.e. such that Ly((x?), (0)) = 0.

Because of the locality of C, applying the result of [5], one can addi-
tionally assume that Ly and Lo and f; and fo are arbitrary polynomials in
((z%), (y&)) and in (2%) (respectively) of degree < ¢, where ¢ is an arbitrary
positive integer.

Using the invariance of C' with respect to ¢, = (2, ..., 2™, T%yl, e %ny”)
being F M, ,-map for any (r1,...,7") € (R\ {0})", one can obtain the
homogeneity condition

0
—i—fg(a:l,...,xm)dx“,)9,®sdgxm®7 >,
9y 0,0)

see Lemma 2.1 (i). Then, applying the homogeneous function theorem (see
[3]), we conclude that

<C(L1dx“ + fidz", Lodz" + fodxt)g, @°dpz™ ® il >
9y 0,0)

depends linearly on admissible (Li, L) (i.e. for any (f1, f2) the map

0
(L1, L) — <C’(L1d1:“ + fida", Lada" + fodat), ®°doz™ @ oy >7
1(0,0)

where L1, Ly are admissible, is linear), and that C is determined by the
collection of values

C(aPyldzt + fi(zt, ... a™)dat, fa(zt, ... 2™)dzH)g, (E@‘Sci().’z,“’"”(}Z)i
Yt (0,0
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and

0
<C(f1 (xla s ’xm)dxﬂ’ wﬁyédxu+f2(wl> s 7$m)dxu)97 ®8d0xm®71 >
9" (0.0

for all @, 8 € N™ with |3| < g and |a| < s and all f; and f; as above.

We can see that ¢! := (z!,..., %mz, cox™ oyl y™) preserves C and

6 and 8%21‘ 0.0) and it sends z? into t%i2? and it sends 2! into tz® and it

preserves ', ... 2/~ 2Tl . 2™ and it sends y., into t~%y} and it sends
da* into tdz* and it sends ®*dpx™ into t%m* @° dyaz™ (the Kronecker delta),
see Lemma 2.1 (ii). So, using the invariance of C' with respect to ¢! and
the fact that (C(Lida* + fidz", fodat) )> depends linearly on ad-

missible (Lj, Ly), we get the condition

0
0 8y1 |(0,0

t”i<C($5yédaz“ +tfi(zt, .t ™) da,
7 s m 0
tfg(. Lt )dg;“)g,@ dor™ ® a1
99" (0,0
= <C(m’8y(ida:“ + fi(zh, .. ™) daH,
f2(1‘17---,wm)dfﬁ”)eh@Sdem®i >’
51/1\(0,0)
where
Ki = Bi — a; + 6imS.

Then putting t — 0, we obtain
<C($5yclydx“ + fi(zh, .. 2™ dxH,
1 m s m 9
fo(z™, ... 2™)dzt)p, @°dox ® a7 =0
dy 1(0,0)

for any 3,a € N™ with both |a| < s and k; > 0 for some i = 1,...,m.
Moreover,

<C’(:cf3yéda:" + fi(zh, ... 2™ dxH,

0
f2($17' "7$m)dxu)9>®sd0$m & = >
" 10,0)

0
= C’(xﬁy:;dx”, 0dz")g, @°dor™ @ — >
< 99" |(0.0)

if additionally k; = 0 for some ¢ =1,...,m.
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Similarly, we obtain

<C(f1 (‘Tla s 7l‘m)dxuv xﬁyclydmlu + f2($17 s 7‘Tm)dx“)9)

0
®s d()ﬂfm & a1 > =0
dy 1(0,0)
for any 8,a € N™ with both |a| < s and k; > 0 for some ¢ = 1,...,m.
Moreover,
1 m 5,1 1 m s m 9
C(fl(x yeees L )dl’u,l‘ yadwu+f2($ yerey L )dl’u)g,(@ d0$ Q57
aZ/1|(0,0)
5,1 s m 9
= C(0dz", 2"y, dz" ), @ dpa™ @ ——
9" (0,0
if additionally k; =0 for some ¢ =1,...,m.
Consequently, C' is determined by the collection of values
C(:pﬁyédgj'u—}-fl(l’l, ,xm)dx”7f2(ajl7 ',xm)dxu)%@sdﬂxm@i
Y 1(0,0)
and
1 m 5,1 1 m s m 0
C(fi(z,...;2™)dx", 2"y, dat + fa(z",...,2"™)dx")p, @ dpz™ @ —
8y1|(0,o)
for all f1, fo as above and for all a, € N™ with |a|<s and k1 <0, ..., Ky, <0,

i.e. for all f; and fy as above and for 8= (0,...,0) and a = (0,...,0,s).
Consequently, C' is determined by the collection of values

6 m
<C’(y(107“_7075)dx“,Oda:“)g,@)sdoxm ® — > € /\TJRm

95" 0.0)
and
a m
C(0dz",y} dxt)g, @°dpx™ @ — > e NTGR™.
< (07"'70?8) 8y1 ‘(070) /\
Consequently, the vector space of all C' in question is of dimension < 2.
So, the dimension argument ends the proof of our theorem. U

4. Proof of Theorem 1.2.

Schema of the proof. We will proceed quite similarly as in Section 3.
Using the invariance of C' with respect to the F.M,, ,-charts, C' is deter-
mined by the collection of values

a m
S m T* m
<C()\,77)9,® doz™ & 8y1|(070)> c AT;R
for all A € Cn (JE(R™™), A" T*R™) and n € QP(R™), where 6 := j§(0).
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One can write A = L((z%), (y&))dz* + f(z,...,2™)dx", where f is an
arbitrary real valued map and L is an arbitrary admissible map, i.e. such
that L((x%),(0)) = 0. Because of the locality of C, applying the result of
[5], one can additionally assume that L and f and the coefficients of n are
arbitrary polynomials in ((z%), (y4)) and in (2%) (respectively) of degree < g,
where ¢ is an arbitrary positive integer.

Using the invariance of C' with respect to ¢, = (2!, ..., 2™, T%yl, cel _%ny”)
being F M,y ,-map for any (71,...,77) € (R\{0})", we get the homogeneity
condition

L o
C(L((zY), (r7y2))da" + f(zt, ..., 2™)dz", n)g, @ doz™ ® ol
Y 10,0

see Lemma 2.1 (i). Then, applying the homogeneous function theorem (see

[3]), we conclude that (C(Ldz* + f(zt,...,2™)dxH,n)g, @*doz™ ® 8%1“0 0)>
depends linearly on admissible L, and that C' is determined by the collection

of values

(Clayber + o, amast oo, o™ o )

9" (00)
for all o, 8 € N™ with |[3| < ¢ and |a| < s and all f and 7 as above.
Then, by the invariance of C' with respect to ¢! := (x!,..., %xz, o,z
yh, ..., y"), we get the condition

ti{ CaPyldat +tf(xt, ... tal, ... a™)dz", (90)en)g, R4doz™ @ i1
Y 10,0

= C(:rﬁyédx“ + f(:nl, oo x™)dzt n)e, @°dor™ @ i ,
33/1 1(0,0)

where k; := 8; — a; + djms, t >0,i=1,...,m.

Then putting ¢ — 0, we obtain

C’(mﬁyéda:“ + f(xl, o ™dzt n)g, @°%dex™ & i =0
9" (0.0

for any f,a € N™ with both |o| < s and k; > 0 for some ¢ = 1,...,m.
Moreover,

<C(xﬂyédw“ + flat, 2™ da n)g, @ dozr™ @ il >
99" (0,0)
= <C(1:'8yédx“, (zt,...,02°, ..., 2™)* ), @°dpr™ @ — >

if ki =0, where i =1,...,m.
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Consequently, C' is determined by the value

0 o m
<C(y(10,..‘,o,s)dx“,0)e,®sdomm ® W0 0)> e NT;R™.

Consequently, the vector space of all C' in question is of dimension < 1.
So, the dimension argument ends the proof of our theorem. O

5. Generalizations. Theorem 1.1 can be generalized to the following:

Theorem 5.1. Let m,n, s be positive integers. Any regular local F My, -
natural operator

D :C5% (JSY,/\T*M> X e X CR (JSY, /\T*M>
— O <J23Y, SSTM @ V'Y ® /\ T*M)
is of the form D(A\i,...,\g) = caA(A1) + -+ + cxkA(Mg), c1,...,cx € R,

where A is the Legendre operator.

Proof. The proof of Theorem 5.1 is an obvious modification of the one of
Theorem 1.1 and it is left to the reader. O

Theorem 1.2 can be generalized to the following:
Theorem 5.2. Let m,n, s, p1,...,pr be positive integers. Any reqular local

F M n-natural operator

C:Cﬁ(ﬁY,/\T*M) X QPL(M) X - - x QP (M)

— 5P <JSY, S*TM @ V*Y @ /\T*M)

is of the form C(\,n1,...,nk) = cA(N), ¢ € R, where A is the Legendre
operator.

Clearly, Theorem 5.2 is an immediate consequence of the following more
general:

Theorem 5.3. Let m,n,s be positive integers and let F' : Mf — VB be
a vector bundle functor with the point property. Any reqular local F My, -
natural operator

C:C <JSY, A T*M) XCE((FM)*) — C® <JSY, S TMRV*Y® T*M)
where C37((FM)*) is the space of all smooth section of the vector bundle

(FM)* — M (dual to FM — M), is of the form C(\,n) = cA(\), c € R,
where A is the Legendre operator.
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Proof. The proof of Theorem 5.3 is an obvious modification of the (pre-
sented in Section 4) proof of Theorem 1.2, and it is left to the reader. O

The most general result of this kind is the following:

Theorem 5.4. Let m,n,s be positive integers and let F' : Mf — VB be
a vector bundle functor with the point property. Any regular local F My, -
natural operator

C:CY <JSY, /\T*M> X e X C39 <JSY, /\T*M) X C35((FM)*)

— CF (JSY, SSTM @ V'Y ® /\ T*M)
is of the form C(A1,..., Ag,n) = ctA(\1) + -+ + ckA(MN), ¢1,...,c, € R,
where A is the Legendre operator.

Proof. The proof of Theorem 5.4 is an obvious modification of the compi-
lation of both the proof of Theorem 1.1 and the proof of Theorem 1.2, and
it is left to the reader. g

Because of the result from [1] mentioned in Introduction, the point prop-
erty of F' in the above theorems is essential.

6. Final observations. Let AB,,, denote the category of all affine bun-
dles A — M with m-dimensional bases and n-dimensional fibres and their
affine bundle isomorphisms onto open images. We have the following;:

Theorem 6.1. Let m,n,s be positive integers. Any regular local ABy, -
natural (i.e. invariant with respect to ABy, n-maps) operator

C:C5 <JSA, /\T*M> x C59 (JSA, /\T*M>
—CY <J2SA, SSTM @ V*A® /\T*M)

is of the form C(A1,A2) = c1A(A\1) + c2aA(N2), c1,c2 € R, where A is the
Legendre operator.
Theorem 6.2. Let m,n,s,p be positive integers. Any reqular local ABy, -
natural operator
C:C (JSA, A T*M> x QP(M) — CY <J5A, STM VA )\ T*M)
is of the form C(\,n) = cA(N), ¢ € R, where A is the Legendre operator.

Proof. All FM,, ,-maps we used in the proofs of Theorems 1.1 and 1.2 are
AB,, n-maps, except FM,, ,-charts. But they may be replaced by AB,, n-
charts if we consider AB,, ,-natural operators. O
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Clearly, the AB,, ,-versions of Theorems 5.1-5.4 hold, too.
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