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Generalization of some extremal problems
on non-overlapping domains with free poles

ABSTRACT. Some results related to extremal problems with free poles on
radial systems are generalized. They are obtained by applying the known
methods of geometric function theory of complex variable. Sufficiently good
numerical results for  are obtained.

1. Introduction. In geometric function theory of complex variable ex-
tremal problems on non-overlapping domains form the well-known clas-
sic direction. In the paper [1] Lavrent’ev posed and solved a problem of
maximizing the product of conformal radii of two non-overlapping simply
connected domains. Topics connected with the study of problems on non-
overlapping domains was developed in papers [1]-[21]. This paper summa-
rizes some results obtained in [5], [2].

Let N, R be the set of natural and real numbers, respectively, C be
the complex plane, C = C U {oo} be the one point compactification and
R* = (0, 00).

Let 7(B, a) be an inner radius of a domain B C C with respect to a point
a € B (see [6], [13], [3]) and x(t) = 3(t +t71).

Let n € N. A set of points A, := {ak eC: k= 1,7} is called n-radial
system if |ag| € RT, k =1,n, and 0 = arga; < argas < ... < arga, < 2.
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Denote
Pi(Ay) ={w:argay < argw < argag4+1},

0y = arg ay, Ont1 = a1, Opy1:=2m,
1 Af+1

Qf == —arg y Onyl = O, k= 15 n.
™ ag

This work is based on application of separating transformation developed
in [4]-[6]. For specific use of this method we consider a special system of

1
conformal mappings. By ¢ = mi(w) = —i (e_iekw)jk, k = 1,n we denote
unique branch of multi-valued analytic function 7 (w) performing univalent
and conformal mapping Py (A, ) onto the right half plane Re{ > 0.
For an arbitrary n-radial system of points A,, = {ax} and v € R* we
assume that
n

£ =] [X <‘ ak

a
k=1 k+1

1—1~a2 n
ﬁ 27 . 1+l7(0¢k+0¢k—1)
H |ak| 4 )
k=1
L£O(A,) = H [X (

_1
2ak>:| . ’ak’
k=1

The class of n-radial systems of points for which £L0)(A4,) =1 (£ (4,) =1)
automatically includes all systems with n different points located on the unit
circle.

The main purpose of this work is to obtain exact upper estimates for the
functionals

ag

ak41

n

(1) Tn(v) =17 (Bo,0) [ [ v (Br,ax) ,
k=1

In(y) = [r (Bo,0) 7 (Boo,0)]" [ [ 7 (Bk, ax)
k=1

where v € RT, A, = {ax}}_, is n-radial system of points, ay = 0, and
{Br}}_, is a system of non-overlapping domains (i.e. B, N Bj = 0ifp#37)
such that a; € By, k =0, n.

2. Main results.

Theorem 1. Let n € N, n > 2 and v € (0,1]. Then for any n-radial
system of points A, = {ap}}_, such that LY (A,) =1 and any system of
non-overlapping domains By, aj, € B, C C, k =1,n, ag = 0 € By we have
the inequality

4n+%,y%nn <TL _ ﬂ)Zﬁ

(2) Tn(7) < =T \nv
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Fquality in (2) is achieved when ay and By, k = 0,n are, respectively, poles
and circular domains of the quadratic differential
(n® — yw" +

Q(w)dw? = — W (wn = 1)27 dw?.

Theorem 2. Letn € N, n > 2 and v = % Then for any n-radial system
of points A, = {ar}}_, such that L) (A,) = 1 and any system of non-
overlapping domains By,, By, Boo, ar, € B, CC, k=1,n, a9 =0 ¢ By C C,
(oo = 00 € Boo C C we have the inequality

n o2n+1 (n 3 \@> V2

N[

3) [ (Bo,0)r (Bog,0)]

Hr(Bk,ak)S Y

ki (n? —2)i*5
Equality in (3) is achieved, when ay and By are, respectively, poles and
circular domains of the quadratic differential
w? 4 w"(2n? - 2) + 1
w?(w™ — 1)2

Theorem 3. Let v € (0;79], v = 1.1, ¢ = 0.25. Then for any 2-radial
system of points Ay = {ag}i_, such that L) (Ag) =1, 1—¢ < |ay| < 1 +¢,
k = 1,2 and any system of non-overlapping domains {Bk}%zo, a, € DBy,
k=0,2, ap =0 € By, we have the inequality

dw?.

Q(w)dw? =

2 2

r7(Bo,0) [[ r(Br,ar) < 7 (Do,0) [[ v (D, dy)
k=1 k=1

where Dy, di, k = 0,2, dg = 0, are circular domains and poles of the
quadratic differential

4 —y)w?+
Q(w)dw? = —W dw?.

Proof of Theorem 1. We use the method due to Bakhtin [2]-[3] and prop-
erties of separating transformation (see [4]-[7], [3], [8]). We make separating
transformation of domains {By}}_,. Suppose

Py = Py(A,) = {w e C\{0} : Oy < argw < Op41}.

Consider the introduced system of functions ( = mg(w) = —i (e‘wkw)é,
k=1,n.

Let QS), k = 1,n be a domain of the plane C; obtained by combining
the connected component 7 (By () P)) containing a point m(ay), with its
symmetrical reflection with respect to the imaginary axis.

By Ql(f), k = 1,n, we denote the domain of the plane C., obtained by
combining the connected component 74 (Bjy1 () Px), containing the point
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7k (agr1), with its symmetrical reflection with respect to the imaginary axis,
Byy1 = B, Wn(anJrl) = Wn(al)-

Besides, by QLO) we denote the domain of C¢, obtained by combining the
connected component 7 (By () Px), containing the point ¢ = 0, with its
symmetrical reflection with respect to the imaginary axis. Denote 7 (ag) :
_ ., —w® L—1n — 2
=wy, Tp(agyr) =wy s k=1,n, mp(any1) = wn .

The definition of 7 implies that

1 1 19 N
|7rk(w)_w1(c)’“’a7k|“k|“k Jw—akl, w—ag, we Py,
2 1 1 q __
|7Tk(w)—wz(g)| Nafk|ak+1|“k Jw—app1|, w— apg1, we Py,

1 I
[T (w)| ~ [wlok,  w—=0, we P
Then, using results of papers [4]-{7], [3], we obtain the inequalities

) r (Q,gl),w,gl)> -7 (Q,(f),w,(f)) :
<

(4) 7 (Bg, ax,

)

1
Qg1

1 1 g
Lagax " gy

k=1,n, 982) = 9(2), w(()Q) = w(2),

n n

1

(5) r(Bo,0) < [ﬁ ro (Q,(co),())
k=1

Repeating arguments given in [3] in the proof of Theorem 5.2.1 and taking
into account introduced sets of domains {Pj}}_,, functions {m;}}_, and
numbers {0}7_,, we obtain the following inequality for the investigated
functional (1):

n o3 n 9(2) : 2) Q(l), 1)
Tu(y) < H [T <QI(CO)’O)} ke H 7“( k—1 wk_1l>7”1( k Wlk—?
k=1 k=1 | garlak] 1 - fag] o
(6) :ﬁak-ﬁ lax]
k=1 k=1 |agag41|?k

1
n n 2
a2 (0 (1 (@) (2 , (2
. [Hrw(ak ) TTr (0.) r (02 f )] .
1
Expression in parentheses of the last formula in (6) is a product of the func-
tional 7°° (QI(CO),0)7“(91({1),%(61))7"(&];{2),wl(f)> on triples of domains (Q,(CO),

0}, 2”) of the plane C.
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It is known [15] that the functional

roi (Dl, dl) .92 (DQ, dg) Nk (Dg, d3)

Y3(01’02’03) |d1 d2|01+02—03 . ‘dl _ d3‘01—02+03 . |d2 _ d3|—01+02+03’

o € RT, d, € D, CC, DynND, =0, k=123 p=123,k#p, is
invariant under all conformal automorphisms of the complex plane C.
With this relation in mind, the following estimate holds:

o) B

k=1 |agagi1|?*k

n ol <Q§CO)70> . (Q,(f’,w,ﬁ”) o <Q§€2)’wl§2)> 3

X
’wl(cl) .wl(f)"yai |WIE;1) _ wl(f)‘zf'yai

k=1

1

n 2
o Tl et -offer]
k=1

1 L 2 1 1 9 1
Note that [w("] = |ax|™, [w®| = |agp|™r, Wl — | = |ax* +
1

||k
Taking into account these equalities, we obtain

Hak 'H 1
k=1 |agag1|?*

a2

(H )

o (010) o (0 f?) (0 7))

X
1 2) a2 2) 19— ~o2
e ) S i
n n _1
ar |22k
=2". ar |- ] x |ax|
wi n _1 _Wzi n ﬁ
-5 Qe ag 2ap, ak+1
x 2 *E=1
1
no e (Qéo),0> T(Qél),w,(ﬂ )) (Q(Q) (2)> 2
X

1) . wl(f)"yak’wl(cl) _ wk ‘Zf'yak
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() (2

a
k=1 k+1

2
Yoy

1 1—-—&
M>:| 2

n
X H |ak|1+%7(ak+ak_1)

k=1

X { e (0.0) (010 ) - (o ”) }é

1 2 P
k=1 |cu](C ) .w,(c )|’Yak‘wk _ w,g J2=va?

=

X { —r (QIEO)’O) (0w - (0w }é.

1 2 o3
=R RO R O

For each k = 1,n we can easily define conformal automorphism ¢ = Ty(z) o
complex numbers of the plane C such that Tj(0) = 0, T} ( ,(CS)) (—1)° -i,
G\ =1, (Q(‘”) k=Tm, s=1,2, ¢=0,1,2.

Then

1 2 O
h=1 |w,(€ : 'wl(c )W%‘Wk - WIE; )|2 ya?

: {fl e (6.0) (6. ~1) - (6.4) }é .

{ﬁ e (6.0) (9 f!) o (01 ) }é

9270,

k=1
y 12[ {r@iv (G,(CO) 0) 'TQQG%:; _Z> . (G;(f),Z) }2
k=1
3
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1
2

B (@) (-9 (2
< (o) 20 [FL ) o ) ()]

k=1
Following the paper [15], we have

1/2
(7) Jn(v7) < 7_%

JIRZEA
k=1

where W(g) = 27+6 . 37°+2(2 — g)=32=" (2.4 5)7 320" B e 0,2].
Similarly to [5], we consider the next extremal problem:

n

TT @) = sup; DBk =27, B = kA, 0 < B < 2.
k=1

k=1

Necessary conditions have the form

V(B = —A k=1,n.

YO T wsy)
k=1

We will show that all 8 are equal. We investigate behavior of the function
F(B) = &) = 281n(28)+ 3 +(2— B) In(2— B) — (2+ ) In(2+ B) on interval
B € [0,2]. Tt is strictly decreasing on the interval (0;5p], So € (1.32;1.33)
and increasing on [fp; 2). Then we use the method of the proof of Theorem 4
[5] and obtain that unique solution of the extremal problem is the point
(2,...,2). Estimates (4), (5), (7) yield inequality (2) of Theorem 1. The

n’ ‘n
case of equality is verified directly and Theorem 1 is proved. O

Dubinin proved Theorem 1 if v = 1 and for any distinct points a; that
lie on the unit circle and any non-overlapping domains By, (see [5], [8]).

Proof of Theorem 2. We retain all notation for separating transforma-
tion of domains introduced in the proof of Theorem 1 for domains By,

k = 0,n. By Q,(COO) we denote the domain of plane C¢, obtained by com-

bining the connected component 7 (Bs [ Ex) containing the point ¢ = oo

with its symmetrical reflection with respect to the imaginary axis. The
n

family {Q,gm)}k is a result of separating transformation of an arbitrary
=1

domain Bo, 00 € By C C with respect to the families { Py }j_; and {7y }1_,
at the point ¢ = oo.
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By Theorem 2 in [5] we have

n

(8) 7(Boo, 00) < [H ro (Ql(coo),oo>]

k=1
Using (4), (5), (8), we obtain

[T(BOaO BOO,OO 5 H’I” Bk,ak <2n (H ak> E(O)(An)
k=1

k=1

r (Q](:),wkl)) T (Q,(f), w,(f)) :

(1) _ (2)‘2

=

—

kli[l e (90,0 52 (20, o0) -

Theorem 6 in [5] gives

o2y T (B1,a1)r (B, az)
) [r (Bo,0) 7 (Boo, 00)] " a1 — as? < ¥(B)

:B252.|1_5|7(1* 1+ 8)” +6)° 0 < B< V2.

Inequality (9) was obtained by Dubinin using the results of Kolbina [15].
Similarly to [5], we consider the extremal problem:

T ®Be) —sup; > Be=v2
k=1 k=1

We introduce a function F(8) = \Iq’,/(( )). Calculations show that this

function is decreasing on the interval (0;fp] and increases on [fo;v/2),
0.85 < By < 1. Further, as in the proof of Theorem 6 in [5], we verify

that the unique solution of the extremal problem is the point (%, e %)
Estimates (4), (5), (8), (9) yield the inequality (3) of Theorem 2. The case
of equality is verified directly. Theorem 2 is proved. O

Proof of Theorem 3. The proof is based on application of separating
transformation, developed in details in [6]. According to the conditions
of Theorem 3, ag =0, 1 —¢ < |ax| < 1+¢, k =1,2. Assume

0=arga; < argag < 2m.
Let oy == 1 (argas —argay), g == 1 - (2r —argag), Py == {w : argay, <
argw < argagi1}, k=1,2, argag = 2w, Py .= P, P3 == Py.
The family of two symmetrical domains {D,gl);Dngjl} with respect to

the imaginary axis is called a result of separating transformation of the
domain Bj.
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Further, as in Theorem 5.2.1 in [3], using the separating transformation
we obtain

2 2
(10)  Ja(y) < LD (A) Hair’y'o‘i(Do,O)-T(Dl,l)-r(DQ,—l)] .
k=1

We will prove that for ag > ap = max{aj,as} extremal configura-

2
Wv
tions different than those referred in Theorem 3 do not exist. For this we
find a value of the functional (see Theorem 5.2.3 in [3])

1-¥Y 2V
()
if v = 1.1. We have that J9(1.1) ~ 0.8315.
Denote r(By,0) = 79, r(B1,a1) = 11, 7(B2,a2) = ro. The Lavrent’ev’s
theorem [17] gives ror1 < |a1|?, rora2 < |az|?, T(Q)rlrg < la1?|az]? = rire <

la1|?|a1]?
2

2 ol
J9(v) =17(Do, 0) - 11 (D, d) = 4. ; @;ﬂ
= 7

(S

To
2 2 2 2
Then 77(By,ap) - [] T(Bk,ak) = ) - I 7(By,a) < rJ - % <
k=1 k=1 0
1
J(y) = rg > <%) g > (%) *”7 then the extremal
1
200012\ 7—5
configurations do not exist. Consider the case rg < (%) =
2
J. < 0 as — aol? = 17 _ 2 gl 1209 — o ©
2(7) < rglaa a2\ 7o ((lax] = laz))” + 4la1] - [az| sin”(2 — @0) 5

a a ;
< (’ 1| ‘ 2’) (|a1|—|a2! +4|a1|-|a2|sm2(2—a0)2) <J2(1 1).

Substltutlng e =025 v=11,n=2 |lai] =1—¢, |az] = 1+ ¢,
J9(1.1) = 0.8315 in the last 1nequahty, we obtaln

(1) (14e)>11 (452 +4(1 + £) sin” (2 - \/%> ;T) J9(1.1) e

Performing calculations of right and left sides of the inequality (11), we
have 0.6085 < 0.6663. From this it follows that if € = 0.25, then inequality

; — (L) - 0.7316 : 2
(11) is true. Hence J = 56355 < Gggpg = 0.8798 < 1, de. if ag > %,

Jo(y) < J9(7) then the maximum value of the functional Jo(7y) for such
domains is not attained. Then ag < % and we can apply inequality (10).

Using a result obtained in the proof of Theorem 4 in [5], we can write the
following inequality

N[

2
Ja(7) < L | T 29846 - 0752 (2 — 04) 300 (2 4 )3 |
k=1

S
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where o}, = /7 - ay. Consider the function
V(o) = 90246 | ;0242 (2 0_)—%(2—0)2 2+ U)_%(2+0)27

o € [0,2] and we will conduct detailed investigation of its graph on this
interval (see Fig.1).

U(o) is logarithmically convex on interval [0;xo], z¢o ~ 1.32. On [0; 1],
x1 =~ 1.05 the function increases from ¥(0) = 0 to ¥U(z1) ~ 0.9115, and it
decreases on interval [x1;xo], x2 &~ 1.6049 to W(x2) ~ 0.86, and on [x9;2] it
increases to U(2) = 1. 23 = 1.9, ¥(z3) = ¥(x1) ~ 0.9115.

0.7 |
0.6 / :
0.5 [
0.4 :
|
|
|
I

0.3

0.21

0.14 /

097 T T T T — > =
_______ / -+ = — STEe—

0.8 |

\

|

|

|

\

\

|

\

|

|

|

I

I

FIGURE 1.

Using equality o1 4+ 02 = 2,/7, we will prove that W¥(oy) - ¥(o2) <
(U(z1))? ~ 0.8308. For o € [0;x9] we make appropriate conclusion from
the logarithmic convexity of the function W(o). For o9 € [xg;x3] from
properties of the graph of the function ¥ (o), we have ¥(o9) < ¥(zp) and
U(o1) < ¥(xq) and thus ¥(oy) - ¥(oa) < (¥(z1))2.

If o9 € [23;2] then ¥ (o2) < ¥(2) =1, ¥(01) < ¥(0,2) < 0.4, and hence
U(o1) - U(og) < 0,4 < (¥(z1))% So, Jo(y) < JI(7). Inequality (11) is true
and Theorem 3 is proved. O
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