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Trace parameters for Teichmüller space
of genus 2 surfaces and mapping class group

Abstract. We obtain a representation of the mapping class group of genus
2 surface in terms of a coordinate system of the Teichmüller space defined by
trace functions.

1. Introduction. We identify PSL(2,R) with the group of orientation-
preserving isometries of the upper half plane H = {z ∈ C : Im z > 0}
equipped with the hyperbolic metric |dz|/(Im z).

A Fuchsian subgroup G of PSL(2,R) is said to be of type (2;−;−;−) ([5,
p. 38]) if H/G is a closed surface of genus 2 and the projection π : H→ H/G
is an unbranched covering. G has a canonical generator system or a marking
E = (A,B,C,D) which satisfies

[A,B][C,D] = 1,

where [a, b] = aba−1b−1 is the commutator of a and b, and 1 stands for
the unit matrix. We call the pair (G,E) a marked Fuchsian group of type
(2;−;−;−). Two marked Fuchsian groups (G1, E1) and (G2, E2) are equiv-
alent if there exists a matrix P ∈ PSL(2,R) such that

A2 = P−1A1P, B2 = P−1B1P, C2 = P−1C1P, D2 = P−1D1P,
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where Ej = (Aj , Bj , Cj , Dj), j = 1, 2. The Teichmüller space T2 of type
(2;−;−;−) is the space of all equivalence classes of marked Fuchsian groups
of type (2;−;−;−). Each marked Fuchsian group (G,E) can be represented
by a tuple (A,B,C,D) of matrices in SL(2,R) such that

(1.1) trA > 0, trB > 0, trC > 0 and trD > 0.

Therefore, for the rest of this paper, we always assume that E = (A,B,C,D)
consists of matrices satisfying (1.1). In this case trAB and trCD are both
positive (this follows from [5, 33.17 (b)]). In [3] we considered the following
traces as functions of [(G,E = (A,B,C,D)] in T2 :

(1.2)
a = trA, b = trB, z = trAB, u = −trACDC−1,

v = −trACD2, w = −trACD, t = trCD.

Since all non trivial elements of G are hyperbolic, their traces take values
in R>2 = {x : x > 2}. It is shown in [3] (see also [4]) that the mapping
Φ : T2 → R7

>2 defined by Φ([G,E]) = (a, b, z, u, v, w, t) is an embedding and
a, b, z, u, v, w, t satisfy the identity

(1.3) awt+ a2 + w2 + t2 +K2 + S2 + 4− w
√

(K2 + 4)(S2 + 4) = 0,

where

K =
√
abz − a2 − b2 − z2 and S =

√
uvt− u2 − v2 − t2.

The mapping class groupMC2 is the group of isotopy classes of orienta-
tion-preserving homeomorphisms of the orientable closed surface S of genus
2. It is a subgroup of outer automorphisms of the fundamental group of S
(see [5]). MC2 acts on the Teichmüller space T2 by changing the marking.
The purpose of this paper is to describe a generating system of MC2 by
using the coordinate-system (a, b, z, u, v, w, t). It is an interesting observa-
tion that MC2 acts on T2 as a group of rational transformations.

2. Trace identities.

2.1. Basic trace identities. The matrices A,B and C in SL(2,R) satisfy
the following identities (see [2, §3.4]):

(I1) trA = trA−1,
(I2) trAB + trAB−1 = trAtrB,
(I3) trABC = trAtrBC + trBtrCA+ trCtrAB − trAtrBtrC − trACB.

We shall use repeatedly the following identities, which are consequences of
(I1), (I2) and (I3) above:

tr[A,B] = trABA−1B−1(2.1a)

= (trA)2 + (trB)2 + (trAB)2 − trAtrBtrAB − 2,

trABCB = trABtrBC + trAC − trAtrC,(2.1b)

trABCB−1 = trAtrC − trAC − trABtrBC + trBtrABC.(2.1c)
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Let G be a group generated by a finite number of matrices A1,..., An ∈
SL(2,R) and

(2.2) S = {tr(Ai1Ai2 · · ·Air) : 1 ≤ i1 < i2 < · · · < ir ≤ n, 1 ≤ r ≤ n}.
Then the following fact is well known (see [2, §3.5]).

Lemma 2.1. Let g ∈ G. Then trg is an integer polynomial in S.

2.2. Trace identities for genus 2 surface. Let E = (A,B,C,D) be a
marking of a Fuchsian group G of type (2;−;−;−). Let c = x1 = trC
and d = x2 = trD, x3 = trAC, x4 = trAD, x5 = trBC, x6 = trBD,
x7 = trABC, x8 = trABD, x9 = trBCD and x10 = trABCD. Then the
set S for G with respect to (A,B,C,D) is

S = {a, b, c, d, z, x3, x4, x5, x6, t, x7, x8, x9, x10}.
The purpose of this section is to find expressions of x1,..., x10 in {a, b, z, u, v,
w, t} of (1.2). Then by Lemma 2.1 we can express the trace of any element
of G in {a, b, z, u, v, w, t}. We shall apply this fact to obtain a representation
of the mapping class group MC2 via rational transformations.
(1) Since [A,B] = [C,D]−1, we obtain by (2.1a)

(2.3) abz − a2 − b2 − z2 = cdt− c2 − d2 − t2.
Note that tr[A,B] = a2 + b2 + z2 − abz − 2 < −2, since G is discrete (see,
for example [5, 33 D]). In what follows K =

√
abz − a2 − b2 − z2.

(2) From BAB−1 = CDC−1D−1A and the basic identity (I3) we obtain

a = tr((ACD) · C−1 ·D−1) = −wt+ cx3 − ud+ wcd− a.
and hence

(2.4) 2a+ wt− cx3 + ud− wcd = 0.

(3) From (I2), v = −trACD ·D = −(trACDtrD− trAC) = wd+x3 and so

(2.5) x3 = v − dw.
From this and (2.4) it follows that

(2.6) 2a+ wt− cv + ud = 0.

(4) From (I3),

−u = trA · CD · C−1 = ad+ t(trAC−1)− wc− atc− x4
= ad+ t(ac− x3)− wc− atc− x4.

It follows from this and (2.5) that

(2.7) x4 = u+ ad− tx3 − wc = u+ ad− tv + twd− cw.
By substituting d = u−1(cv − 2a− wt) (see (2.6)) into (2.3) we obtain

(uvt− u2 − v2)c2 − (2a+ wt)(tu− 2v)c− (K2 + t2)u2 − (2a+ tw)2 = 0.
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If this identity is regarded as a quadratic equation in c, it always has a
negative root because

uvt− u2 − v2 = (−tr[CD−1C−1A−1, ACD2]− 2) + t2 > t2 > 0

(see [5, 33 D]) and −(K2 + t2)u2 − (2a + tw)2 < 0. Hence the condition
c = trC > 2 yields

(2.8)
c =

(2a+ tw)(ut− 2v) + u
√

(2a+ tw)2(t2 − 4) + 4(K2 + t2)(S2 + t2)

2(S2 + t2)
,

d =
cv − 2a− wt

u

where S =
√
uvt− u2 − v2 − t2. By using (1.3) we see that (2a+tw)2(t2−4)

+ 4(K2 + t2)(S2 + t2) equals(
(t2 − 4)w + 2

√
(S2 + 4)(K2 + 4)

)2
=

(
(t2 − 4)w +

2(awt+ a2 + t2 +K2 + S2 + 4)

w

)2

.

Now from (2.8) we obtain

(2.9)
c =

(K2 + S2 + t2 + a2 + 4)u+ w(2atu− 2av − uw + t2uw − tvw)

w(S2 + t2)
,

d =
(K2 + S2 + t2 + a2 + 4)v + w(2au+ twu− vw)

w(S2 + t2)
.

By (2.5), (2.7) and (2.9), we can obtain the expressions of x3 = trAC
and x4 = trAD in (a, b, z, u, v, w, t),

(2.10)
x3 = −uw(2a+ tw) + v(4 + a2 +K2 − w2)

S2 + t2

x4 = (ad+ u− cw) + t
(4 + a2 +K2 − w2)v + wu(2a+ tw)

S2 + t2
.

(5) From (I2) and (2.1c) applied to BCDC−1 we obtain

(2.11)
trB−1(CDC−1) = bd− trBCDC−1

= bd− (bd− x6 − x5t+ cx9) = x6 + tx5 − cx9.

From (I3), trB−1CD = bt − x9. Then, from the trace of AB−1A−1 =
B−1CD · C−1 ·D−1, (I2), (I3) and (2.11),

b = (trB−1CD)t+ ctrB−1C + dtr(B−1CD · C−1)− (trB−1CD)cd− b
= (bt− x9)(t− cd) + c(bc− x5) + d(x6 + tx5 − cx9)− b.

Hence
(dt− c)x5 + dx6 − tx9 = 2b− bt2 + bcdt− bc2.
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(6) From (I2), trA−1CD = at+ w, and from (I2) and (I3),

trB−1A−1 · C ·D = zt+ ctrABD−1 + dtrABC−1 − zcd− trB−1A−1DC

= zt+ c(zd− x8) + d(zc− x7)− zcd− trB−1A−1DC

= zt+ cdz − dx7 − cx8 − trB−1A−1DC.

Substituting these into the next equation obtained from B−1A−1DC =
A−1 ·B−1 · CD and (I3),

trB−1A−1DC = atrB−1CD + btrA−1CD + zt− abt− trB−1A−1CD

= a(bt− x9) + b(at+ w) + zt− abt
− zt− cdz + dx7 + cx8 + trB−1A−1DC,

we obtain
dx7 + cx8 − ax9 = −abt− bw + cdz.

(7) From B−1CDC−1 = trAB−1A−1D, trB−1(CDC−1) equals

trAB−1A−1D = trBtrAA−1D − trABA−1D = bd− trDABA−1

= bd− (trBtrD − trBD − trBAtrAD + trAtrABD)

= x6 + zx4 − ax8.

Here we have used (I2) and (2.1c). Then from (2.11),

tx5 + ax8 − cx9 = zx4.

(8) From BA−1B−1C = A−1DCD−1 and (I2), we have

ac− trBAB−1C = trBA−1B−1C = trA−1DCD−1 = ac− trADCD−1,

and hence trCBAB−1 = trADCD−1. We have by using (2.1c)

trCBAB−1 = trCtrA− trAC − trBCtrAB + trBtrCBA

= ac− x3 − zx5 + b(trCtrBA+ trBtrCA+ trAtrCB

− trAtrBtrC − trABC)

= ac− x3 − zx5 + bcz + b2x3 + abx5 − ab2c− bx7
and

trADCD−1 = trAtrC − trAC − trADtrDC + trDtrADC

= ac− x3 − tx4 + d(trAtrCD + trDtrAC + trCtrAD

− trAtrDtrC − trACD)

= ac− x3 − tx4 + adt+ d2x3 + cdx4 − ad2c+ wd.

Thus we obtain

(z − ab)x5 + bx7 = (b2 − d2)x3 + (t− cd)x4 + bcz − ab2c− adt+ ad2c−wd.
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(9) We use C−1BA = trDC−1D−1AB. Then from (I2) and (I3),

trC−1BA = zc− trCBA

= zc− (cz + bx3 + ax5 − abc− x7) = −bx3 − ax5 + abc+ x7.

From (I2) and (2.1c) this equals

tr(DC−1D−1)AB = cz − trABDCD−1

= cz − (trABtrC − trABC − trABDtrCD

+ trDtr(AB ·D · C))

= x7 + tx8 − d(zt+ dx7 + cx8 − zcd− x10).

Hence we obtain

−ax5 + d2x7 + (cd− t)x8 − dx10 = −abc+ bx3 − dtz + cd2z.

(10) We use D−1C−1B = C−1D−1ABA−1. From (I2), trD−1C−1B =
bt− x9 and from (I2), (2.1c) and (I3),

trC−1D−1ABA−1 = tb− tr(DC)ABA−1

= tb− (tb− trDCB − trDCAtrAB + trAtr(D ·C ·AB))

= (dx5+cx6+bt−bcd−x9)+z(dx3+cx4+at−acd+w)

− a(zt+ dx7 + cx8 − zcd− x10)

we obtain

dx5 + cx6 − adx7 − acx8 + ax10 = bcd− zdx3 − zcx4 − zw.

Let

M =


dt− c d 0 0 −t 0

0 0 d c −a 0
t 0 0 a −c 0

z − ab 0 b 0 0 0
−a 0 d2 cd− t 0 −d
d c −ad −ac 0 a

 , ~x =


x5
x6
x7
x8
x9
x10


and

~v =


2b− bt2 + bcdt− bc2
−abt− bw + cdz

zx4
(b2 − d2)x3 + (t− cd)x4 + bcz − ab2c− adt+ acd2 − wd

−abc+ bx3 − dzt+ cd2z
bcd− dzx3 − czx4 − zw

 .
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From the results (5)–(10) we obtain M~x = ~v. The matrix M is singular, if
a = c. However, by using (2.4) and (2.7) we can deduce:
(2.12)

x5 =
c(2b+ a2b− 2az + bK2)− tuz + dw(ab+ z + zK2)− v(ab+ zK2)

K2 + a2
,

x6 =
2(adz−bd)−u(ab+K2z)+tv(ab+z+K2z)+(c−dt)w(ab+z+K2z)

K2 + a2
,

x7 =
−2cz − btu+ avz + wd(b− az)

K2 + a2
,

x8 =
d(K2 + a2 + 2) + auz + vt(b− az) + w(bc− bdt− acz + adtz)

K2 + a2
,

x9 =
t(2b+ a2b− 2az + bK2) + dvz + w(ab+K2z) + u(cz − dtz)

K2 + a2
,

x10 =
−2tz + b(c− dt)u+ bdv − awz

K2 + a2
.

Expressions for x3 and x4 are obtained in (2.10).

3. Mapping class group. Let G be a group of type (2;−;−;−) and E =
(A,B,C,D) a marking (or a canonical generator system) of G. We consider
the following changes of marking:

(3.1)

ω1(E) = (AB−1, B,C,D), ω2(E) = (B,BA,C,D),

ω3(E) = (B−1CA,B,C,B−1CD),

ω4(E) = (A,B,CD−1, D), ω5(E) = (A,B,C,DC).

Each ωj induces an automorphism of G, which is also denoted by ωj . The
table below shows the images of the elements in the leftmost column un-
der ωj .

ω1 ω2 ω3 ω4 ω5

A AB−1 A B−1CA A A

B B BA B B B

AB A ABA B−1CAB AB AB

ACDC−1 AB−1CDC−1 ACDC−1 B−1CACB−1CDC−1 ACDC−1 ACD

ACD2 AB−1CD2 ACD2 B−1CAC(B−1CD)2 ACD AC(DC)2

ACD AB−1CD ACD B−1CACB−1CD AC ACDC

CD CD CD CB−1CD C CDC
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Let ωj∗ ∈ MC2 denote the mapping class induced by ωj . Then ω1∗,...,
ω5∗ generate MC2 and satisfy the following relations [1, Theorem 4.8]:

ωi∗ωj∗ = ωj∗ωi∗ if |i− j| ≥ 2, 1 ≤ i, j ≤ 5,

ωj∗ωj+1∗ωj∗ = ωj+1∗ωj∗ωj+1∗ (j = 1, 2, 3, 4),

(ω1∗ω2∗ω3∗ω4∗ω5∗)
6 = 1,

ω1∗ω2∗ω3∗ω4∗ω
2
5∗ω4∗ω3∗ω2∗ω1∗ = 1.

In this section we represent the action of ωj∗ on T2 in the variables a, b, z, u, v,
w, t. More precisely, when (Aj , Bj , Cj , Dj) = ωj(A,B,C,D), we express

aj = trAj , bj = trBj , zj = trAjBj , uj = −trAjCjDjC
−1
j ,

vj = −trAjCjD
2
j , wj = −trAjCjDj , tj = trCjDj

by using a, b, z, u, v, w, t. However, for the case of ω3 we modify the signs of
some traces to obtain positive values.
(Case of ω1∗) By using basic trace identities we have trAB−1 = trAtrB −
trAB = ab− z,

w1 = −trAB−1CD = −trBtrACD + trABCD = bw + x10,

u1 = −trAB−1CDC−1 = −trBtrACDC−1 + tr(AB)CDC−1 (∵ (I2))

= bu+ (trABtrD − trABD

− trABCtrCD + trCtrABCD) (∵ (2.1c))

= bu+ zd− x8 − tx7 + cx10,

and

v1 = −trAB−1CD2 = −trBtrACD2 + trABCD2 (∵ (I2))

= bv + (trABCDtrD − trABC) (∵ (I2))

= bv + dx10 − x7.
Hence

ω1∗(a, b, z, u, v, w, t) = (ab− z, b, a, u1, v1, w1, t).

(Case of ω2∗) Since trABA = trABtrA− trB = za− b,
ω2∗(a, b, z, u, v, w, t) = (a, z, az − b, u, v, w, t).

(Case of ω3∗) First we remark that trB−1CA < 0 and trB−1CD < 0.
To see trB−1CA < 0, for example, note that (AB−1, B) is a marking for
a group of type (1; 0; 0; 1) and trA and trB are positive. Then we have
trAB−1 > 0. Then (AB−1, C) is a marking for a group of type (0; 0; 0; 3).
Since trAB−1 and trC are positive, trAB−1C < 0 (see [5, Section 33 A and
D]). The calculation for ω3∗ is the most complicated: By using the basic
trace identities we have

a3 = trB−1CA = trBtrAC − trABC = bx3 − x7.
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w3 = −tr(B−1C)(AC)(B−1C)D

= −tr(AC)(B−1C)D(B−1C)

= −trACB−1CtrB−1CD − trACD + trACtrD

= −(trBtrAC2 − trACBC)(trBtrCD − trBCD) + w + dx3

= −[b(cx3 − a)− (x3x5 + z − ab)](bt− x9) + w + dx3

= (x3x5 + z − bcx3)(bt− x9) + w + dx3,

u3 = −tr(B−1C)(AC)(B−1C)(DC−1)

= −tr(AC)(B−1C)(DC−1)(B−1C)

= −trACB−1CtrB−1CDC−1 − trACDC−1 + trACtrDC−1

= −(trACtrB−1C − trAB)(trBtrD − trBCDC−1) + u+ x3(cd− t)
= −(x3(bc− x5)− z)[bd− (bd− x6 − tx5 + cx9)] + u+ x3(cd− t)
= (x3x5 + z − bcx3)(x6 + tx5 − cx9) + u+ x3(cd− t),

v3 = −trB−1CAC(B−1CD)2

= −trB−1CDtrB−1CACB−1CD + trB−1CAC

= (bt− x9)[(x3x5 + z − bcx3)(bt− x9) + w + dx3] + (bc− x5)x3 − z,

t3 = trCB−1CD = trCB−1trCD − trBD = (bc− x5)t− x6.

In this case a3, x3, v3 and t3 are negative. We modify the sign of these
parameters and obtain

ω3∗(a, b, z, u, v, w, t) = (−a3, b,−x3, u3,−v3, w3,−t3).

(Case of ω4∗) For the expression of ω4∗ we have easily

ω4∗(a, b, z, u, v, w, t) = (a, b, z, u, w,−x3, c).

(Case of ω5∗) Since −trACDC = −trCtrACD + trACDC−1 = cw − u,

v5 = −trAC(DC)2 = −trCDtrACDC + trAC

= −t(trCtrACD − trACDC−1) + x3

= cwt− tu+ x3,

and trCDC = ct− d, we have

ω5∗(a, b, z, u, v, w, t) = (a, b, z, w, cwt− tu+ x3, cw − u, ct− d).

Now we conclude



44 G. Nakamura and T. Nakanishi

Theorem 3.1. The mapping classes ω1∗, ω2∗, ω3∗, ω4∗, ω5∗ are represented
by the following rational maps in variables a, b, z, u, v, w, t:
(3.2)

ω1∗(a, b, z, u, v, w, t) = (ab− z, b, a, u1, v1, w1, t)
ω2∗(a, b, z, u, v, w, t) = (a, z, az − b, u, v, w, t)
ω3∗(a, b, z, u, v, w, t) = (−bx3 + x7, b,−x3, u3,−v3, w3,−bct+ x5t+ x6)
ω4∗(a, b, z, u, v, w, t) = (a, b, z, u, w,−x3, c)
ω5∗(a, b, z, u, v, w, t) = (a, b, z, w, cwt− tu+ x3, cw − u, ct− d),

where c, d, x3, x4, x5, x6 and x7 are given in (2.9) and (2.10) and (2.12).

As it is shown in Section 2, x1 = c, x2 = d,..., x10 are all rational functions
in (a, b, z, u, v, w, t). Hence the inverse mappings of ωj∗ (j = 1, ..., 5) are also
rational mappings. The expressions in (3.2) in (a, b, z, u, v, t), especially the
one for ω3∗, are very complicated.
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