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Linearly-invariant families and generalized
Meixner–Pollaczek polynomials

Abstract. The extremal functions f0(z) realizing the maxima of some func-
tionals

(
e.g. max |a3|, and max arg f

′
(z)
)

within the so-called universal lin-
early invariant family Uα (in the sense of Pommerenke [10]) have such a form
that f

′
0(z) looks similar to generating function for Meixner–Pollaczek (MP)

polynomials [2], [8]. This fact gives motivation for the definition and study of
the generalized Meixner–Pollaczek (GMP) polynomials Pλn (x; θ, ψ) of a real
variable x as coefficients of

Gλ(x; θ, ψ; z) =
1

(1− zeiθ)λ−ix(1− zeiψ)λ+ix =

∞∑
n=0

Pλn (x; θ, ψ)z
n, |z| < 1,

where the parameters λ, θ, ψ satisfy the conditions: λ > 0, θ ∈ (0, π),
ψ ∈ R. In the case ψ = −θ we have the well-known (MP) polynomials. The
cases ψ = π − θ and ψ = π + θ leads to new sets of polynomials which we
call quasi-Meixner–Pollaczek polynomials and strongly symmetric Meixner–
Pollaczek polynomials. If x = 0, then we have an obvious generalization of
the Gegenbauer polynomials.

The properties of (GMP) polynomials as well as of some families of holo-
morphic functions |z| < 1 defined by the Stieltjes-integral formula, where the
function zGλ(x; θ, ψ; z) is a kernel, will be discussed.

1. Linearly-invariant families of holomorphic functions

(1.1) f(z) = z + a2z
2 + . . . , z ∈ D
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in the unit disk D = {z : |z| < 1} were introduced by Pommerenke in [10],
and then were intensively studied by several authors (e.g. [14], [15] and [17]).

A family M of holomorphic functions of the form (1.1) is linearly-invariant
if it satisfies two conditions:

(a) f
′
(z) 6= 0 for any z in D (local univalence),

(b) for any linear fractional transformation

φ(z) = eiθ
z + a

1 + āz
, a, z ∈ D, θ ∈ R,

of D onto itself, the function

Λ[f ](z) = F (z) =
f(φ(z))− f(φ(0))

f ′(φ(0))φ′(0)
= z + . . . ∈M.

The order of the linearly-invariant family M is defined as
ordM = sup

f∈M
|a2(f)|.

Universal invariant family Uα is defined as

Uα =
⋃

ordM≤α
M.

It is well known that α ≥ 1 and U1 ≡ Sc = the class of convex univalent
functions in D, and the familiar class S of all univalent functions is strictly
included in U2. Moreover, for every α > 1, the class Uα contains functions
which are infinitely valent in D [10], for example:

f0(z) =
1

2iγ

[(
1 + z

1− z

)iγ
− 1)

]
,

f
′
0(z) =

1

(1 + z)1−iγ(1− z)1+iγ
, γ =

√
α2 − 1.

Another example of such a function was presented in [15]:

(1.2) f0(z) =
1

(eit2 − eit1)i
√
α2 − 1

[(
1− zeit1
1− zeit2

)i√α2−1

−1

]
, t1 6= t2 +2kπ,

for which

(1.3) f
′
0(z) =

1

(1− zeit1)1−i
√
α2−1(1− zeit2)1+i

√
α2−1

.

Functions of the form (1.2) appear to be extremal for the long lasting
problems:

max
f∈Uα

|a3| and max
f∈Uα

| arg f
′
(z)|,

recently solved by Starkov [14], [15], who proved that the extremal function
for max |a3| is of the form (1.2) with t1 = θ, t2 = −θ, where

eiθ =

√
(3− α2) + 3i

√
α2 − 1

α
√
α2 + 3

, f ∈ Uα ([14]).
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However, the extremal function f0 for maxf∈U ′α | arg f
′
(z)| is of the form

(1.2) with

t1 = π − arctan
1

α
− arctan

r

α
,

t2 = −π + arcsin
1

α
− arcsin

r

α
, r = |z| < 1, t1 6= −t2 ([15]).

We see that the extremal function for maxf∈Uα |a3| has a special form leading
to (MP) polynomials, but the extremal function for maxf∈Uα | arg f

′
(z)|

leads to (GMP) polynomials, defined below.

2. Comparing (1.3) with the generating function for Meixner–Pollaczek
polynomials P λn (x; θ) ([2]):

Gλ(x; θ,−θ; z) =
1

(1− zeiθ)λ−ix(1− ze−iθ)λ+ix
=

∞∑
n=0

P λn (x; θ)zn, z ∈ D,

where λ > 0, θ ∈ (0, π), x ∈ R, we are motivated to introduce the generalized
Meixner–Pollaczek (GMP) polynomials P λn (x; θ, ψ) of variable x ∈ R and
parameters λ > 0, θ ∈ (0, π), ψ ∈ R via the generating function

(2.1) Gλ(x; θ, ψ; z) =
1

(1−zeiθ)λ−ix(1−zeiψ)λ+ix
=
∞∑
n=0

P λn (x; θ, ψ)zn,

z ∈ D. Of course, we have P λn (x; θ,−θ) = P λn (x; θ). We will find the three-
term recurrence relation, the explicite formula, the hypergeometric repre-
sentation and the difference equation for (GMP) polynomials P λn (x; θ, ψ).

Theorem 2.1. (i) The polynomials P λn = P λn (x; θ, ψ) satisfy the three-term
recurrence relation:

P λ−1 = 0,(2.2)

P λ0 = 1,

nP λn = [(λ− ix)eiθ + (λ+ ix)eiψ + (n− 1)(eiθ + eiψ)]P λn−1

− [(2λ+ n− 2)ei(θ+ψ)]P λn−2, n ≥ 1.

(ii) The polynomials P λn (x; θ, ψ) are given by the formula:

(2.3) P λn (x; θ, ψ) = einθ
n∑
j=0

(λ+ ix)j(λ− ix)n−j
j!(n− j)!

eij(ψ−θ), n ∈ N ∪ {0}.

(iii) The polynomials P λn (x; θ, ψ) have the hypergeometric representation

(2.4) n!P λn (x; θ, ψ) = (2λ)ne
inθF

(
−n, λ+ ix, 2λ; 1− eiψ

eiθ

)
.
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(iiii) Let y(x) = P λn (x; θ, ψ). The function y(x) satisfies the following dif-
ference equation

(2.5)
eiθ(λ− ix)y(x+ i) + [ix(eiθ + eiψ)− (n+ λ)(eiθ − eiψ)]y(x)

− eiψ(λ+ ix)y(x− i) = 0.

Proof. (i) We differentiate the formula (2.1) with respect to z and after
multiplication by (1 − zeiθ)(1 − zeiψ) we compare the coefficients at the
power zn−1.
(ii) The Cauchy product for the power series

(1− zeiθ)−(λ−ix) =

∞∑
n=0

(λ− ix)ne
inθ

n!
zn

and

(1− zeiψ)−(λ+ix) =
∞∑
n=0

(λ+ ix)ne
inψ

n!
zn

gives (2.3).
(iii) We apply the formula from ([4], vol. 1, p. 82):

(1−s)a−c(1−s+sz)−a =

∞∑
n=0

(c)n
n!

F (−n, a; c; z)sn, |s| < 1, |s(1−z)| < 1,

with s = zeiθ, a = λ+ ix, c = 2λ, z = 1− ei(ψ−θ) and obtain

(1− zeiθ)−(λ−ix)(1− zeiψ)−(λ+ix)

=

∞∑
n=0

zneinθ(2λ)n
n!

F (−n, λ+ ix, 2λ; 1− ei(ψ−θ)).

Comparing the coefficients at the power zn, we get (2.4).
(iiii) Putting (x + i) and (x − i) instead of x into the generating function
(2.1), we find that

y(x+ i) =
n−1∑
k=0

P λk (x; θ, ψ)[ei(n−k)θ − ei[(n−k−1)θ+ψ]] + P λn

y(x− i) =
n−1∑
k=0

P λk (x; θ, ψ)[ei(n−k)ψ − ei[(n−k−1)ψ+θ]] + P λn ,
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which implies that

(2.6)

eiθ(λ− ix)y(x+ i)− eiψ(λ+ ix)y(x− i)

= (eiθ − eiψ)
n−1∑
k=0

P λk (x; θ, ψ)[(λ− ix)ei(n−k)θ + (λ+ ix)ei(n−k)ψ]

+ [eiθ(λ− ix)− eiψ(λ+ ix)]P λn .

Differentiation of the generating function (2.1) with respect to z and com-
parison of the coefficients at zn−1 yields:

nP λn (x; θ, ψ) =

n−1∑
k=0

P λk (x; θ, ψ)[(λ− ix)ei(n−k)θ + (λ+ ix)ei(n−k)ψ]

which together with (2.6) gives (2.5). �

The first four polynomials P λn are given by the formulas:

Corollary 1.

P λ0 = 1,

P λ1 = ix(eiψ − eiθ) + λ(eiθ + eiψ),

2P λ2 = −x2(eiψ − eiθ)2 + ix(2λ+ 1)(e2iψ − e2iθ) + λ[(1 + λ)e2iψ

+ 2λei(ψ+θ) + (1 + λ)e2iθ],

6P λ3 = ix3[3eiθeiψ(eiψ − eiθ)− (e3iψ − e3iθ)]

+ 3(1 + λ)x2[eiθeiψ(eiψ + eiθ)

− (e3iψ + e3iθ)] + +ix[3λ2eiθeiψ(eiψ − eiθ)

+ (3λ2 + 6λ+ 2)(e3iψ − e3iθ)]

+ λ(1 + λ)[3λeiθeiψ(eiψ + eiθ) + (λ+ 2)(e3iψ + e3iθ)],

24P λ4 = x4[(eiψ − eiθ)4 + 4e2iψe2iθ] + 2ix3(2λ+ 3)(e2iψ − e2iθ)(eiψ + eiθ)2

+ x2[−(6λ2 + 18λ+ 11)(e4iψ + e4iθ) + 4(3λ+ 2)eiψeiθ(e2iψ + e2iθ)

+ 6(2λ2 + 2λ+ 1)e2iψe2iθ] + 2ix(e2iψ − e2iθ)[(4λ3 + 9λ2 + 11λ+ 3)

× (e2iψ + e2iθ) + 2λ(2λ+ 3)eiψeiθ]

+ λ(1 + λ)[(λ+ 2)(λ+ 3)(e4iψ + e4iθ)

+ 4λ(λ+ 2)eiψeiθ(e2iψ + e2iθ) + 6λ(λ+ 1)e2iψe2iθ].

The four special cases of P λn (x; θ, ψ) corresponding to the choice:

(a) ψ = −θ, (b) ψ = π − θ, (c) ψ = π + θ, (d) ψ = θ
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lead to some interesting families of polynomials. Namely, we define:

(a) Gλ(x; θ,−θ; z)=
1

(1− zeiθ)λ−ix(1− ze−iθ)λ+ix
=
∞∑
n=0

P λn (x; θ)zn, z ∈ D,

and of course P λn (x; θ) are the well-known (MP) polynomials of variable
x ∈ R with parameters λ > 0, θ ∈ (0, π);

(b) Gλ(x; θ, π−θ; z)=
1

(1−zeiθ)λ−ix(1 + ze−iθ)λ+ix
=
∞∑
n=0

Qλn(x; θ)zn, z ∈ D,

where Qλn(x; θ) we call quasi-Meixner–Pollaczek (QMP) polynomials;

(c) Gλ(x; θ, π+ θ; z)=
1

(1− zeiθ)λ−ix(1 + zeiθ)λ+ix
=
∞∑
n=0

Sλn(x; θ)zn, z ∈ D,

where Sλn(x; θ) we call strongly symmetric Meixner–Pollaczek (SSMP) poly-
nomials.

Observe that the special cases: i−nQλn(x; 0) and Sλn(x; π2 ) represent sym-
metric (MP) polynomials studied in [1], [6], [8] and [9].

(d) Gλ(x; θ, θ; z) =
1

(1− zeiθ)2λ
=
∞∑
n=0

Hλ
n(θ)zn, z ∈ D,

where Hλ
n(θ) = (2λ)n

n! einθ.
From Theorem 2.1 we have as the corollaries the following formulas for

the polynomials

P λn (x; θ)=P λn (x; θ,−θ), Qλn(x; θ)=P λn (x; θ, π−θ), Sλn(x; θ)=P λn (x; θ, π+θ).

Corollary 2. (i) The (MP) polynomials P λn (x; θ) satisfy the three-term re-
currence relation:

P λ−1(x; θ) = 0,

P λ0 (x; θ) = 1,

nP λn (x; θ) = 2[xsinθ + (n− 1 + λ) cos θ]P λn−1(x; θ)

− (2λ+ n− 2)P λn−2(x; θ), n ≥ 1.

(ii) The polynomials P λn (x; θ) are given by the formula:

P λn (x; θ) = einθ
n∑
j=0

(λ+ ix)j(λ− ix)n−j
j!(n− j)!

e−2ijθ, n ∈ N ∪ {0}.

(iii) The polynomials P λn (x; θ) have the hypergeometric representation

P λn (x; θ) = einθ
(2λ)n
n!

F
(
−n, λ+ ix, 2λ; 1− e−2iθ

)
.

(iiii) The polynomials y(x) = P λn (x; θ) satisfy the following difference equa-
tion
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eiθ(λ− ix)y(x+ i) + 2i[x cos θ− (n+λ)sinθ]y(x)− e−iθ(λ+ ix)y(x− i) = 0.

Corollary 3. (i) The (QMP) polynomials Qλn = Qλn(x; θ) satisfy the three-
term recurrence relation:

Qλ−1 = 0,

Qλ0 = 1,

nQλn = 2i[(λ+ n− 1) sin θ − x cos θ]Qλn−1 + (2λ+ n− 2)Qλn−2, n ≥ 1.

(ii) The polynomials Qλn = Qλn(x; θ) are given by the formula:

Qλn(x; θ) = einθ
n∑
j=0

(−1)j
(λ+ ix)j(λ− ix)n−j

j!(n− j)!
e−2ijθ, n ∈ N ∪ {0}.

(iii) The polynomials Qλn = Qλn(x; θ) have the hypergeometric representation

Qλn(x; θ) = einθ
(2λ)n
n!

F
(
−n, λ+ ix, 2λ; 1 + e−2iθ

)
.

(iiii) The polynomials y(x) = Qλn(x; θ) satisfy the following difference equa-
tion

eiθ(λ− ix)y(x+ i)− 2[xsinθ+ (n+ λ) cos θ]y(x) + e−iθ(λ+ ix)y(x− i) = 0.

Corollary 4. (i) The (SSMP) polynomials Sλn = Sλn(x; θ) satisfy the three-
term recurrence relation:

Sλ−1 = 0,

Sλ0 = 1,

nSλn = −2ixeiθSλn−1 + (2λ+ n− 2)e2iθSλn−2, n ≥ 1.

(ii) The polynomials Sλn = Sλn(x; θ) are given by the formula:

Sλn(x; θ) = einθ
n∑
j=0

(−1)j
(λ+ ix)j(λ− ix)n−j

j!(n− j)!
, n ∈ N ∪ {0}.

(iii) The polynomials Sλn = Sλn(x; θ) have the hypergeometric representation

Sλn(x; θ) = einθ
(2λ)n
n!

F (−n, λ+ ix, 2λ; 2).

(iiii) The polynomials y(x) = Sλn(x; θ) satisfy the following difference equa-
tion

(λ− ix)y(x+ i)− 2(n+ λ)y(x) + (λ+ ix)y(x− i) = 0.

Theorem 2.2. The polynomials Qλn(x; θ) are orthogonal on (−∞,+∞) with
the weight

wλθ (x) =
1

2π
e2θx|Γ(λ+ ix)|2 if λ > 0 and θ ∈

(
−π

2
,
π

2

)



52 I. Naraniecka, J. Szynal and A. Tatarczak

and

1

2π

∫ +∞

−∞
e2θx|Γ(λ+ ix)|2Qλn(x; θ)Qλm(x; θ)dx = δmn

Γ(n+ 2λ)

(2 cos θ)2λn!
.

In the proof we use the following lemmas.

Lemma 1 ([4], vol. I p. 12). If α > 0 and p > 0, then∫ +∞

0
uα−1e−pue−iqudu = Γ(α)(p2 + q2)−

α
2 e
−iα arctan( p

q
)
.

Lemma 2 ([11]). Let F (s) and G(s) be Mellin transforms of f(x) and g(x),
i.e.

F (s) =

∫ +∞

0
f(x)xs−1dx, G(s) =

∫ +∞

0
g(x)xs−1dx.

Then the following formula (Parseval’s identity) holds:

1

2πi

∫ c+i∞

c−i∞
F (s)G(1− s)ds =

∫ +∞

0
f(x)g(x)dx.

Corollary 5. If f(x) = x2(λ+j)e−x
2

and g(x) = x2(λ+k)−1e−x
2
, then

F (s) = Γ
(
λ+ j +

s

2

)
, G(s) = Γ

(
λ+ k +

s− 1

2

)
.

Lemma 3. For any θ ∈ (−π
2 ,

π
2 ), λ > 0, j, k = 1, 2, . . . we have

I =
1

2π

∫ +∞

−∞
(λ+ ix)j(λ− ix)k|Γ(λ+ ix)|2e2θxdx =

ei(j−k)θΓ(2λ+ k + j)

(2 cos θ)2λ+k+j
.

Proof. Putting x = t
2 and next it = s we have:

I =
1

2π

∫ +∞

−∞

(
λ+ i

t

2

)
j

(
λ− i t

2

)
k

∣∣∣∣Γ(λ+ i
t

2

)∣∣∣∣2 eθtdt
=

1

4πi

∫ c+i∞

c−i∞

(
λ+

s

2

)
j

(
λ− s

2

)
k

∣∣∣Γ(λ+
s

2

)∣∣∣2 e−iθsds,
where we use the well-known formula for Pochammer symbol: (a)j = Γ(a+j)

Γ(a) ,
j = 1, 2, . . . . �

Lemma 4. For arbitrary polynomial Qλn(x; θ), λ > 0, θ ∈ (−π
2 ,

π
2 ); k, n =

1, 2, . . . we have

J=
1

2π

∫ +∞

−∞
e2θx(λ−ix)k|Γ(λ+ix)|2Qλn(x; θ)dx=

einθΓ(2k + λ)e−iθk

(2 cos θ)2λ+k
(−k)n.
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Proof. Using hypergeometric representation for Qλn(x; θ) we can write

Qλn(x; θ) =
einθ(2λ)n

n!
F
(
−n, λ+ ix; 2λ; 1 + e−2iθ

)
=
einθ(2λ)n

n!

n∑
j=0

(−n)j(λ+ ix)j
(2λ)jj!

(
1 + e−2iθ

)j
.

Therefore

J =
einθ(2λ)n

n!

n∑
j=0

(−n)j(1 + e−2iθ)j

(2λ)jj!
· I (by Lemma 3)

=
einθ(2λ)n

n!
e−ikθΓ(2λ+ k)

1

(4 cos2 θ)
2λ+k

2

×
n∑
j=0

(−n)j(2λ+ k)j
(2λ)jj!

(
1 + e−2iθ

(4 cos2 θ)
1
2 · e−iθ

)j

=
einθ(2λ)nΓ(2λ+ k)e−ikθ

n!(2 cos θ)2λ+k
· F (−n; 2λ+ k; 2λ; 1).

Using the well-known formula:

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

,

we obtain

�(2.7) J =
ei(n−k)θΓ(2λ+ k)

n!(2 cos θ)2λ+k
· (−k)n.

Proof of Theorem 2.2. Let m ≤ n. Observe that (−k)n = 0 if k < n.
Therefore by (2.7)

J =
Γ(2λ+ n)(−n)n
n!(2 cos θ)2λ+n

, if k = n

and
J = 0, if k < n.

Using hypergeometric representation for Qλn(x; θ) we can write

Qλn(x; θ) =
einθ(2λ)n

n!

n∑
j=0

(−n)j(1 + e−2iθ)j

(2λ)jj!
(λ+ ix)j =

n∑
j=0

Aj(λ+ ix)j .

Therefore∫ +∞

−∞
Qλn(x; θ)Qλm(x; θ)wλθ (x)dx = δnmAn

Γ(2λ+ n)(−n)n
n!(2 cos θ)2λ+n

,
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where

An =
(−n)n(1 + e2iθ)n

(2λ)nn!
· e
−inθ(2λ)n

n!
,

which ends the proof after some obvious simplifications. �

Remark 1. In the case x = 0 we can obtain “more pleasant” sets of “poly-
nomials”:

Qλn(0; θ) = Qλn(θ),

Sλn(0, θ) = Sλn(θ), θ ∈ [0, π], λ > 0.

for which one can prove the following.

Theorem 2.3. The function y = y(θ) = Qλn(θ) = Qλn(0; θ), λ > 0 satisfies
the following second order differential equation:

cos θ(Qλn)′′ − 2λ sin θ(Qλn)
′
+ n(n+ 2λ) cos θQλn = 0.

In particular, if λ = 1 we have:

cos θ(Q1
n)
′′ − 2 sin θ(Q1

n)
′
+ n(n+ 2) cos θQ1

n = 0.

Theorem 2.4. The sets of functions Qλ2k(θ) and Qλ2k−1(θ) form (sepa-
rately) the orthogonal systems with the weight function wλ(θ) = cos2λ θ, θ ∈
[0, π], λ > 0.

3. The generating function for (MP) polynomials allows us to define the
generalization of the well-known class T of holomorphic function (1.1) which
are typically-real in D (Imf(z) · Imz ≥ 0, z ∈ D) and have the following
integral representation

f(z) =

∫ π

0

z

(1− zeiθ)(1− ze−iθ)
dµ(θ),

where µ is a probability measure on [0, π] (e.g. [3], [5], [12], [13]).
Namely, we are going to study the extremal problems within the class

T(λ, τ), λ > 0, τ ∈ R of holomorphic functions f of the form (1.1) given by
the following integral representation

f(z) =

∫ π

0

z

(1− zeiθ)λ−iτ (1− ze−iθ)λ+iτ
dµ(θ),

where µ is a probability measure on [0, π].
We have in particular T(λ, 0) = T(λ) (e.g. [16], [7]) and T(1, 0) = T(λ, τ).

In parallel way we are going to study the extremal problems within the
classes T(λ, τ) and T (λ, τ), λ > 0, τ ∈ R of holomorphic functions of the
form (1.1) which have the integral representation

f(z) =

∫ π

0

z

(1− zeiθ)λ−iτ (1 + ze−iθ)λ+iτ
dµ(θ),
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and

f(z) =

∫ π

0

z

(1− zeiθ)λ−iτ (1 + zeiθ)λ+iτ
dµ(θ),

where µ is a probability measure on [0, π].
The classes T(λ, τ), T(λ, τ) and T (λ, τ) differ pretty much, for instance

all coefficients ak of f ∈ T(λ, τ) are real, however the odd coefficients of
f ∈ T(λ, τ) are real and even coefficients of f ∈ T(λ, τ) are purely imaginary.

In special case τ = 0, λ = 1, i.e. T = T(1, 0), we are able to find explicitly
the radius of local univalence and the radius of univalence of T which differ
from the corresponding values in the class T = T(1, 0).

The classes T(0, τ), T(0, τ) and T (0, τ) appear to be of special interest
when λ→ 0+.

The same remarks concern also the sets of polynomials

S0(x, θ) = lim
λ→0+

Sλ(x, θ) and Q0(x, θ) = lim
λ→0+

Qλ(x, θ),

which generalize the special symmetric Pollaczek polynomials [1].

Remark 2. Due to definition (2.1) of the polynomials P λn (τ ; θ, ψ), τ ∈ R,
θ ∈ (0, π), ψ ∈ R we can as well consider the extremal problems for more
general class of the holomorphic function f of the form (1.1) which have the
integral representation

f(z) =

∫ ∫
∆
zGλ(τ ; θ, ψ; z)dµ(θ, ψ),

where µ is a probability measure on ∆ = (0, π)× R.
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