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On boundary behavior of Cauchy integrals

Abstract. In this paper, we shall estimate the growth order of the n-th
derivative Cauchy integrals at a point in terms of the distance between the
point and the boundary of the domain. By using the estimate, we shall gen-
eralize Plemelj–Sokthoski theorem. We also consider the boundary behavior
of generalized Cauchy integrals on compact bordered Riemann surfaces.

1. Introduction. Let ϕ be a continuous function on a smooth Jordan
curve Γ in C and consider the Cauchy integral;

(1.1) F (z) =
1

2πi

∫
Γ

ϕ(ζ)

ζ − z
dζ,

for z ∈ C \ Γ. It is a holomorphic function on C \ Γ. Let D+ and D−
denote the bounded component of C \ Γ and the unbounded component,
respectively. On the boundary behavior of the Cauchy integral, the following
is well known and it is called Plemelj–Sokthotski formula (cf. [6]).

Theorem (Plemelj–Sokthotski). Suppose that ϕ is a Hölder continuous
function of order α (0 < α < 1) on Γ, that is, there exists a constant A > 0
such that

(1.2) |ϕ(ζ1)− ϕ(ζ2)| ≤ A|ζ1 − ζ2|α.
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Then, the Cauchy integral (1.1) of ϕ has a limit at each ζ0 ∈ Γ. Further-
more, let F+(ζ0) and F−(ζ0) denote the boundary values of F from D+ and
D−, respectively, then both F+ and F− are Hölder continuous functions of
order α on Γ and

F+(ζ0) =
1

2
ϕ(ζ) +

1

2πi
P.V.

∫
Γ

ϕ(ζ)

ζ − ζ0
dζ(1.3)

F−(ζ0) = −1

2
ϕ(ζ) +

1

2πi
P.V.

∫
Γ

ϕ(ζ)

ζ − ζ0
dζ,(1.4)

where P.V. means the principal value of the integral at ζ0. In particular,

(1.5) F+(ζ0)− F−(ζ0) = ϕ(ζ0).

From the theorem, the principal value gives a mapping from the space of
Hölder continuous functions of order α to itself if α ∈ (0, 1) while it does not
hold when α = 1 and it inspired interest in the theory of singular integrals
(cf. [9]). Zygmund and I. E. Block ([3]) improved the theorem for functions
of Zygmund class Λ∗ (see also [8] for several complex variables). Bikčantaev
([2]) generalized the theorem on open Riemann surfaces. On the other hand,
J. L. Walsh ([14]) showed that the equation (1.5) holds almost everywhere
if Γ is the unit circle and ϕ is in the class L2 with respect to the Lebesgue
measure dθ on the circle.

Theorem (Walsh). Let ϕ be in L2(dθ) on the unit circle {z = eiθ}. Then
the Cauchy integral (1.1) has non-tangential limits F+(eiθ) and F−(eiθ) al-
most everywhere from inside and outside the circle, respectively.

In this paper, we have two purposes. The first purpose is to relax the
condition (1.2) and show results similar to Plemelj–Sokthotski theorem hold.
The second one is to extend Walsh’s theorem for Lp functions on boundaries
of compact bordered Riemann surfaces. In the following, we will present
main results in this paper. The terminologies will be given in §2.

First, we shall show an estimate of the derivative of the Cauchy integral
of ϕ, which gives a generalization of Hardy–Littlewood theorem (cf. [12],
see also [11]).

Theorem 1. Let Γ be a smooth Jordan curve in C and ϕ be a continuous
function on Γ.

Suppose that the function ϕ belongs to Λ∗Γ(ω) for ω ∈ D. Then, there
exists a constant A > 0 such that the derivative of the Cauchy integral F (z)
of ϕ satisfies an inequality,

(1.6) |F (n)(z)|δ(z)n ≤ Aω(δ(z)),

for any z ∈ C \ Γ near Γ, where δ(z) = dist(z,Γ) := minζ∈Γ |z − ζ|.

Using the above theorem, we prove a generalization of Plemelj–Sokthotski
theorem as a corollary.
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Corollary 1. Let Γ, ϕ and ω be the same as in Theorem 1. Furthermore,
we suppose that

(1.7)
∫ 1

0

ω(t)

t
dt <∞.

Then, the Cauchy integral F of ϕ has a limit at each ζ0 ∈ Γ. Moreover, the
boundary values F+(ζ0) and F−(ζ0) are given by (1.3) and (1.4).

We also give the modulus of continuity of the Cauchy integral F on Γ.

Corollary 2. Let Γ, ϕ and ω be the same as in Theorem 1. Then, the
boundary functions F+ and F− belong to Λ∗Γ(Zω), where

Zω(t) = max

{∫ t

0
ω(s)s−1ds, ω(t)

}
(t > 0).

In particular,

P.V.

∫
Γ

ϕ(ζ)

ζ − ·
dζ ∈ Λ∗Γ(Zω).

Remark 1. Zygmund showed that if Γ is the unit circle and ϕ ∈ Λ∗Γ(ω),
then

P.V.

∫
Γ

ϕ(ζ)

ζ − ·
dζ ∈ Λ∗Γ(Z0

ω),

where

(1.8) Z0
ω(t) =

∫ t

0

ω(s)

s
ds+ t

∫ t0

t

ω(s)

s2
ds,

for some t0 > 0 (see [7] p. 106). See also [9] for some related results.
However, it is sometimes hard to calculate Z0

ω when Zω can be calculated
(see §5).

Finally, we consider an analogue of Walsh’s theorem on compact bordered
Riemann surface. Let R be a compact bordered Riemann surface and R̂ the
double of R. Let ĝ be the genus of R̂. Then, there exists a canonical
homology basis of R̂ {A1, B1, . . . , Aĝ, Bĝ} such that

Ai ∩Aj = ∅, Bi ∩Bj = ∅ (i 6= j),

and the intersection number of Ai and Bj is δij .
Take a point P̂0 ∈ R̂ \ (R ∪ ∂R) and fix it. Let ωP̂0,P

be an abelian

differential of the third kind on R̂ with simple poles at P̂0 and P ( 6= P̂0)
such that the residue at P̂0 is −1 and 1 at P . We assume that the differential
ωP̂0,P

is normalized, that is,∫
Aj

ωP̂0,P
= 0 (j = 1, 2, . . . , ĝ).
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For ϕ ∈ L1(∂R), we define a generalized Cauchy integral F of ϕ by

(1.9) F (P ) =
1

2πi

∫
∂R
ϕωP̂0,P

(P 6∈ ∂R).

Then, we have the following theorem which extends theorems of Plemelj–
Sokthotski and Walsh. The proof will be given in §7.

Theorem 2. Let R be a compact Riemann surface and ωP̂0,P
the normalized

abelian differential of the third kind with poles at P̂0 and P as above.

(1) If ϕ ∈ L1(∂R), then the generalized Cauchy integral (1.9) is holo-
morphic on R̂ \ ∂R.

(2) The same statements of Theorem 1 and Corollary 1 hold for F (P ).
(3) Let ϕ be in L1(∂R). Then, the generalized Cauchy integral (1.9) of

ϕ has non-tangential limits almost everywhere on ∂R. Furthermore,
if ϕ ∈ Lp(∂R) for p > 1, the equation (1.5) holds almost everywhere
on ∂R. Namely, let F+ and F− denote the boundary functions from
R and from R̂ \ (R ∪ ∂R), respectively. Then,

F+ − F− = ϕ

almost everywhere on ∂R.

Acknowledgement. The author thanks Professor Keinchi Sakan for his
valuable comments.

2. Preliminaries.

2.1. Modulus of continuity. Let ω be a continuous function on [0,∞).
We denote by D the set of all ω satisfying the following conditions.

(1) ω(0) = 0, and it is an increasing function on [0,∞).
(2) ω(t) is doubling, i. e. there exists a constant A > 0 such that

ω(s) ≤ ω(t) ≤ Aω(s),

if 0 < s < t ≤ 2s.
(3) For any α (0 < α < 1), tα ≤ ω(t) if t > 0 is less than some δ > 0.

It is easy to see that ωα(t) = min{| log t|−α, A} (α > 0, A > 0) satisfies
the above conditions.

For a continuous function ω on [0,∞), we say that a function ϕ on Γ has
the modulus of continuity ω if there exists a constant A > 0 such that

(2.1) |ϕ(ζ1)− ϕ(ζ2)| ≤ Aω(|ζ1 − ζ2|),

for every ζ1, ζ2 ∈ Γ. We denote by Λ∗Γ(ω) the set of functions on Γ which
have the modulus of continuity ω.
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2.2. Compact bordered Riemann surfaces. Let R be an open Rie-
mann surface. A holomorphic function f on R is said to be of class Hp(R)
(1 ≤ p <∞) if there exists a harmonic function u on R such that |f |p ≤ u.
For p = ∞, H∞(R) is the space of bounded holomorphic functions on R.
The space Hp(R) is called Hardy space on R.

We say that the Riemann surface is compact bordered if there exists a
closed Riemann surface R0 such that R is a subdomain of R0 bounded by
a finite number of analytic Jordan curves. A compact bordered Riemann
surface R is called of type (g, n) if the genus of R is g and the number of
boundary components is n.

For each compact bordered Riemann surface R, we may consider the
double of R. We denote it by R̂ and by π : R̂ → R̂ the anticonformal
involution of R̂. If R is of type (g, n), then R̂ is a closed Riemann surface
of genus 2g + n− 1.

Let {C1, C2, . . . , Cn} be the set of boundary curves of a compact bordered
Riemann surface R of type (g, n). For each Ci (i = 1, 2, . . . , n) there exists
an annular domain Ui in R such that ∂Ui = Ci ∪ γi, where γi is a smooth
curve parallel to Ci. Then there exists a conformal mapping fi : Ui∪∂Ui →
Ai := {0 < ri ≤ |z| ≤ 1} for some ri such that fi(Ci) = {|z| = 1}. We say
that a function F on R has a non-tangential limit at p ∈ Ci if F ◦ f−1

i has
a non-tangential limit at fi(p), and that F has non-tangential limits almost
everywhere on ∂R if F ◦ f−1

i does so on {|z| = 1} for all i (1 = 1, 2, . . . , n).
It is not hard to see that those notions do not depend on the choice of the
annular domain Ui and the conformal mapping fi.

We define function spaces on ∂R by using fi.

Definition 1. For p ≥ 1, we define Lp(∂R) by the set of all functions ϕ on
∂R so that ϕ ◦ f−1

i (i = 1, 2, . . . , n) belong to Lp space on the unit circle
with respect to the Lebesgue measure on the circle.

Definition 2. A function ϕ on ∂R is said to be a Hölder continuous function
of order α if ϕ◦f−1

i (i = 1, 2, . . . , n) are Hölder continuous functions of order
α on the unit circle. For ω ∈ D, we denote by Λ∗∂R(ω) the set of all functions
ϕ on ∂R such that ϕ ◦ f−1

i ∈ Λ∗{|z|=1}(ω) (i = 1, 2, . . . , n).

Definition 3. Let ψP be an abelian differential on a neighborhood ∂R with
a pole at P ∈ Ci. For a continuous function ϕ on ∂R, we define the principal
value P. V.

∫
∂R ϕψP at P by∑

j 6=i

∫
Cj

ϕψP + P. V.
∫
|z|=1

(ϕ ◦ f−1
i )ψP ◦ f−1

i .

Definitions 1 and 2 do not depend on the choice of Ui and fi while Defi-
nition 3 may depend on them.

Here, we note the following on the boundary values of Hp-functions.
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Proposition 1. Let R be a compact bordered Riemann surface. Then, every
f ∈ Hp(R) (1 ≤ p ≤ ∞) has non-tangential limits almost everywhere on
∂R and the boundary function belongs to Lp(∂R).

From the proposition, the set of non-tangential boundary functions of
Hp(R), which we denote by Hp(R)|∂R, is regarded as a subspace of Lp(∂R).
M. Heins clarifies the relationship between Hp(R) and Lp(∂R). To describe
the result, we consider Green’s function g(·, p0) of R with pole at p0 ∈ R. It
is a positive harmonic function on R \ {p0} with logarithmic singularity at
p0 and vanishes identically on ∂R. Hence, it is extended to the double R̂ of
R by g(p, p0) = −g(π(p), p0) for p ∈ R̂\R, and ωp0 := −dg(·, p0)−i∗dg(·, p0)

defines an abelian differential of the third kind on R̂, where ∗ψ stands for
the conjugate differential of a differential ψ. The abelian differential ωp0 has
the simple poles at p0 and p̂0 := π(p0), where the residues are 1 and −1,
respectively. We denote by δ the devisor of ωP0 in R̂. Then, Heins ([10])
shows the following:

Proposition 2. For p ∈ (1,∞), the decomposition

(2.2) Lp(∂R) = Hp(R)|∂R +Hp
0 (R)|∂R +M(δ−1)|∂R

holds, where Hp
0 (R) is the space of holomorphic functions in Hp(R) which

vanish at P0 and M(δ−1) is the space of meromorphic functions on R̂ whose
devisors are multiple of δ−1.

3. Proof of Theorem 1. Let z0 be a point in C \ Γ and ζ0 ∈ Γ a point
with δ(z0) = |z0 − ζ0|. We take an interval I(z0, ζ0) whose end points are
z0 and ζ0. Then, for any z ∈ I(z0, ζ0), |z − ζ0| = δ(z). Namely, ζ0 is the
nearest point of Γ from z.

Since

F ′(z) =
1

2πi

∫
Γ

ϕ(ζ)− ϕ(ζ0)

(ζ − z)2
dζ,

we have

|F (n)(z)| ≤ n!

2π

∫
Γ

|ϕ(ζ)− ϕ(ζ0)|
|ζ − z|n+1

|dζ|.

Since ζ = ζ(s) is differentiable, there exists δ > 0 such that for each t ∈
[−δ, δ] there exists a point ζt ∈ Γ such that arg(ζt − z0) − arg(ζ0 − z0) = t
and the segment It between z0 and ζt intersects only at ζt with Γ. It suffices
to show that (1.6) is valid in a neighborhood of Γ. Hence, we may assume
that there exists a constant ε0 > 0 such that δ, δ(z0) > ε0.
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Then, for z ∈ I0 ⊂ I(z0, ζ0) we have

(3.1)

|F (n)(z)| ≤ n!

2π

∫
Γ

|ϕ(ζ)− ϕ(ζ0)|
|ζ − z|n+1

|dζ|

=
n!

2π

∫
Γδ

|ϕ(ζ)− ϕ(ζ0)|
|ζ − z|n+1

|dζ|+ n!

2π

∫
Γ\Γδ

|ϕ(ζ)− ϕ(ζ0)|
|ζ − z|n+1

|dζ|

=: A1(z) +A2(z),

where Γδ 3 ζ0 is the subarc of Γ between ζ−δ and ζδ.
Now, we consider the behavior of |F (n)(z)| as I0 3 z → ζ0. We may

assume that |z − z0| > δ(z0)/2.
Since the point z lies in a neighborhood of Γ, by taking a sufficiently

small δ > 0 if necessary, we suppose that

|dζt| ≤ 2dt,

on Γδ.
There is a point zt on It with |zt − z0| = δ(z0) ≤ |ζt − z0| for each

t ∈ [−δ, δ]. Thus, we have

A1(z) ≤ n!

2π

∫
Γδ

|ϕ(ζ)− ϕ(ζ0)|
|zt − z|n+1

|dζ|

≤ 1

π

∫ δ

−δ

|ϕ(ζt)− ϕ(ζ0)|
|zt − z|n+1

dt

≤ An!

πδ(z0)n+1

∫ δ

−δ

ω(|ζt − ζ0|)
(1− 2r cos t+ r2)(n+1)/2

dt

where r = |z − z0|δ(z0)−1 ∈ (1
2 , 1). Noting that

1− 2r cos t+ r2 ≥ (1− r)2 +
4rt2

π2
,

we have

A1(z) ≤ An!

2πδ(z0)n+1

∫ δ

−δ

ω(|t|)
{(1− r)2 + 4r(t/π)2}(n+1)/2

dt.

Setting Cr = π2(1− r)2/4r and t =
√
Cr tan θ, we have

B(z) :=
An!

2πδ(z0)n+1

∫ δ

−δ

ω(|t|)
{(1− r)2 + 4r(t/π)2}(n+1)/2

dt

=
Aπ2n!

4rδ(z0)n+1

∫ δ

−δ

ω(|t|)
{t2 + Cr}(n+1)/2

dt
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=
Aπ2n!

4rδ(z0)n+1(
√
Cr)n

∫ βr

−βr
cos θn−1ω

(∣∣√Cr tan θ
∣∣)dθ

≤ Aπ2n!

2rδ(z0)n+1(
√
Cr)n

∫ βr

0
ω
(∣∣√Cr tan θ

∣∣)dθ,
where βr = arctan δ√

Cr
∈ (0, π/2). As z → ζ0, r → 1, Cr → 0 and βr → π/2.

We take z ∈ I0 sufficiently close to ζ0 so that Cr < 1.
When θ ∈ (0, π4 ], tan θ ∈ (0, 1]. Hence, |

√
Cr tan θ| ≤

√
Cr and

ω(|
√
Cr tan θ|) ≤ ω(

√
Cr). Thus, we have∫ π/4

0
ω
(∣∣√Cr tan θ

∣∣)dθ ≤ ∫ π/4

0
ω
(√

Cr
)
dθ

=
π

4
ω
(√

Cr
)
,

and

(3.2)
1

(
√
Cr)n

∫ π/4

0
ω
(∣∣√Cr tan θ

∣∣)dθ ≤ π

4(
√
Cr)n

ω
(√

Cr
)
.

For any σ ∈ (0, 1), we put λ = 1 − σ ∈ (0, 1) and γr := arctan
(

1√
Cr

)λ
.

We may assume that γr < βr. When θ ∈ (π4 , γr], tan θ ∈
(

1, C
−λ/2
r

]
and we

have

ω
(√

Cr tan θ
)
≤ ω

(√
C1−λ
r

)
.

Therefore, ∫ γr

π/4
ω
(√

Cr tan θ
)
dθ ≤ π

4
ω

(√
C1−λ
r

)
,

and

(3.3)
1

(
√
Cr)n

∫ γr

π/4
ω
(∣∣√Cr tan θ

∣∣)dθ ≤ π

4(
√
Cr)n

ω

(√
C1−λ
r

)
.

Finally, we consider the case where θ ∈ (γr, βr]. Since arctanx =∫ x
0

1
1+t2

dt, we have

βr − γr =

∫ δ/
√
Cr

(
√
Cr)
−λ

dx

x2 + 1
≤
∫ δ/

√
Cr

(
√
Cr)
−λ

dx

x2
≤ A1

√
Cλr ,

where the constant A1 > 0 depends only on r, and A1 → 1 as r → 1. On
the other hand, (

1√
Cr

)−λ
≤ tan θ ≤

(
δ√
Cr

)
,

and
ω
(√

Cr tan θ
)
≤ ω(δ).
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Therefore, we conclude

(3.4)
1

(
√
Cr)n

∫ βr

γr

ω
(∣∣√Cr tan θ

∣∣)dθ ≤ A1

√
Cλr

(
√
Cr)n

ω(δ).

Combining (3.2), (3.3) and (3.4), we have

B(z) ≤ A2

(
√
Cr)n

{
ω
(√

Cr
)

+ ω

(√
C1−λ
r

)
+
√
Cλr ω(δ)

}
,

for some constant A2 depending only on r. Since 0 < 1 − λ < 1, we have
ω
(√

C1−λ
r

)
≥ ω(

√
Cr) as Cr → 0. By the definition of D,

√
Cλr ≤ ω(

√
Cr).

Hence,

B(z) ≤ A3

(
√
Cr)n

ω

(√
C1−λ
r

)
,

where the constant A3 > 0 depends only on r < 1 and δ > 0, and it is
bounded if r is sufficiently close to 1 and δ is sufficiently small.

Noting that δ(z0) > ε, 1−r = (δ(z0)−|z−z0|)δ(z0)−1 = δ(z)δ(z0)−1 and

π2

4
(1− r)2 ≤ Cr ≤

π2

2
(1− r)2,

we obtain, for σ = 1− λ ∈ (0, 1),

A1(z) ≤ B(z) ≤ A3

δ(z)n
ω((ε−1πδ(z))σ) ≤ A3A

log ε−1π/ log 2

δ(z)n
ω(δ(z)σ),

by the doubling property of ω. Here, A is the constant of the doubling
property of ω.

Since δ > ε, it is not hard to see that A2(z) is bounded by some constant
M > 0 as z → ζ0. Hence, we have

|A2(z)| ≤M =
M

δ(z)n
δ(z)n ≤ M

δ(z)n
ω(δ(z)σ).

if δ(z) > 0 is sufficiently small. Therefore, we conclude that there exists a
constant A5 > 0 such that

|F (n)(z)|δ(z)n ≤ A5ω(δ(z)σ).

Since the constant A5 is independent of σ, we have

(3.5) |F (n)(z)|δ(z)n ≤ A5ω(δ(z)).

By using the differentiability, we see that we can take ε > 0 sufficiently
small so that there exists a neighborhood U of Γ such that for any z ∈ U \Γ,
there exist points z0, ζ0 satisfying the above conditions. Thus, we verify that
there (3.5) holds for any z ∈ C \ Γ near Γ.
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Remark 2. By using a similar argument, we extend the Hardy–Littlewood
theorem on the unit disk which gives an estimate of the derivatives of holo-
morphic functions on the disk and continuous on the closed disk ([12]). Re-
cently, H. Aikawa ([1]) estimates the norms of gradient vectors of harmonic
functions on certain domains in Rn.

4. Proof of Corollary 1. At first, we shall show that the principal value
of the integral exists. Let ζ = ζ(s) be the arc-length parametrization of Γ
with ζ(0) = ζ0. Since ζ(s) is differentiable, there exists a constant A > 0
such that

A−1|s| ≤ |ζ(s)− ζ0| ≤ A|s|

holds near t = 0. From the doubling condition of ω and (2.1), we have

|ϕ(ζ(s))− ϕ(ζ0)| ≤ Aω(|s|),

near s = 0. Hence, it follows from (1.7) that the principal value
P.V.

∫
Γ ϕ(ζ)dζ/(ζ − ζ0) exists.

Next, we consider the existence of the boundary value F+(ζ0) of F (z).
For each ζ0 ∈ Γ, we may take a point z0 ∈ D+ so that δ(z0) = |z0− ζ0|. Let
I(z0, ζ0) denote the interval between z0 and ζ0 and take two points z, z′ on
I(z0, ζ0) so that δ(z) ≥ δ(z′) > 0. It follows from Theorem 1 that for any
σ ∈ (0, 1)

|F (z)− F (z′)| =
∣∣∣∣∫ z

z′
F ′(z)dz

∣∣∣∣
≤
∫ z

z′
|F ′(z)||dz|

≤ A
∫ δ(z)

δ(z′)

ω(tσ)

t
dt (s = tσ)

≤ 1

σ

∫ δ(z)1/σ

δ(z′)1/σ

ω(s)

s
ds.

From (1.7), we verify that limz→ζ0 F (z) exists along I(z0, ζ0) and the con-
vergence is uniform. Hence, the boundary function is continuous and it
guarantees the existence of F+(ζ0). By the same proof, we can show the
existence of F−(ζ0).

Finally, we show (1.3) and (1.4). In fact, a standard argument gives the
proof from the existence of F+ and F− (cf. [6]). We shall give the proof for
convenience of the reader.

For δ > 0, we put Γ(δ) = {|z − ζ0| < δ} ∩ Γ and

Φ(z) =
1

2πi

∫
Γ

ϕ(ζ)− ϕ(ζ0)

ζ − z
dζ,
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for z ∈ D+. Then,

Φ(z)− 1

2πi
P.V.

∫
Γ

ϕ(ζ)− ϕ(ζ0)

ζ − ζ0
dζ

=
z − ζ0

2πi
P.V.

∫
Γ

ϕ(ζ)− ϕ(ζ0)

(ζ − ζ0)(ζ − z)
dζ

=
z − ζ0

2πi
P.V.

∫
Γ(δ)

ϕ(ζ)− ϕ(ζ0)

(ζ − ζ0)(ζ − z)
dζ

+
z − ζ0

2πi

∫
Γ\Γ(δ)

ϕ(ζ)− ϕ(ζ0)

(ζ − ζ0)(ζ − z)
dζ

:= I1(z) + I2(z).

We have already seen that the boundary value F+(ζ0) exists. Therefore,
we may assume that z ∈ D+ approach to ζ0 along I(z0, ζ0). It is not hard
to see that there exists a constant A > 0 such that for and z ∈ I(z0, ζ0) for
any ζ ∈ Γ(δ), an inequality

|z − ζ| ≥ A|z − ζ0|

holds. Hence, we have

|I1(z)| ≤ |z − ζ0|
2π

P.V.

∫
Γ(δ)

|ϕ(ζ)− ϕ(ζ0)|
|(ζ − ζ0)(ζ − z)|

|dζ|

≤ A

2π
P.V.

∫
Γ(δ)

|ϕ(ζ)− ϕ(ζ0)|
|(ζ − ζ0)|

|dζ|

≤ A

2π
P.V.

∫
Γ(δ)

ω(|ζ − ζ0|)
|(ζ − ζ0)|

|dζ|.

Thus, for arbitrary small ε > 0 it follows from (1.7) that |I1(z)| < ε if δ > 0
is sufficiently small.

On the other hand, limz→ζ0 I2(z) = 0 and we have

lim
z→ζ0

Φ(z) =
1

2πi
P.V.

∫
Γ

ϕ(ζ)− ϕ(ζ0)

ζ − ζ0
dζ.

Noting that
1

2πi
P.V.

∫
Γ

1

ζ − ζ0
dζ =

1

2
,

we obtain

F+(ζ0)− ϕ(ζ0) =
1

2πi
P.V.

∫
Γ

ϕ(ζ)

ζ − ζ0
dζ − 1

2
ϕ(ζ0)

and it shows (1.3) as desired. The proof of (1.4) is the same.
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5. Proof of Corollary 2. Let ζ1, ζ2 be on Γ. Then, it follows from The-
orem 1 that

|F+(ζ1)− F+(ζ2)| =

∣∣∣∣∣
∫
I(z1,ζ1)+γ+I(z2,ζ2)

F ′(z)dz

∣∣∣∣∣
≤ A

∫
I(z1,ζ1)+γ+I(z2,ζ2)

ω(δ(z))

δ(z)
|dz|,

where zj ∈ D+ (j = 1, 2) are in a neighborhood fo ζj and γ ⊂ D+ is a
smooth arc connecting z1 and z2. We may take ζ1 and ζ2 sufficiently close
to each other so that the length of γ is less than A|ζ1 − ζ2| and

(5.1) A−1δ(z1) ≤ δ(z) ≤ Aδ(z1)

for any z ∈ γ. We may also take zj so that the length of I(zj , ζj) is δ(zj)
(j = 1, 2). Then, we have∫

I(zj ,ζj)

ω(δ(z))

δ(z)
|dz| =

∫ δ(zj)

0

ω(t)

t
dt (j = 1, 2).

As for the integral along γ, from (5.1) and the doubling property of ω, we
obtain ∫

γ

ω(δ(z))

δ(z)
|dz| ≤ A

∫
γ

ω(δ(z1))

δ(z1)
|dz| ≤ A′ω(δ(z1))

δ(z1)
|ζ1 − ζ2|.

Therefore, by taking δ(z1) = |ζ1 − ζ2|, we obtain

|F+(ζ1)− F+(ζ2)| ≤ AZω(|ζ1 − ζ2|),
and the proof is completed.

6. Examples. In this section, we shall give examples for our theorems.

Example 1. We have seen that ωα(t) = min{| log t|−α, A} (α > 0) belongs
to D. Therefore, from Theorem 1 we have

|F (n)(z)δ(z)n| ≤ A| log δ(z)|−α,
for ϕ ∈ Λ∗Γ(ωα).

We also see that ∫ δ

0

ωα(t)

t
dt <∞

for small δ > 0 if and only if α > 1. Hence, from Corollary 1, if α > 1, then

P.V.

∫
Γ

ϕ(ζ)

ζ − ·
dζ ∈ Λ∗Γ(ωα−1).

Now, we consider Zygmund’s estimate Z0
ωα given by (1.8). For ω = ωα

(α > 1), it is not hard to see that

t

∫ t0

t

ωα(s)

s2
ds ≤ ωα(t).
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Example 2. Put ω̂α(t) = min{| log t|−1| log | log t||−α, A} (α > 0). Then,
we see that ω̂α ∈ D. Hence, for ϕ ∈ Λ∗Γ(ω̂α), Theorem 1 gives

|F (n)(z)δ(z)n| ≤ A| log δ(z)|−1| log | log δ(z)||−α.

It is easily seen that ∫ δ

0

ω̂α(t)

t
dt <∞

if and only if α > 1. Therefore, we see that if α > 1, then

P.V.

∫
Γ

ϕ(ζ)

ζ − ·
dζ ∈ Λ∗Γ

(
| log | log t||1−α

)
.

More generally, we may consider ω̂n,α(t) =
∏n−1
k=1 fk(t)

−1fn(t)−α(t) (α > 0),
where f1(t) = | log t| and fn+1(t) = fn(f1(t)). Then, ω̂n,α ∈ D.

By putting x = fn(s), we get∫ t

0

ω̂n,α(s)

s
ds =

∫ ∞
fn(t)

x−αdx,

for sufficiently small t > 0. Therefore, we obtain that if ϕ ∈ Λ∗Γ(ω̂n,α) for
α > 1, then

P.V.

∫
Γ

ϕ(ζ)

ζ − ·
dζ ∈ Λ∗Γ

(
fn(t)1−α) .

On the other hand, if we consider Zygmund’s estimate (1.8), we have to
estimate the integral

t

∫ t0

t

ω̂n,α(s)

s2
ds = t

∫ fn(t)

fn(t0)

1

f−1
n (x)

dx.

as t→ 0. At least for the author, it is much harder than the above one.

7. Proof of Theorem 2. First, we consider the behavior of sequences of
abelian differentials on closed Riemann surfaces.

Let X be a closed Riemann surface of genus g and {P1,n}∞n=1, {P2,n}∞n=1

be distinct sequences on X converging to a point P0. We assume that both
P1,n and P2,n are contained in a parametric disk U of P0. Let ζ : U →
{|ζ| < 1} be a local coordinate on U with ζ(P0) = 0. Put b1,n := ζ(P1,n)
and b2,n := ζ(P2,n).

We consider abelian differentials ωn (n = 0, 1, 2, . . .) on X satisfying the
following conditions.

(1) The differentials ωn (n = 1, 2, . . .) are holomorphic onX\{P1,n, P2,n}
and ω0 is holomorphic on X;

(2) For each j (j = 1, 2, . . . , g),

(7.1) αj(n) :=

∫
Ai

ωn →
∫
Aj

ω0 := αj (n→∞),
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where {Aj , Bj}gj=1 is a canonical homology basis of X defined as in
§2;

(3) Let
l1,n∑
k=1

c1,−k(n)(ζ − b1,n)−k +
∞∑
k=0

c1,k(n)(ζ − b1,n)k

 dζ

and
l2,n∑
k=1

c2,−k(n)(ζ − b2,n)−k +
∞∑
k=0

c2,k(n)(ζ − b2,n)k

 dζ

be Laurent expansions of ωn at P1,n and P2,n, respectively. Then,
l1,n = l2,n = l for some l ∈ N and limn→∞ cj,−k(n) (j = 1, 2) exist
for each k (k = 1, 2, . . . , l1,n), which satisfy

(7.2) lim
n→∞

c1,−k(n) = − lim
n→∞

c2,−k(n).

Under those conditions, we have the following.

Lemma 1. Let Q be a point in X \
⋃∞
n=1{P1,n, P2,n} ∪ {P0} and z a local

coordinate at Q with z(Q) = 0. If ω0 and ωn, which are holomorphic at Q,
have expansions:

ω0 =

∞∑
m=0

am(Q)zmdz, ωn =

∞∑
m=0

am,n(Q)zmdz

with respect to z at Q, then limn→∞ am,n(Q) = am(Q) (m = 0, 1, 2, . . .).
Furthermore, the convergence is locally uniform in X \

⋃∞
n=1{P1,n, P2,n} ∪

{P0}.

Proof. By considering ωn − ω0, we may assume that αj = 0 for j ∈
{1, 2, . . . g} and am = 0 for any m ∈ N ∪ {0}.

Let ψm be an abelian differential holomorphic on X \ {Q} with pole of
order m+ 2 at Q which has the expansion:

(7.3) ψm =

{
1

zm+2
+ (holomorphic)

}
dz

with respect to the local coordinate z. For the abelian integral Ψm(P ) =∫
P ψm on X \

⋃g
j=1Aj ∪Bj , we have

2πi
∑
P∈X

resPΨmωn =

g∑
j=1

[∫
Aj

ψm

∫
Bj

ωn −
∫
Bj

ψm

∫
Aj

ωn

]

= −
g∑
j=1

αj(n)

∫
Bj

ψm

from the bilinear relation (cf. [5]).
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The poles of Ψmωn are P1,n, P2,n and Q. As for Q, from (7.3) we obtain
the residue at Q:

resQΨmωn =
−1

m+ 1
am,n(Q).

Since Ψm is holomorphic at P1,n and P2,n, it has expansions:

Ψm(ζ) =

∞∑
k=0

βj,k(n)(ζ − bj,n)k

at bj,n (j = 1, 2). Thus,

resPj,nΨmωn =
l∑

k=1

cj,−k(n)βj,k−1(n) (j = 1, 2),

and we get

−1

m+ 1
am,n(Q) +

l∑
k=1

c1,−k(n)β1,k−1(n) +

l∑
k=1

c2,−k(n)β2,k−1(n)

= − 1

2πi

g∑
j=1

αj(n)

∫
Bj

ψm.

We have
lim
n→∞

β1,k(n) = lim
n→∞

β2,k(n) (j = 0, 1, . . . , l − 1).

Therefore, from (7.2) we obtain

lim
n→∞

am,n(Q) = 0.

The uniform convergence is also easily shown. �

Now, we proceed to prove Theorem 2.

Proof of (1). Let ϕ be in L1(∂R). It is known that the normalized abelian
differential ωP̂0,P

is holomorphic on X \ {P̂0} for P (cf. [5] III. 3). Thus,

F (P ) = 1
2πi

∫
∂R ϕωP̂0,P

is holomorphic on R \ ∂R ∪ {P̂0}. Furthermore, it
follows from Lemma 1 that ωP̂0,P

uniformly converges to zero on ∂R as

P → P̂0. We conclude that F (P ) is holomorphic on R̂ \ ∂R.

Proof of (2). The proof is done by localization. Let Q ∈ Ci and Ui an
annular domain in R as in §2. Then, Ûi := Ui ∪ Ci ∪ π(Ui) is an annular
neighborhood of Ci in R̂, where π : R̂→ R̂ is the anti-conformal involution
of R̂. We may assume that P̂0 6∈ Ûi. There exists a conformal mapping
f : Ûi → Ari := {0 < ri < |z| < r−1

i } such that f(Ci) = {|z| = 1}, f(Q) = 1

and f(∂Ûi ∩R) = {|z| = ri}. Then, a differential

θP = ωP̂0,P
◦ f−1(z)− 1

z − f(P )
dz
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is holomorphic in Ari . Hence, there exists a holomorphic function hP on Ari
such that θP = hP (z)dz. Because of the uniform convergence of ωP̂0,P

◦ f−1

on ∂Ari as P → Q, holomorphic functions hP converges to hQ uniformly
on ∂Ari . Therefore, from the maximum principle, hP converges to hQ uni-
formly on {|z| = 1} = f(Ci) and we have

lim
P→Q

∫
|z|=1

ϕ ◦ f−1θP =

∫
|z|=1

ϕ ◦ f−1θQ.

Noting that∫
Ci

ϕωP̂0,P
=

∫
|z|=1

ϕ ◦ f−1(z)

z − f(P )
dz +

∫
|z|=1

ϕ ◦ f−1θP ,

we verify that the behavior of F (P ) as P → Q ∈ Ci is determined by that of
the Cauchy integral of ϕ◦f−1 on the unit circle. This implies the conclusion
of (2).

Proof of (3). The proof of the non-tangential limits is done by the local-
ization as in (2) since the statement is true when R is the unit disk (cf.
[4]).

Now, we show the second statement of (3) holds. Since ϕ ∈ Lp(∂R)
(p > 1), from Proposition 2 we have

(7.4) ϕ = f1 + f2 +m

on ∂R, where f1 ∈ Hp(R), f2 ∈ Hp
0 (R) and m ∈ M(δ−1). (If p = ∞,

we may take any finite number greater than 1 as p in (7.4).) Then, from
Cauchy’s integral formula for Hp(R), we have

1

2πi

∫
∂R
f1ωP̂0,P

= f1(P ),

for P ∈ R. Since F2 := f2 ◦ π is in Hp(R̂ \ R̄) and F2 = f̄2 on ∂R, we have

1

2πi

∫
∂R
f2ωP̂0,P

= −F2(P̂0) = −f2(P0) = 0.

Let Qn1
1 . . . Qnkk be the polar divisor of m in R and

m(zj) =

nj∑
l=1

dj,l
zl

+
∞∑
l=0

d+
j,lz

l (j = 1, 2, . . . , k)

the Laurent expansion of m at Qj with respect to a local coordinate zj of
Qj with zj(Qj) = 0. For P 6= Qj , we put

ωP̂0,P
=
∞∑
l=0

aj,l(P )zljdzj
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near Qj . Then, we obtain

(7.5)
1

2πi

∫
∂R
mωP̂0,P

= m(P ) +

k∑
j=1

nj∑
l=1

dj,laj−1,l(P ),

if P 6= Qj (j = 1, 2, . . . , k). Therefore, we obtain

F (P ) = f1(P ) +m(P ) +
k∑
j=1

nj∑
l=1

dj,laj−1,l(P ),

if P ∈ R\
⋃k
j=1Qj . Hence, it follows from Lemma 1 that the non-tangential

limit F+(Q) of F from R exists for almost all Q on ∂R. By the same
argument, F− exists almost everywhere on ∂R.

On the other hand, for P ∈ R and P ′ ∈ π(R),

(7.6) F (P )− F (P ′) = f1(P ) + f2(π(P ′)) +
1

2πi

∫
∂R
mωP,P ′ ,

because ωP ′,P = ωP̂0,P
−ωP̂0,P

. By the same argument as in (7.5), we obtain

1

2πi

∫
∂R
mωP ′,P = m(P ) +

k∑
j=1

nj∑
l=1

dj,lbj−1,l(P, P
′),

where ωP ′,P =
∑∞

l=0 bj,l(P, P
′)zljdzj at Qj (j = 1, 2, . . . , k). Since

bj,l(P, P
′)→ 0 as P, P ′ → Q, we have

lim
P,P ′→Q

1

2πi

∫
∂R
mωP ′,P = m(Q).

Therefore, from (7.6), we verify

F+ − F− = ϕ,

almost everywhere on ∂R and the proof is completed.
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