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On certain generalized
q-Appell polynomial expansions

Abstract. We study q-analogues of three Appell polynomials, the H-poly-
nomials, the Apostol–Bernoulli and Apostol–Euler polynomials, whereby two
new q-difference operators and the NOVA q-addition play key roles. The def-
initions of the new polynomials are by the generating function; like in our
book, two forms, NWA and JHC are always given together with tables, sym-
metry relations and recurrence formulas. It is shown that the complementary
argument theorems can be extended to the new polynomials as well as to
some related polynomials. In order to find a certain formula, we introduce a
q-logarithm. We conclude with a brief discussion of multiple q-Appell poly-
nomials.

1. Introduction. The aim of this paper is to describe how the q-umbral
calculus extends in a natural way to produce q-analogues of conversion the-
orems and polynomial expansions for the following Appell polynomials: H-
polynomials, Apostol–Bernoulli and Apostol–Euler from the recent articles
on this theme, as well as multiple variable extensions. To this aim, we use
certain q-difference operators known from the book [3], and some new oper-
ators containing a factor λ from the previous work of Luo and Srivastava [8],
[9], [10] on Apostol–Bernoulli polynomials. The q-Appell polynomials have
been used before in [4], where their basic definition was given together with
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several matrix applications. The q–umbral method [3], influenced by Jor-
dan [5] and Nørlund [12], forms the basis for the terminology and umbral
method, which enables convenient q-analogues of the formulas for Appell
polynomials; our formulas resemble the Appell polynomial formulas in a re-
markable way. A certain q-Taylor formula plays a key role in many proofs.
This paper is organized as follows: In this section we give the general
definitions. In each section, we then give the specific definitions and special
values which we use there. In Section 2, we introduce two dual polynomials
together with recursion formulas, symmetry relations and complementary
argument theorem.
Let λ ∈ R and let Eq(x) denote the q-exponential function. In Sections 3
and 4 in the spirit of Apostol, Luo and Srivastava, we introduce and discuss
two dual forms of the generalized q-Apostol–Bernoulli polynomials, together
with the many applications that were mentioned earlier. In Sections 5 and 6,
we continue the discussion with two dual forms of the generalized q-Apostol–
Euler polynomials Two of their generating functions are given below:

(1)
tn

(λEq(t)− 1)n
Eq(xt) =

∞∑
ν=0

tνB
(n)
NWA,λ,ν,q(x)

{ν}q! ,

and

(2)
2n

(λEq(t) + 1)n
Eq(xt) =

∞∑
ν=0

tνF
(n)
NWA,λ,ν,q(x)

{ν}q! .

This is followed by formulas which contain both kinds of these polynomials.
Many of the formulas are proved by simple manipulations of the generating
functions. In Section 7 we show that the many expansion formulas accord-
ing to Nørlund can also be formulated for our polynomials. In Section 7 we
extend the previous considerations to a more general form, named multi-
plicative q-Appell polynomials. More on this will come in a future paper.
We now come to Section 9; in order to find q-analogues of the corresponding
formulas for the generating functions, we, formally, introduce a logarithm
for the q-exponential function. The calculations are valid for so-called q-real
numbers. In Section 10, we briefly discuss multiple q-Appell polynomials.
We now start with the definitions, compare with the book [3]. Some of
the notation is well known and will be skipped.

Definition 1. Let the Gauss q-binomial coefficient be defined by

(3)
(
n

k

)
q

≡ {n}q!
{k}q!{n− k}q! , k = 0, 1, . . . , n.
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Let a and b be any elements with commutative multiplication. Then the
NWA q-addition is given by

(4) (a⊕q b)
n ≡

n∑
k=0

(
n

k

)
q

akbn−k, n = 0, 1, 2, . . . .

The JHC q-addition is the function

(5) (a�q b)
n ≡

n∑
k=0

(
n

k

)
q

q(
k
2) bkan−k = an

(
− b

a
; q

)
n

, n = 0, 1, 2, . . . .

If 0 < |q| < 1 and |z| < |1− q|−1, the q-exponential function is defined by

(6) Eq(z) ≡
∞∑
k=0

1

{k}q!z
k.

The q-derivative is defined by

(7) (Dqf) (x) ≡

⎧⎪⎨
⎪⎩

f(x)−f(qx)
(1−q)x , if q ∈ C\{1}, x �= 0;

df
dx(x) if q = 1;
df
dx(0) if x = 0.

Definition 2. Let the NWA q-shift operator be given by

(8) E(⊕q)(x
n) ≡ (x⊕q 1)

n.

Definition 3. The related JHC q-shift operator is given by

(9) E(�q)(x
n) ≡ (x�q 1)

n.

Let I denote the identity operator. The Apostol NWA q-difference operator
is given by

(10) �NWA,A,q ≡ λE(⊕q)− I.
The Apostol NWA q-mean value operator is given by

(11) ∇NWA,A,q ≡ λE(⊕q) + I
2

.

The Apostol JHC q-difference operator is given by

(12) �JHC,A,q ≡ λE(�q)− I.
The Apostol JHC q-mean value operator is given by

(13) ∇JHC,A,q ≡ λE(�q) + I
2

.

Definition 4. For every power series fn(t), the q-Appell polynomials or Φq

polynomials of degree ν and order n have the following generating function:

(14) fn(t)Eq(xt) =
∞∑
ν=0

tν

{ν}q!Φ
(n)
ν,q (x).
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For x = 0 we get the Φ(n)
ν,q number of degree ν and order n.

Definition 5. For fn(t) of the form h(t)n, we call the q-Appell polynomial
Φq in (14) multiplicative.

Theorem 1.1. We have the two q-Taylor formulas

(15) Φ(n)
ν,q (x⊕q y) =

ν∑
k=0

(
ν

k

)
q

Φ
(n)
ν−k,q(x)y

k.

(16) Φ(n)
ν,q (x�q y) =

ν∑
k=0

(
ν

k

)
q

q(
k
2)Φ

(n)
ν−k,q(x)y

k.

2. The H polynomials. First, we repeat some of the definitions of certain
related q-Appell polynomials for later use. These polynomials are more
general forms of the polynomials we wish to study.

Definition 6. The generating function for β(n)
ν,q (x) is

(17)
tng(t)

(Eq(t)− 1)n
Eq(xt) ≡

∞∑
ν=0

tνβ
(n)
ν,q (x)

{ν}q! .

Definition 7. The generating function for γ(n)ν,q (x) is given by

(18)
tng(t)

(E 1
q
(t)− 1)n

Eq(xt) ≡
∞∑
ν=0

tνγ
(n)
ν,q (x)

{ν}q! .

Definition 8. The generating function for η(n)ν,q (x) is given by

(19)
2n

(Eq(t) + 1)n
g(t)Eq(xt) =

∞∑
ν=0

tνη
(n)
ν,q (x)

{ν}q! .

Definition 9. The generating function for θ(n)ν,q (x) is given by

(20)
2n

(E 1
q
(t) + 1)n

g(t)Eq(xt) =
∞∑
ν=0

tνθ
(n)
ν,q (x)

{ν}q! .

We now come to the generating function of the polynomials we want to
study in this section (for q = 1): The H polynomials are defined in [14, p.
532 (37)].

(21)
2t

et + 1
ext =

∞∑
ν=0

tνHν(x)

ν!

The odd H numbers are zero and the even H numbers are expressable in
terms of Bernoulli numbers as

(22) H2n = 2(1− 22n)B2n.
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Definition 10. The generating function for H(n)
NWA,ν,q(x) is a special case

of (19):

(23)
(2t)n

(Eq(t) + 1)n
Eq(xt) =

∞∑
ν=0

tνH(n)
NWA,ν,q(x)

{ν}q! , |t| < 2π.

Definition 11. The generating function for H(n)
JHC,ν,q(x) is a special case of

(20):

(24)
(2t)n

(E 1
q
(t) + 1)n

Eq(xt) =
∞∑
ν=0

tνH(n)
JHC,ν,,q(x)

{ν}q! , |t| < 2π.

The polynomials in (23) and (24) are q-analogues of the generalized H
polynomials. We now turn to these q-analogues.

Theorem 2.1. We have

(25) ∇NWA,qH(n)
NWA,ν,q(x) = {ν}qH(n−1)

NWA,ν−1,q(x),

(26) HNWA,0,q = 0, HNWA,1,q = 1, (HNWA,q ⊕q 1)k +HNWA,k,q =̈ 0, k > 1.

(27) ∇JHC,qH(n)
JHC,ν,,q(x) = {ν}qH(n−1)

JHC,ν,−1,q(x),

(28) HJHC,0,q = 0, HJHC,1,q = 1, (HJHC,q �q 1)k +HJHC,k,q =̈ 0, k > 1.

The following table lists some of the first HNWA,ν,q numbers.

n = 2 n = 3 n = 4

(−1− q)2−1 (1− q3)2−2 −(1 + q)2(1 + q2)(1− 3q + q2)2−3

n = 5

(−1 + q)(1 + q)(1− 4q + q2){3}q{5}q2−4

We need not calculate the HJHC,ν,,q numbers, since we have the following
symmetry relations:

Theorem 2.2.
For ν even,HNWA,ν,q = HJHC,ν,q.

For ν uneven, HNWA,ν,q = −HJHC,ν,q, ν > 1.
(29)

For the convenience of the reader, we make a short repetition:

Definition 12. The Ward q-Bernoulli numbers [17, p. 265, 16.4], are given
by

(30) BNWA,n,q ≡ B(1)NWA,n,q.
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The following table lists some of the first Ward q-Bernoulli numbers.

n = 0 n = 1 n = 2 n = 3

1 −(1 + q)−1 q2({3}q!)−1 (1− q)q3({2}q)−1({4}q)−1

n = 4

q4(1− q2 − 2q3 − q4 + q6)({2}2q{3}q{5}q)−1

The following three formulas express xn in terms of q-Appell polynomials.

Lemma 2.3.

(31) xn =
1

{n+ 1}q
n∑

k=0

(
n+ 1

k

)
q

BNWA,k,q(x)

(see [3, 4.149, p. 121]).

(32) xν =
1

2

[
FNWA,ν,q(x) +

ν∑
k=0

(
ν

k

)
q

FNWA,k,q(x)

]

(see [3, 4.206, p. 130]).

(33) xν =
1

2{ν + 1}q

[
HNWA,ν+1,q(x) +

ν∑
k=0

(
ν + 1

k + 1

)
q

HNWA,k+1,q(x)

]
.

Proof. For the last formula, use formula (25). �

Theorem 2.4 (A q-analogue of [13, p. 489]). Let Φ(n)
ν,q (x) be a q-Appell

polynomial. Then the following three addition formulas apply:

Φ(n)
ν,q (x⊕q y)

=

ν∑
k=0

⎡
⎣ ν∑
j=k

1

{j + 1}q

(
ν

j

)
q

(
j + 1

k

)
q

Φ
(n)
ν−j,q(y)

⎤
⎦BNWA,k,q(x).(34)

Φ(n)
ν,q (x⊕q y) =

1

2

ν∑
k=0

(
ν

k

)
q

Φ
(n)
ν−k,q(y)

×
⎡
⎣FNWA,k,q(x) + k∑

j=0

(
k

j

)
q

FNWA,j,q(x)

⎤
⎦ .

(35)

Φ(n)
ν,q (x⊕q y) =

1

2

ν∑
k=0

(
ν

k

)
q

Φ
(n)
ν−k,q(y)

1

{k + 1}q

×
⎡
⎣HNWA,k+1,q(x) +

k∑
j=0

(
k + 1

j + 1

)
q

HNWA,j+1,q(x)

⎤
⎦ .

(36)
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Proof. Use formulas (31)–(33) and (15). �

The following complementary argument theorems extend the ones given
in [3, p. 153].

Theorem 2.5. A q-analogue of the Raabe–Bernoulli complementary argu-
ment theorem [11, p. 128, (1)]:

(37) B(n)JHC,ν,q(x) = (−1)νB(n)NWA,ν,q(nq �q x).

Theorem 2.6. A q-analogue of the Euler complementary argument theorem
by Milne–Thomson [11, p. 145, (1)]:

(38) F(n)JHC,ν,q(x) = (−1)νF(n)NWA,ν,q(nq �q x).

These two formulas can be generalized to

Theorem 2.7 (A q-analogue of the Raabe–Bernoulli complementary argu-
ment theorem [11, p. 128, (1)]). Assume that g(t) in (17) and (18) are equal
and even functions. Then

(39) γ(n)ν,q (x) = (−1)νβ(n)
ν,q (nq �q x).

Theorem 2.8 (A q-analogue of the Euler complementary argument theorem
by Milne–Thomson [11, p. 145, (1)]). Assume that g(t) in (19) and (20) are
equal and even functions. Then

(40) θ(n)ν,q (x) = (−1)νη(n)ν,q (nq �q x).

Theorem 2.9. A special case of (40), and a q-analogue of [14, p. 532]:

(41) H(n)
JHC,ν,q(x) = (−1)ν+nH(n)

NWA,ν,q((nq �q x).

Proof. Use the generating function. �

Corollary 2.10. A q-analogue of a generalization of [14, p. 532].

(42) H(n)
NWA,ν,q(x) + (−1)ν+nH(n)

JHC,ν,q(−x) = 2{ν}qH(n−1)
NWA,ν−1,q(x).

Proof. Use the generating function and (25), (41). �

3. The NWA q-Apostol-Bernoulli polynomials. Throughout, we as-
sume that λ �= 0. The b polynomials are more general forms of the NWA
q-Apostol–Bernoulli polynomials, which we will study in this section.

Definition 13. The polynomials b(n)λ,ν,q(x) are defined by

(43)
tng(t)

(λEq(t)− 1)n
Eq(xt) =

∞∑
ν=0

tνb(n)λ,ν,q(x)

{ν}q! .

The generating function for BNWA,ν,q(x) is a special case of (44):



34 T. Ernst

Definition 14. The generalized NWA q-Apostol–Bernoulli polynomials
B

(n)
NWA,λ,ν,q(x) are defined by

(44)
tn

(λEq(t)− 1)n
Eq(xt) =

∞∑
ν=0

tνB
(n)
NWA,λ,ν,q(x)

{ν}q! , |t+ log λ| < 2π.

Assume that λ �= 1. The poles in the denominator of (44) are the roots
of Eq(t) = λ−1, which implies that in some cases the limit λ → 1 is not
straightforward and needs some further consideration.
We have

(45) �NWA,A,qb
(n)
λ,ν,q(x) = {ν}qb(n−1)

λ,ν−1,q(x) = Dqb
(n−1)
λ,ν,q (x).

This leads to the following recurrence for the NWA q-Apostol–Bernoulli
numbers:

(46) BNWA,λ,0,q = 0, λ(BNWA,λ,q ⊕q 1)
k −BNWA,λ,k,q =̈ δ1,k, k > 0.

The following table lists some of the first BNWA,λ,ν,q numbers.

ν = 0 ν = 1 ν = 2 ν = 3

0
1

1− λ
−λ(1 + q)

(1− λ)2
λ(1 + λq){3}q

(λ− 1)3

ν = 4 ν = 5

−λ{2}q(1 + q2)(1 + 2λq + 2λq2 + λ2q3)

(1− λ)4
Aλ{5}q
(λ− 1)5

where

(47) A ≡ 1 + 3λq + 4λq2 + λ3q6 + λq3(3 + q) + λ2q2(1 + 3q + 4q2 + 3q3).

Theorem 3.1 (A generalization of [3, 4.242]). If
∑s

l=1 nl = n,

B(n)NWA,λ,k,q(x1 ⊕q . . .⊕q xs)

=
∑

m1+...+ms=k

(
k

m1, . . . ,ms

)
q

s∏
j=1

B(nj)
NWA,λ,mj ,q

(xj),
(48)

where we assume that nj operates on xj.

Corollary 3.2 (A q-analogue of [8, p. 300 (49)]).

(49) B
(n)
NWA,λ,ν,q(x) =

ν∑
k=0

(
ν

k

)
q

B
(n−1)
NWA,λ,ν−k,qBNWA,λ,k,q(x).

Corollary 3.3. A q-analogue of [9, p. 634, (28), (29)]:

B
(n−1)
NWA,λ,ν,q(x)

=
1

{ν + 1}q

[
λ

ν+1∑
k=0

(
ν + 1

k

)
q

B
(n)
NWA,λ,k,q(x)−B

(n)
NWA,λ,ν+1,q(x)

]
.

(50)



On certain generalized q-Appell polynomial expansions 35

A generalization of [3, 4.149].

(51) xν =
1

{ν + 1}q

[
λ

ν+1∑
k=0

(
ν + 1

k

)
q

BNWA,λ,k,q(x)−BNWA,λ,ν+1,q(x)

]
.

4. The JHC q-Apostol–Bernoulli polynomials. The c polynomials
are more general forms of the JHC q-Apostol–Bernoulli polynomials, which
we will study in this section.

Definition 15. The polynomials c(n)λ,ν,q(x) are defined by

(52)
tng(t)

(λE 1
q
(t)− 1)n

Eq(xt) =
∞∑
ν=0

tνc(n)λ,ν,q(x)

{ν}q! .

Definition 16. The generalized JHC q-Apostol–Bernoulli polynomials
B

(n)
JHC,λ,ν,q(x) are defined by

(53)
tn

(λE 1
q
(t)− 1)n

Eq(xt) =
∞∑
ν=0

tνB
(n)
JHC,λ,ν,q(x)

{ν}q! , |t+ log λ| < 2π.

We have

(54) �JHC,A,qc
(n)
λ,ν,q(x) = {ν}qc(n−1)

λ,ν−1,q(x) = Dqc
(n−1)
λ,ν,q (x).

The defining relation of the JHC q-Apostol–Bernoulli numbers is given by
the umbral recurrence

(55) BJHC,λ,0,q = 0, λ(BJHC,λ,q �q 1)
k −BJHC,λ,k,q =̈ δ1,k, k > 0.

We need not calculate the BJHC,λ,ν,q numbers, since we have the following
symmetry relations:

Theorem 4.1. Assume that g(t) in (43) and (52) are equal and even func-
tions. Then

(56) bλ,ν,q = (−1)νcλ−1,ν,q, ν > 0.

In particular,

(57) BNWA,λ,ν,q = (−1)νBJHC,λ−1,ν,q, ν > 0.

Theorem 4.2. Assume that g(t) in (43) and (52) are equal and even func-
tions. Then

(58) c(n)
λ−1,ν,q

(x) = (−1)νλnb(n)λ,ν,q(nq �q x).

This implies a q-analogue of the complementary argument theorem [9,
p. 633, (19)].

Theorem 4.3.

(59) B
(n)
JHC,λ−1,ν,q

(x) = (−1)νλnB
(n)
NWA,λ,ν,q(nq �q x).
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Theorem 4.4 (Compare with [3, 4.242]). If
∑s

l=1 nl = n,

B(n)JHC,λ,k,q(x1 ⊕q . . .⊕q xs)

=
∑

m1+...+ms=k

(
k

m1, . . . ,ms

)
q

s∏
j=1

B(nj)
JHC,λ,mj ,q

(xj),
(60)

where we assume that nj operates on xj.

Corollary 4.5 (Another q-analogue of [8, p. 300 (49)]).

(61) B
(n)
JHC,λ,ν,q(x) =

ν∑
k=0

(
ν

k

)
q

B
(n−1)
JHC,λ,ν−k,qBJHC,λ,k,q(x).

Corollary 4.6 (Another q-analogue of [9, p. 634, (28), (29)]).

B
(n−1)
JHC,λ,ν,q(x)

=
1

{ν + 1}q

[
λ

ν+1∑
k=0

(
ν + 1

k

)
q

q(
k
2)B

(n)
JHC,λ,ν+1−k,q(x)

−B
(n)
JHC,λ,ν+1,q(x)

]
.

(62)

Theorem 4.7 (A q-analogue of [6, p. 8]).
ν∑

k=0

(
ν

k

)
q

B
(2n)
NWA,λ,k,q(x�q y)(nq)

ν−k

=
1

λn

ν∑
k=0

(−1)ν−k

(
ν

k

)
q

B
(n)
NWA,λ,k,q(x)B

(n)
JHC,λ−1,ν−k,q

(y).

(63)

Proof. We have that
tn

(λEq(t)− 1)n
Eq(xt)

(−t)n

(λ−1E1
q
(−t)− 1)n

Eq(−yt)

= Eq((x�q y)t)
tn

(λEq(t)− 1)n

(
tλEq(t)

λEq(t)− 1

)n

,

(64)

which implies that
∞∑
ν=0

tνB
(2n)
NWA,λ,ν,q(x�q y)

{ν}q!
∞∑
l=0

(nqt)
l

{l}q!

=
1

λn

∞∑
ν=0

tνB
(n)
NWA,λ,ν,q(x)

{ν}q!
∞∑

m=0

(−t)mB
(n)
JHC,λ−1,m,q

(y)

{m}q! .

(65)

Formula (63) now follows on equating the coefficients of tν . �
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5. The NWA q-Apostol–Euler polynomials. We start with some rep-
etition from [3]:

Definition 17. The generating function for the first q-Euler polynomials
of degree ν and order n, F(n)NWA,ν,q(x) is given by

(66)
2nEq(xt)

(Eq(t) + 1)n
=

∞∑
ν=0

tν

{ν}q!F
(n)
NWA,ν,q(x), |t| < π.

The following table lists some of the first q-Euler numbers FNWA,n,q.

n = 0 n = 1 n = 2 n = 3

1 −2−1 2−2(−1 + q) 2−3(−1 + 2q + 2q2 − q3)

n = 4

2−4(q − 1){3}q!(q2 − 4q + 1)

The e polynomials are more general forms of the NWA q-Apostol–Euler
polynomials, which we will study in this section.

Definition 18. The e polynomials are defined by

(67)
2ng(t)

(λEq(t) + 1)n
Eq(xt) =

∞∑
ν=0

tνe(n)λ,ν,q(x)

{ν}q! .

Definition 19. The generalized NWA q-Apostol–Euler polynomials
F
(n)
NWA,λ,ν,q(x) are defined by

(68)
2n

(λEq(t) + 1)n
Eq(xt) =

∞∑
ν=0

tνF
(n)
NWA,λ,ν,q(x)

{ν}q! , |t+ log λ| < π.

Assume that λ �= −1. The poles in the denominator of (68) are the roots
of Eq(t) = −λ−1.

Theorem 5.1. We have

(69) ∇NWA,A,qe
(n)
λ,ν,q(x) = e

(n−1)
λ,ν,q (x),

This leads to the following recurrence:

(70) FNWA,λ,0,q = 2− λ, λ(FNWA,λ,q ⊕q 1)k + FNWA,λ,k,q =̈ 0, k > 1.

The following table lists some of the first FNWA,λ,n,q numbers.

n = 0 n = 1 n = 2 n = 3
2

1 + λ

−2

(1 + λ)2
2(q − λ)

(1 + λ)3
−2(λ2 + q3 − 2λq − 2λq2)

(λ+ 1)4

We observe that the limits for λ → 1 are the first q-Euler numbers.
The following two formulas are generalizations of [3, 4.202] and [3, 4.206].
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Theorem 5.2 (A q-analogue of [9, p. 635, (31), (32)]).

(71) F
(n−1)
NWA,λ,ν,q(x) =

1

2

[
λ

ν∑
k=0

(
ν

k

)
q

F
(n)
NWA,λ,k,q(x) + F

(n)
NWA,λ,ν,q(x)

]
.

(72) xν =
1

2

[
λ

ν∑
k=0

(
ν

k

)
q

FNWA,λ,k,q(x) + FNWA,λ,ν,q(x)

]
.

Theorem 5.3. A q-analogue of [9, p. 636, (43)] and a generalization of [3,
p. 152]:

B
(n)
NWA,λ,ν,q(x⊕q y)

=
ν∑

k=0

(
ν

k

)
q

[
B

(n)
NWA,λ,k,q(y) +

{k}q
2

B
(n−1)
NWA,λ,k−1,q(y)

]
FNWA,λ,ν−k,q(x).

(73)

Proof. We will use the q-Taylor formula (15) twice, and then like in [9],
the factor λ disappears.

B
(n)
NWA,λ,ν,q(x⊕q y)

by(15,72)
=

1

2

ν∑
k=0

(
ν

k

)
q

B
(n)
NWA,λ,k,q(y)

[
FNWA,λ,ν−k,q(x)

+ λ

ν−k∑
j=0

(
ν − k

j

)
q

FNWA,λ,j,q(x)

]

=
1

2

ν∑
k=0

(
ν

k

)
q

B
(n)
NWA,λ,k,q(y)FNWA,λ,ν−k,q(x)

+
λ

2

ν∑
j=0

(
ν

j

)
q

FNWA,λ,j,q(x)

ν−j∑
k=0

(
ν − j

k

)
q

B
(n)
NWA,λ,k,q(y)

by(15)
=

1

2

ν∑
k=0

(
ν

k

)
q

B
(n)
NWA,λ,k,q(y)FNWA,λ,ν−k,q(x)

+
λ

2

ν∑
j=0

(
ν

j

)
q

B
(n)
NWA,λ,ν−j,q(y ⊕q 1)FNWA,λ,j,q(x)

by(45)
= RHS.

(74)

�
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Theorem 5.4 (Another q-analogue of [9, p. 636, (43)]).

B
(n)
JHC,λ,ν,q(x�q y) =

ν∑
k=0

(
ν

k

)
q

[
B

(n)
JHC,λ,k,q(y)

(
q(

k
2) + 1

2

)

+ q(
k
2)
{k}q
2

B
(n−1)
JHC,λ,k−1,q(y)

]
FNWA,λ,ν−k,q(x).

(75)

Proof. We will use the q-Taylor formula (16) twice, and then like in [9],
the factor λ disappears.

B
(n)
JHC,λ,ν,q(x�q y)

by(16,72)
=

1

2

ν∑
k=0

(
ν

k

)
q

q(
k
2)B

(n)
JHC,λ,k,q(y)

[
FNWA,λ,ν−k,q(x)

+ λ

ν−k∑
j=0

(
ν − k

j

)
q

FNWA,λ,j,q(x)

]

=
1

2

ν∑
k=0

(
ν

k

)
q

q(
k
2)B

(n)
JHC,λ,k,q(y)FNWA,λ,ν−k,q(x)

+
λ

2

ν∑
j=0

(
ν

j

)
q

FNWA,λ,j,q(x)

ν−j∑
k=0

(
ν − j

k

)
q

q(
k
2)B

(n)
JHC,λ,k,q(y)

by(16)
=

1

2

ν∑
k=0

(
ν

k

)
q

q(
k
2)B

(n)
JHC,λ,k,q(y)FNWA,λ,ν−k,q(x)

+
λ

2

ν∑
j=0

(
ν

j

)
q

B
(n)
JHC,λ,ν−j,q(y �q 1)FNWA,λ,j,q(x)

by(54)
= RHS.

(76)

�

Theorem 5.5 (A q-analogue of the addition theorem [6, p. 10]).

B
(n)
NWA,λ2,ν,q

(x⊕q y)

=
(2q)

n

2n(2q)ν

ν∑
k=0

(
ν

k

)
q

B
(n)
NWA,λ,k,q(2qx)F

(n)
NWA,λ,ν−k,q(2qy).

(77)

Proof. We find that

2n

(2q)n

(
2qt

λ2Eq(2qt)− 1

)n

Eq((2qx⊕q 2qy)t)

=

(
t

(λEq(t)− 1

)n

Eq(2qxt)
2n

(λEq(t) + 1)n
Eq(2qyt),

(78)
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which implies that

2n

(2q)n

∞∑
ν=0

(2qt)
νB

(n)
NWA,λ2,ν,q

(x⊕q y)

{ν}q!

=

∞∑
ν=0

tνB
(n)
NWA,λ,ν,q(2qx)

{ν}q!
∞∑

m=0

tmF
(n)
NWA,λ,m,q(2qy)

{m}q! .

(79)

Formula (77) now follows on equating the coefficients of tν . �

6. The JHC q-Apostol-Euler polynomials. The f polynomials are
more general forms of the JHC q-Apostol–Euler polynomials, which we will
study in this section.

Definition 20. The f polynomials f(n)λ,ν,q(x) are defined by

(80)
2ng(t)

(λE 1
q
(t) + 1)n

Eq(xt) =
∞∑
ν=0

tν f(n)λ,ν,q(x)

{ν}q! .

Definition 21. The generalized JHC q-Apostol–Euler polynomials
F
(n)
JHC,λ,ν,q(x) are defined by

(81)
2n

(λE 1
q
(t) + 1)n

Eq(xt) =
∞∑
ν=0

tνF
(n)
JHC,λ,ν,q(x)

{ν}q! , |t+ log λ| < π.

Theorem 6.1. We have

(82) ∇JHC,A,qf
(n)
λ,ν,q(x) = f

(n−1)
λ,ν,q (x),

This leads to the following recurrence:

(83) FJHC,λ,0,q = 2− λ, λ(FJHC,λ,q �q 1)k + FJHC,λ,k,q =̈ 0, k > 1.

Theorem 6.2. A generalization of [3, 4.224] and another q-analogue of [9,
p. 635, (31)]:

(84) F
(n−1)
JHC,λ,ν,q(x) =

1

2

[
λ

ν∑
k=0

(
ν

k

)
q

q(
k
2)F

(n)
JHC,λ,ν−k,q(x) + F

(n)
JHC,λ,ν,q(x)

]
.

Theorem 6.3. A symmetry relation for q-Apostol–Euler numbers.

(85) (−1)νFJHC,λ−1,ν,q = −FNWA,λ,ν,q.
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Proof. The following computation with generating functions shows the
way:

∞∑
ν=0

(−t)νFJHC,λ−1,ν,q

{ν}q! =
2

λ−1E1
q
(−t) + 1

=
2λEq(t)

λEq(t) + 1

= λ

∞∑
ν=0

tνFNWA,λ,ν,q(1)

{ν}q! .

(86)

Equating the coefficients of tν and using (70) gives (85). �

Theorem 6.4. Assume that g(t) in (67) and (80) are equal and even func-
tions. Then

(87) f(n)
λ−1,ν,q

(x) = (−1)νλne(n)λ,ν,q(nq �q x).

This implies a q-analogue of the complementary argument theorem [9,
p. 634, (20)].

Theorem 6.5.

(88) F
(n)
JHC,λ−1,ν,q

(x) = (−1)νλnF
(n)
NWA,λ,ν,q(nq �q x).

Theorem 6.6 (A q-analogue of [6, p. 8]).
ν∑

k=0

(
ν

k

)
q

F
(2n)
NWA,λ,k,q(x�q y)(nq)

ν−k

=
1

λn

ν∑
k=0

(−1)ν−k

(
ν

k

)
q

F
(n)
NWA,λ,k,q(x)F

(n)
JHC,λ−1,ν−k,q

(y).

(89)

Proof. We have that
2n

(λEq(t) + 1)n
Eq(xt)

2n

(λ−1E 1
q
(−t) + 1)n

Eq(−yt)

= Eq((x�q y)t)
2n

(λEq(t) + 1)n

(
2λEq(t)

λEq(t) + 1

)n

,

(90)

which implies that

∞∑
ν=0

tνF
(2n)
NWA,λ,ν,q(x�q y)

{ν}q!
∞∑
l=0

(nqt)
l

{l}q!

=
1

λn

∞∑
ν=0

tνF
(n)
NWA,λ,ν,q(x)

{ν}q!
∞∑

m=0

(−t)mF
(n)
JHC,λ−1,m,q

(y)

{m}q! .

(91)

Formula (89) now follows on equating the coefficients of tν . �
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7. More on q-Apostol–Bernoulli and Euler polynomials. It turns
out, by simple umbral manipulation that many of the formulas in [3, Section
4.3] are also valid for q-Apostol–Bernoulli and Euler polynomials, and these
equations which we now present will also be new for the case q = 1. We
first define these polynomials of negative order.

Definition 22. The generalized NWA q-Apostol–Bernoulli polynomials of
negative order −n are given by

(92) B
(−n)
NWA,λ,ν,q(x) ≡

{ν}q!
{ν + n}q!�

n
NWA,A,qx

ν+n.

The generalized NWA q-Apostol–Euler polynomials of negative order −n
are given by

(93) F
(−n)
NWA,λ,ν,q(x) ≡ ∇n

NWA,A,qx
ν .

Theorem 7.1. A generalization of [3, 4.249]:

(94) B
(−n−p)
NWA,λ,ν,q(x⊕q y) =̈ (B

(−n)
NWA,λ,q(x)⊕q B

(−p)
NWA,λ,q(y))

ν ,

and the same for NWA q-Apostol–Euler polynomials
A special case is the following formula:

(95) B
(−n)
NWA,λ,ν,q(x⊕q y) =̈ (B

(−n)
NWA,λ,q(x)⊕q y)

ν ,

and the same for NWA q-Apostol–Euler polynomials.

Theorem 7.2. A generalization of [3, 4.251, 4.252]:
If n, p ∈ Z then

(96) B
(n+p)
NWA,λ,ν,q =̈ (B

(n)
NWA,λ,q ⊕q B

(p)
NWA,λ,q)

ν ,

and the same for NWA q-Apostol–Euler numbers.

Theorem 7.3. A generalization of [3, 4.253]:

(97) (x⊕q y)
ν =̈ (B

(−n)
NWA,λ,q(x)⊕q B

(n)
NWA,λ,q(y))

ν ,

A generalization of [3, 4.254]:

(98) (x⊕q y)
ν =̈ (F

(−n)
NWA,λ,q(x)⊕q F

(n)
NWA,λ,q(y))

ν .

Proof. Put p = −n in (94). �

In particular for y = 0, we obtain

(99) xν =̈ (B
(−n)
NWA,λ,q ⊕q B

(n)
NWA,λ,q(x))

ν ,

(100) xν =̈ (F
(−n)
NWA,λ,q ⊕q F

(n)
NWA,λ,q(x))

ν .
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This can be restated in the form

(101) xν =
ν∑

s=0

B
(−n)
NWA,λ,s,q

{s}q! Ds
qB

(n)
NWA,λ,ν,q(x),

(102) xν =
ν∑

s=0

F
(−n)
NWA,λ,s,q

{s}q! D
s
qF

(n)
NWA,λ,ν,q(x).

We conclude that the NWA q-Apostol–Bernoulli and NWA q-Apostol–Euler
polynomials satisfy linear q-difference equations with constant coefficients.
The following theorem is useful for the computation of NWA q-Apostol–
Bernoulli and NWA q-Apostol–Euler polynomials of positive order. This
is because the polynomials of negative order are of simpler nature and can
easily be computed. When the B(−n)

NWA,λ,s,q etc. are known, (103) can be used

to compute the B(n)NWA,λ,s,q.

Theorem 7.4. A generalization of [3, 4.259]:

(103)
ν∑

s=0

(
ν

s

)
q

B
(n)
NWA,λ,s,qB

(−n)
NWA,λ,ν−s,q = δν,0.

A generalization of [3, 4.260]:

(104)
ν∑

s=0

(
ν

s

)
q

F
(n)
NWA,λ,s,qF

(−n)
NWA,λ,ν−s,q = δν,0.

Proof. Put x = y = 0 in (97) and (98). �

Theorem 7.5 (A generalization of [3, 4.261]). Under the assumption that
f(x) is analytic with q-Taylor expansion

(105) f(x) =
∞∑
ν=0

Dν
qf(0)

xν

{ν}q! ,

we can express powers of �NWA,A,q and ∇NWA,A,q operating on f(x) as
powers of Dq as follows. These series converge when the absolute value of
x is small enough:

(106) �n
NWA,A,qf(x) =

∞∑
ν=0

Dν+n
q f(0)

B
(−n)
NWA,λ,ν,q(x)

{ν}q! ,

(107) ∇n
NWA,A,qf(x) =

∞∑
ν=0

Dν
qf(0)

F
(−n)
NWA,λ,ν,q(x)

{ν}q! .

Proof. Use formulas (45) and (54). �
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Putting f(x) = Eq(xt) we obtain the generating function of the NWA q-
Apostol–Bernoulli and NWA q-Apostol–Euler polynomials of negative order:

(108)
(λEq(t)− 1)n

tn
Eq(xt) =

∞∑
ν=0

tν

{ν}q!B
(−n)
NWA,λ,ν,q(x),

(109)
(λEq(t) + 1)n

2n
Eq(xt) =

∞∑
ν=0

tν

{ν}q!F
(−n)
NWA,λ,ν,q(x).

Theorem 7.6 (A generalization of [3, 4.268]).

(110)
∞∑
k=0

B
(n)
NWA,λ,k,q(x)

{k}q! �n
NWA,A,qD

k
qf(y) = D

n
q,xf(x⊕q y).

Proof. Replace f(x) by f(x⊕q y) in (45):

λf(B
(n)
NWA,λ,q(x)⊕q y ⊕q 1)− f(B

(n)
NWA,λ,q(x)⊕q y)

= Dqf(B
(n−1)
NWA,λ,q(x)⊕q y).

(111)

Use the umbral formula [3, 4.21] to get

(112)
∞∑
k=0

B
(n)
NWA,λ,k,q(x)

{k}q! �NWA,A,qD
k
qf(y) =

∞∑
k=0

B
(n−1)
NWA,k,q(x)

{k}q! Dk+1
q f(y).

Apply the operator �n−1
NWA,A,q with respect to y to both sides and use (106):

∞∑
k=0

B
(n)
NWA,λ,k,q(x)

{k}q! �n
NWA,A,qD

k
qf(y)

=

∞∑
k=0

B
(n−1)
NWA,λ,k,q(x)

{k}q!
∞∑
l=0

Dk+l+n
q f(0)

B
(−n+1)
NWA,λ,l,q(y)

{l}q! .

(113)

Finally use [3, 4.21] , [3, 4.34], (97) to rewrite the righthand side. �

Corollary 7.7 (A generalization of [3, 4.272]). Let ϕ(x) be a polynomial of
degree ν. A solution f(x) of the q-difference equation

(114) �n
NWA,A,qf(x) = D

n
qϕ(x)

is given by

(115) f(x⊕q y) =
ν∑

k=0

B
(n)
NWA,λ,k,q(x)

{k}q! Dk
qϕ(y).
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Proof. The LHS of (115) can be written as ϕ(B(n)
NWA,λ,q(x) ⊕q y), because

if we apply �n
NWA,q,x to both sides we get

�n
NWA,A,qf(x⊕q y) = Dn

q,xϕ(x⊕q y)

= �n
NWA,A,qϕ(B

(n)
NWA,λ,q(x)⊕q y).

(116)

�
Theorem 7.8 (A generalization of [3, 4.275]).

(117)
∞∑
k=0

F
(n)
NWA,λ,k,q(x)

{k}q! ∇n
NWA,A,qD

k
qf(y) = f(x⊕q y).

Proof. Replace f(x) by f(x⊕q y) in (69):
1

2

(
λf(F

(n)
NWA,λ,q(x)⊕q y ⊕q 1) + f(F

(n)
NWA,λ,q(x)⊕q y)

)
= f(F

(n−1)
NWA,λ,q(x)⊕q y).

(118)

Use the umbral formula [3, 4.21] to get

(119)
∞∑
k=0

F
(n)
NWA,λ,k,q(x)

{k}q! ∇NWA,A,qD
k
qf(y) =

∞∑
k=0

F
(n−1)
NWA,λ,k,q(x)

{k}q! Dk
qf(y).

Apply the operator ∇n−1
NWA,A,q with respect to y to both sides and use (107):

∞∑
k=0

F
(n)
NWA,λ,k,q(x)

{k}q! ∇n
NWA,A,qD

k
qf(y)

=

∞∑
k=0

F
(n−1)
NWA,λ,k,q(x)

{k}q!
∞∑
l=0

Dk+l
q f(0)

F
(−n+1)
NWA,λ,l,q(y)

{l}q! .

(120)

Finally use [3, 4.21], [3, 4.34], (98) to rewrite the righthand side. �
Corollary 7.9 (A generalization of [3, 4.279]). Let ϕ(x) be a polynomial of
degree ν. A solution f(x) of the q-difference equation

(121) ∇n
NWA,A,qf(x) = ϕ(x)

is given by

(122) f(x⊕q y) =
ν∑

k=0

F
(n)
NWA,λ,k,q(x)

{k}q! Dk
qϕ(y).

Proof. The LHS of (122) can be written as ϕ(F(n)
NWA,λ,q(x) ⊕q y), because

if we apply ∇n
NWA,A,q,x to both sides we get

∇n
NWA,A,qf(x⊕q y) = ϕ(x⊕q y) = ∇n

NWA,A,qϕ(F
(n)
NWA,λ,q(x)⊕q y).(123)

�
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8. Multiplicative q-Appell polynomials. In this section we very briefly
discuss multiplicative q-Appell polynomials with fn(t) equal to h(t)n. It
turns out, by simple umbral manipulation that many of the formulas in [3,
Section 4.3] are also valid for multiplicative q-Appell polynomials, and these
equations will be presented in another article. Throughout, we denote the
multiplicative q-Appell polynomials by Φ(n)

M,ν,q(x).

Definition 23. Under the assumption that the function h(t)n can be ex-
pressed analytically in R[[t]], and for fn(t) of the form h(t)n, we call the
q-Appell polynomial Φq in (14) multiplicative.

(124) Eq(xt)h(t)n =

∞∑
ν=0

tν

{ν}q!Φ
(n)
M,ν,q(x), n ∈ Z.

Then we have

Theorem 8.1. If
∑s

l=1 nl = n, n ∈ N,

(125) Φ(n)
M,k,q(x1⊕q . . .⊕qxs) =

∑
m1+...+ms=k

(
k

m1, . . . ,ms

)
q

s∏
j=1

Φ
(nj)
M,mj ,q

(xj),

where we assume that nj operates on xj.

Proof. Compare with [3, 4.242]: In umbral notation we have, like in the
classical case:

(126) (x1 ⊕q . . .⊕q xs ⊕q nqγ)
k ∼ ((x1 ⊕q n1qγ

′)⊕q . . .⊕q (xs ⊕q nsqγ
′′))k,

where γ′, . . . , γ′′ are distinct umbrae, each equivalent to γ. �

9. The q-logarithm. We wish to investigate the existence of a real inverse
for Eq(x).

Theorem 9.1. The function Eq(x), −∞ < x < (1− q)−1 has an inverse.

Proof. It suffices to show that the logarithmic derivative of Eq(x) is > 0.
However, this follows from

(127) D (logEq(x)) =
∞∑

m=0

(1− q)qm

1− x(1− q)qm
> 0, 0 < q < 1.

�
Definition 24. The q-logarithm logq(x) is the inverse function of Eq(x),
−∞ < x < (1− q)−1, 0 < q < 1.

Theorem 9.2. The q-logarithm logq(x) has the following properties (x and
y have small real values, n ∈ N):
(1) Its domain is R+ =]0,∞[, and its range is ]−∞, (1− q)−1[.
(2) It is strictly increasing.
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(3) logq(x)⊕q logq(y)
∼= logq(xy).

(4) logq(x)⊕q logq(x)⊕q · · · ⊕q logq(x)
∼= logq(x

n).

Theorem 9.3 (A q-analogue of [8, p. 293 (13)]).

(128) F
(n)
λ,ν,q(x) = E 1

q
(−x logq(λ))

∞∑
k=0

F(n)NWA,k+ν,q(x)
(logq(λ))

k

{k}q! .

Proof. We equate the generating functions in the following way:

∞∑
ν=0

tνF
(n)
λ,ν,q(x)

{ν}q!

= E1
q
(−x logq(λ))

2n

(Eq(t⊕q logq(λ)) + 1)n
Eq(x(t⊕q logq(λ)))

= E1
q
(−x logq(λ))

∞∑
k=0

F(n)NWA,k,q(x)
(t⊕q logq(λ))

k

{k}q!

= E1
q
(−x logq(λ))

∞∑
k=0

F(n)NWA,k,q(x)
k∑

m=0

tm(logq(λ))
k−m

{k −m}q!{m}q!

= E1
q
(−x logq(λ))

∞∑
m=0

tm

{m}q!
∞∑
k=0

F(n)NWA,k+m,q(x)
(logq(λ))

k

{k}q! .

(129)

�

10. Appendix: multiple q-Appell polynomials. Of course there are
many ways to define multiple q-Appell polynomials; in this paper we con-
centrate on one of the simplest approaches in the spirit of Lee.

Definition 25 (A q-analogue of [7, p. 2135]). For every power series

(130) f(t1, t2) ≡
∞∑

k,l=0

ak,l
tk1t

l
2

{k}q!{l}q! ,

with f(0, 0) �= 0, the multiple q-Appell polynomials Φk,l;q(x) of degree k, l
have the following generating function:

(131) f(t1, t2)Eq(x(t1 ⊕q t2)) =

∞∑
k,l=0

tk1t
l
2

{k}q!{l}q!Φk,l;q(x).

Theorem 10.1 (A q-analogue of [7, p. 2135]). Let {Φk,l;q(x)}∞k,l=0 be a mul-
tiple q-Appell polynomial. Then we have equivalently:

(1) {Φk,l;q(x)}∞k,l=0 is a set of multiple q-Appell polynomials.
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(2) There exists a sequence {Φk,l;q}∞k,l=0 with Φ0,0;q �= 0 such that

(132) Φk,l;q(x) =
k∑

k1=0

l∑
l1=0

(
k

k1

)
q

(
l

l1

)
q

Φk−k1,l−l1,qx
k1+l1 .

(3) Let

(133) Φk,l;α,β;q(x) =

k∑
k1=0

l∑
l1=0

(
k

k1

)
q

(
l

l1

)
q

Φk−k1,l−l1,qx
k1+l1qαk1+βl1 .

Then for each n1 + n2 ≥ 1, we have

(134) DqΦk,l;q(x) = {k}qΦk−1,l;0,1;q(x) + {l}qΦk,l−1;q(x).

(4) There exists a sequence {Φk,l;q}∞k,l=0 with Φ0,0;q �= 0 such that

Φk,l;q(x)

=
k∑

k1=0

l∑
l1=0

(
k

k1

)
q

(
l

l1

)
q

{k + l − k1 − l1}q!
{k + l}q! Φk1,l1;qD

k1+l1
q xk+l.

(135)

Proof. (1)⇒(2). This follows since each t1 and t2 provides a generating
function for a q-Appell polynomial.
(2)⇒(3). By the identity

{k1 + k2}q
(
n1

k1

)
q

(
n2

k2

)
q

= qk2{n1}q
(
n1 − 1

k1 − 1

)
q

(
n2

k2

)
q

+ {n2}q
(
n1

k1

)
q

(
n2 − 1

k2 − 1

)
q

,

k1 ≥ 1, k2 ≥ 1,

(136)

we have

DqΦk,l;q(x) =

k∑
k1=0

l∑
l1=0

{k1 + l1}q
(
k

k1

)
q

(
l

l1

)
q

Φk−k1,l−l1,qx
k1+l1−1

by(136)
=

k∑
k1=0

l∑
l1=0

(
ql1{k}q

(
k − 1

k1 − 1

)
q

(
l

l1

)
q

+ {l}q
(
k

k1

)
q

(
l − 1

l1 − 1

)
q

)
Φk−k1,l−l1,qx

k1+l1−1

= {k}q
k−1∑
k1=0

l∑
l1=0

(
k − 1

k1

)
q

(
l

l1

)
q

Φk−1−k1,l−l1,qx
k1+l1ql1

+ {l}q
k∑

k1=0

l−1∑
l1=0

(
k

k1

)
q

(
l − 1

l1

)
q

Φk−k1,l−1−l1,qx
k1+l1 = RHS.

(137)
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The last statement follows after performing the q-derivation and changing
summation indices. �

11. Discussion. We have discussed six new types of q-Appell polynomials,
and a multiple form, but the trend is clear; there are many advantages with
this general kind of function. This theory is very flexible and ready for gen-
eralizations. In another paper we will prove that the q-Appell polynomials
(and the Appell polynomials as well) form a commutative ring. We hope
that this article will advertise q-Appell polynomials, which are not very
well known; as a coincidence we mention that Paul Appell (1855–1930) was
mathematics teacher of Marie Curie in Paris, they became a very successful
team.
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