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On certain subclasses of analytic functions
associated with the Carlson–Shaffer operator

Abstract. The object of the present paper is to solve Fekete–Szegö prob-
lem and determine the sharp upper bound to the second Hankel determinant
for a certain class Rλ(a, c, A,B) of analytic functions in the unit disk. We
also investigate several majorization properties for functions belonging to a
subclass ˜Rλ(a, c, A,B) of Rλ(a, c, A,B) and related function classes. Rele-
vant connections of the main results obtained here with those given by earlier
workers on the subject are pointed out.

1. Introduction and preliminaries. Let A be the class of functions f
of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Also, let T
denote the subclass of A consisting of functions of the form

(1.2) g(z) = z −
∞∑
n=2

bnz
n (bn ≥ 0).

A function f ∈ A is said to be starlike function of order α and convex
function of order α, respectively, if and only if Re{zf ′(z)/f(z)} > α and
Re{1 + (zf ′′(z)/f ′(z))} > α for 0 ≤ α < 1 and for all z ∈ U. By usual
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notations, we denote these classes of functions by S �(α) and C (α) (0 ≤
α < 1), respectively. We write S �(0) = S � and C (0) = C , the familiar
subclasses of starlike functions and convex functions in U.
Furthermore, a function f ∈ A is said to be in the class R(α), if it
satisfies the inequality:

Re{f ′(z)} > α (0 ≤ α < 1; z ∈ U).

Note thatR(α) is a subclass of close-to-convex functions of order α (0 ≤ α <
1) in U. We write R(0) = R, the familiar class functions whose derivatives
have a positive real part in U.
Let P denote the class of analytic functions of the form

(1.3) φ(z) = 1 + p1z + p2z
2 + · · · (z ∈ U)

such that Re{φ(z)} > 0 in U.
For functions f and g, analytic in the unit disk U, we say the f is said
to be subordinate to g, written as f ≺ g or f(z) ≺ g(z) (z ∈ U), if there
exists an analytic function ω in U with ω(0) = 0, |ω(z)| ≤ |z| (z ∈ U) and
f(z) = g(ω(z)) for all z ∈ U. In particular, if g is univalent in U, then we
have the following equivalence (see [20]):

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Following MacGregor [19], we say that f is majorized by g in U and write

(1.4) f(z)	 g(z) (z ∈ U),

if there exists a function ψ, analytic in U such that |ψ(z)| ≤ 1 and

(1.5) f(z) = ψ(z)g(z) (z ∈ U).

For the functions f and g given by the power series

f(z) =

∞∑
n=0

anz
n, g(z) =

∞∑
n=0

bnz
n (z ∈ U)

their Hadamard product (or convolution), denoted by f � g is defined as

(f � g)(z) =

∞∑
n=0

anbnz
n = (g � f)(z) (z ∈ U).

We note that f � g is analytic in U.
For real or complex parameters a1, a2, . . . , ap and b1, b2, . . . , bq (bj /∈ Z

−
0 =

{. . . ,−2,−1, 0}; j = 1, 2, . . . , q), the generalized hypergeometric function
pFq(a1, a2, . . . ; b1, b2, . . . , bq; z) is defined by the following infinite series (cf.,
e.g., [28]):

(1.6) pFq(a1, a2, . . . ; b1, b2, . . . , bq; z) =

∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (aq)n

zn

n!
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(z ∈ U), where p ≤ q + 1, p, q ∈ N0 = N ∪ {0} = {0, 1, 2, 3, . . .} and (x)n is
the Pochhammer symbol defined, in terms of the Gamma function Γ, by

(x)n =
Γ(x+ n)

Γ(x)
=

{
1, (n = 0, x ∈ C

∗ = C \ {0}),
x(x+ 1) · · · (x+ n− 1), (n ∈ N, x ∈ C).

It is easily seen that the radius of convergence ρ of the function pFq repre-
sented by the series (1.6) is

ρ =

⎧⎪⎨⎪⎩
∞, p < q + 1,

1, p = q + 1,

0, p > q + 1,

so that for p ≤ q + 1, the function pFq is analytic in U.
By making use of the Hadamard product, Carlson–Shaffer [3] defined the
linear operator

L (a, c) : A −→ A

in terms of the incomplete beta function ϕ by

(1.7) L (a, c)f(z) = ϕ(a, c; z) � f(z) (f ∈ A ; z ∈ U),

where

ϕ(a, c; z) =
∞∑
n=0

(a)n
(c)n

zn+1
(
a ∈ C, c ∈ C \ Z−

0 ; z ∈ U
)
.

If f ∈ A is given by (1.1), then it follows from (1.7) that

(1.8) L (a, c)f(z) = z +

∞∑
n=1

(a)n
(c)n

an+1z
n+1 (z ∈ U)

and

(1.9) z (L (a, c)f)′ (z) = aL (a+ 1, c)f(z)− (a− 1)L (a, c)f(z) (z ∈ U).

We note that for f ∈ A
(i) L (a, a)f(z) = f(z);
(ii) L (2, 1)f(z) = zf ′(z);
(iii) L (3, 1)f(z) = zf ′(z) + 1

2z
2f ′′(z);

(iv) L (m+ 1, 1)f(z) = Dmf(z) = z
(1−z)m+1 � f(z) (m ∈ Z;m > −1), the

Ruscheweyh derivative operator [26];
(v) L (2, 2 − μ)f(z) = Ωμ

z f(z) (0 ≤ μ < 1; z ∈ U), the well-known
Owa–Srivastava fractional differential operator [25]. We also observe that
Ω0
zf(z) = f(z) and Ω1

zf(z) = zf ′(z).
With the aid of the linear operator L (a, c), we introduce a subclass of

A as follows:
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Definition 1.1. For the fixed parameters A,B (−1 ≤ B < A ≤ 1), a > 0
and c > 0, a function f ∈ A is said to be in the class Rλ(a, c, A,B), if it
satisfies the following subordination relation:

(1.10) (1−λ)
L (a, c)f(z)

z
+λ

L (a+ 1, c)f(z)

z
≺ 1 +Az

1 +Bz
(λ ≥ 0; z ∈ U).

Using the identity (1.9) in (1.10), it follows that(
1− λ

a

)
L (a, c)f(z)

z
+

λ

a
(L (a, c)f)′ (z) ≺ 1 +Az

1 +Bz
(λ ≥ 0; z ∈ U).

By suitably specializing the parameters a, c, λ,A and B, we obtain the fol-
lowing subclasses of A .

(i) R0(a, c, 1− 2α,−1) = Ra,c(α)

=

{
f ∈ A : Re

(
L (a, c)f(z)

z

)
> α, 0 ≤ α < 1; z ∈ U

}
.

(ii) R2(2, 2− μ, β(1− 2α),−β) = R(μ, α, β)

=

{
f ∈ A :

∣∣∣∣∣ (Ωμ
z f)

′
(z)− 1

(Ωμ
z f)

′
(z) + 1− 2α

∣∣∣∣∣ < β, 0 ≤ α < 1, 0 < β ≤ 1,

0 ≤ μ < 1; z ∈ U

}
.

We note that R(0, α, β) = R(α, β) (0 ≤ α < 1, 0 < β ≤ 1), the class studied
by Juneja and Mogra [10], which in turn give the class considered in [2] for
β = 1.

(iii) Rλ(m+ 1, 1, 1− 2α,−1) = Rλ
m(α)

=

{
f ∈ A : Re

(
(1− λ)

Dmf(z)

z
+ λ

Dm+1f(z)

z

)
> α,m ∈ N0,

0 ≤ α < 1; z ∈ U

}
.

(iv) Rλ(2, 1, 1− 2α,−1) = Rλ(α)

=

{
f ∈ A : Re

(
f ′(z) +

λ

2
zf ′′(z)

)
> α, 0 ≤ λ, 0 ≤ α < 1; z ∈ U

}
.

Next, we define a subclass of T as follows:

Definition 1.2. For the fixed parameters A,B (−1 ≤ B < A ≤ 1, 1 ≤
B < 0), a > 0 and c > 0, a function f ∈ T is said to be in the class
R̃λ(a, c, A,B), if it satisfies the following subordination relation:

(1.11) (1− λ)
L (a, c)f(z)

z
+ λ

L (a+ 1, c)f(z)

z
≺ 1 +Az

1 +Bz

(λ ∈ C, Re(λ) ≥ 0; z ∈ U).
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In view of (1.9), it is easily seen that the subordination relation (1.11) is
equivalent to

L (a, c)f(z)

z
+

λ

a
z

(
L (a, c)f(z)

z

)′
≺ 1 +Az

1 +Bz
(z ∈ U).

If we set h(z) = L (a, c)f(z)/z, then the above expression further reduces
to

h(z) +
λ

a
zh′(z) ≺ 1 +Az

1 +Bz
(λ ∈ C,Re(λ) ≥ 0; z ∈ U).

We write

R̃λ(1, 1, 1− 2α,−1) = R̃λ(α)

=

{
f ∈ T : Re

(
f(z)

z
+ λz

(
f(z)

z

)′)
> α, z ∈ U

}
(λ ∈ C, Re(λ) ≥ 0, 0 ≤ α < 1).
Noonan and Thomas [23] defined the q-th Hankel determinant of the
function f ∈ A given by (1.1) as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣
(a1 = 1;n, q ∈ N).

This determinant has been studied by several authors with the subject of
inquiry ranging from the rate of growth of Hq(n) (as n → ∞) [24] to the
determination of precise bounds with specific values of n and q for certain
subclasses of analytic functions in the unit disc U.
For n = 1, q = 2 = 1 and n = q = 2, the Hankel determinant simplifies to

H2(1) = |a3 − a22| and H2(2) = |a2a4 − a23|.
We refer to H2(2) as the second Hankel determinant. It is known [4] that
if f given by (1.1) is analytic and univalent in U, then the sharp inequality
H2(1) = |a3 − a22| ≤ 1 holds. For a family F of functions in A of the
form (1.1), the more general problem of finding the sharp upper bounds for
the functionals |a3 − μa22| (μ ∈ R/C) is popularly known as Fekete–Szegö
problem for the classF . The Fekete–Szegö problem for the known classes of
univalent functions, that is, starlike functions, convex functions and close-
to-convex functions has been completely settled [5, 11, 12, 13]. Recently,
Janteng et al. [8, 9] have obtained the sharp upper bounds to the second
Hankel determinant H2(2) for the family R. For initial work on the class
R, one may refer to the paper by MacGregor [17].
A majorization properties for the class of starlike functions of complex
order γ and the class of convex functions of complex order γ (γ ∈ C

∗) has
been investigated by Altintaş et al. [1] and MacGregor [19] has also studied
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the same problem for the classes S � and C , respectively. Recently, Goyal
and Goswami [6], and Goyal et al. [7] generalized these results for different
function classes.
In the present article, by following the techniques devised by Libera and
Złotkiewicz [14, 15], we solve the Fekete–Szegö problem and also deter-
mine the sharp upper bound to the second Hankel determinant for the class
Rλ(a, c, A,B). We also investigate several majorization properties for cer-
tain subclasses of analytic functions in the unit disk U. Relevant connections
of the results presented here with those obtained in earlier works are also
mentioned.
To establish our main results, we shall need the following lemmas.

Lemma 1.1 ([4]). Let the function φ, given by (1.3) be a member of the
class P. Then

|pk| ≤ 2 (k ≥ 1)

and the estimate is sharp for the function φ(z) = (1 + z)/(1− z), z ∈ U.

Lemma 1.2 ([16]). If the function φ, given by (1.3) belongs to the class P,
then for any γ ∈ C ∣∣p2 − γ p21

∣∣ ≤ 2max{1, |2γ − 1|}
and the result is sharp for the functions given by

φ(z) =
1 + z2

1− z2
and φ(z) =

1 + z

1− z
(z ∈ U).

Lemma 1.3 ([15], see also [14]). If the function φ, given by (1.3) belongs
to the class P, then

p2 =
1

2

{
p21 + (4− p21)x

}
and

p3 =
1

4

{
p31 + 2(4− p21)p1x− (4− p21)p1x

2 + 2(4− p21)(1− |x|2)z
}

for some complex numbers x, z satisfying |x| ≤ 1 and |z| ≤ 1.

2. Hankel determinant for the class Rλ(a, c, A,B). Unless otherwise
mentioned, we assume throughout the sequel that

a > 0, c > 0, λ ≥ 0 and − 1 ≤ B < A ≤ 1.

Now, we determine the sharp upper bound for the functional |a3 − γa22|
(γ ∈ R) for functions belonging to the class Rλ(a, c, A,B).
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Theorem 2.1. If γ ∈ R and the function f , given by (1.1) belongs to the
class Rλ(a, c, A,B), then

(2.1)
∣∣a3 − γa22

∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩
− (c)2(A−B)

(a+1)(a+2λ)

{
B + (a+1)(a+2λ)c(A−B)γ

(a+λ)2(c+1)

}
, γ < ρ1,

(c)2(A−B)
(a+1)(a+2λ) , ρ1 ≤ γ ≤ ρ2,
(c)2(A−B)

(a+1)(a+2λ)

{
B + (a+1)(a+2λ)c(A−B)γ

(a+λ)2(c+1)

}
, γ > ρ2,

where

ρ1 = − (1 +B)(a+ λ)2(c+ 1)

(a+ 1)(a+ 2λ)c(A−B)
and ρ2 =

(1−B)(a+ λ)2(c+ 1)

(a+ 1)(a+ 2λ)c(A−B)
.

The estimate in (2.1) is sharp.

Proof. From (1.10), we have

(2.2) (1− λ)
L (a, c)f(z)

z
+ λ

L (a+ 1, c)f(z)

z
=

1−A+ (1 +A)φ(z)

1−B + (1 +B)φ(z)

(z ∈ U), where the function φ, given by (1.3) belongs to the classP. Writing
the series expansion of L (a, c)f(z)/z,L (a+ 1, c)f(z), φ(z) from (1.8) and
(1.3) in (2.2), and comparing the like powers of z in the resulting equation,
we deduce that

a2 =
c(A−B)

2(a+ λ)
p1(2.3)

a3 =
c(c+ 1)(A−B)

2(a+ 1)(a+ 2λ)

{
p2 − 1

2
(1 +B)p21

}
(2.4)

and

a4 =
c(c+ 1)(c+ 2)(A−B)

2(a+ 1)(a+ 2)(a+ 3)

{
p3 − (1 +B)p1p2 +

1

4
(1 +B)2p31

}
.(2.5)

Using (2.3) and (2.4), we obtain∣∣a3 − γa22
∣∣ = (c)2(A−B)

(a+ 1)(a+ 2λ)

∣∣∣∣p2 −{
(a+ 1)(a+ 2λ)c(A−B)

2(a+ λ)2(c+ 1)
γ +B + 1

}
p21

∣∣∣∣
and with the aid of Lemma 1.2, the above expression yields

(2.6)

∣∣a3 − γa22
∣∣

≤ 2(c)2(A−B)

(a+ 1)(a+ 2λ)
max

{
1,

∣∣∣∣(a+ 1)(a+ 2λ)c(A−B)

(a+ λ)2(c+ 1)
γ +B

∣∣∣∣} .

If γ < ρ1, then

(a+ 1)(a+ 2λ)c(A−B)

(a+ λ)2(c+ 1)
γ +B < −1,



72 J. Patel and A. K. Sahoo

which in view of (2.6) implies the first case of the estimate in (2.1). In the
case ρ1 ≤ γ ≤ ρ2, we obtain∣∣∣∣(a+ 1)(a+ 2λ)c(A−B)

(a+ λ)2(c+ 1)
γ +B

∣∣∣∣ ≤ 1.

Thus, from (2.6), we get the second case of the estimate in (2.1). Finally,
for γ > ρ2, we deduce that∣∣∣∣(a+ 1)(a+ 2λ)c(A−B)

(a+ λ)2(c+ 1)
γ +B

∣∣∣∣ > 1,

which again with the aid of (2.6) gives the third case of the estimate in
(2.1).
It is easily seen that the estimate for the first and third cases in (2.1) are
sharp for the function f , defined in U by

f(z) =

{
ϕ(c, a; z) � z(1+Az)

1+Bz , λ = 0,

z 3F2

(
1, aλ , c; a, 1 +

a
λ ; z

)
� z(1+Az)

1+Bz , λ > 0.

The estimate for the second case in (2.1) is sharp for the function f , defined
in U by

(2.7) f(z) =

{
ϕ(c, a; z) � z(1+Az2)

1+Bz2
, λ = 0,

z 3F2

(
1, aλ , c; a, 1 +

a
λ ; z

)
� z(1+Az2)

1+Bz2
, λ > 0,

where the function 3F2 is defined by (1.6). �
Setting a = 2, c = 2−μ (0 ≤ μ < 1), A = β(1−2α), B = −β (0 ≤ α < 1,

0 < β ≤ 1) and λ = 2 in Theorem 2.1, we obtain the following result.

Corollary 2.1. If γ ∈ R and the function f , given by (1.1) belongs to the
class R(μ, α, β), then

∣∣a3 − γa22
∣∣ ≤

⎧⎪⎪⎨⎪⎪⎩
β(1−α)(2−μ)(3−μ)

9

{
β − 9β(1−α)(2−μ)γ

4(3−μ)

}
, γ < σ1,

β(1−α)(2−μ)(3−μ)
9 , σ1 ≤ γ ≤ σ2,

β(1−α)(2−μ)(3−μ)
9

{
9β(1−α)(2−μ)γ

4(3−μ) − β
}
, γ > σ2,

where

σ1 = − 4(1 + β)(3− μ)

9β(1− α)(2− μ)
and σ2 =

4(1− β)(3− μ)

9β(1− α)(2− μ)
.

The estimate is sharp for the functions f , defined in U by

f(z) = z 3F2(1, 1, 2− μ; 2, 2; z) �
z{1 + β(1− 2α)z}

1− βz

and

f(z) = z 3F2(1, 1, 2− μ; 2, 2; z) �
z{1 + β(1− 2α)z2}

1− βz2
.
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Letting a = 2, c = 1, A = 1− 2α (0 ≤ α < 1) and B = −1 in Theorem 1,
we get

Corollary 2.2. If γ ∈ R and the function f , given by (1.1) belongs to the
class Rλ(α), then

∣∣a3 − γa22
∣∣ ≤

⎧⎪⎪⎨⎪⎪⎩
2(1−α)
3(1+λ)

{
1− 6(1+λ)(1−α)γ

(2+λ)2

}
, γ < 0,

2(1−α)
3(1+λ) , 0 ≤ γ ≤ (2+λ)2

3(1+λ)(1−α) ,
2(1−α)
3(1+λ)

{
6(1+λ)(1−α)γ

(2+λ)2
− 1

}
, γ > (2+λ)2

3(1+λ)(1−α) .

The estimate is sharp for the functions f , defined in U by

f(z) =

{
ϕ(1, 2; z) � z{1+(1−2α)z}

1−z , λ = 0,

z 3F2(1, 1, 2− μ; 2, 2; z) � z{1+(1−2α)z}
1−z , λ > 0

and

f(z) =

{
ϕ(1, 2; z) � z{1+(1−2α)z}

1−z , λ = 0,

z 3F2(1, 1, 2− μ; 2, 2; z) � z{1+(1−2α)z2}
1−z2

, λ > 0.

In the following theorem, we find the sharp upper bound to the second
Hankel determinant for the class Rλ(a, c, A,B).

Theorem 2.2. Let a ≥ c > 0, λ ≥ 0,−1 ≤ B < A ≤ 1 and

(2.8) 2(1+|B|)(a+2)(c+1)(a+λ)(a+3λ) ≥ (1+2|B|)(a+1)(c+2)(a+2λ)2.

If the function f , given by (1.1) belongs to the class Rλ(a, c, A,B), then

(2.9)
∣∣a2a4 − a23

∣∣ ≤ (c)22(A−B)2

(a+ 1)2(a+ 2λ)2
.

The estimate in (2.9) is sharp.

Proof. Assuming that f , given by (1.1) belongs to the class Rλ(a, c, A,B)
and using (2.3), (2.4) and (2.5), we deduce that

(2.10)

∣∣a2a4 − a23
∣∣ = c2(c+ 1)(A−B)2

4(a+ 1)(a+ λ)(a+ 3λ)

×
∣∣∣∣K1p1p3 − (1 +B)(K1 −K2)p

2
1p2 +

(1 +B)2(K1 −K2)

4
p41

∣∣∣∣ ,
where

K1 =
c+ 2

a+ 2
and K2 =

(c+ 1)(a+ λ)(a+ 3λ)

(a+ 1)(a+ 2λ)2
.

Since the functions φ(z) and φ(eiθz) (θ ∈ R), defined by (1.3) are in the
class P simultaneously, we assume without loss of generality that p1 > 0.
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For convenience, we write p1 = p (0 ≤ p ≤ 2). Now, by using Lemma 1.3 in
(2.10), we get

|a2a4 − a23|

=
c2(c+ 1)(A−B)2

4(a+ 1)(a+ λ)(a+ 3λ)

∣∣∣∣{K1

4
p4 +

K1

2
(4− p2)p2x

− K1

4
(4− p2)p2x2 +

K1

2
(4− p2)p(1− |x|2)z

}
−

{
(1 +B)(K1 −K2)

2
p4 +

(1 +B)(K1 −K2)

2
(4− p2)p2

}
−

{
K2

4
p4 +

K2

2
(4− p2)p2x+

K2

4
(4− p2)2x2

}(2.11)

+
(1 +B)2(K1 −K2)

4
p4
∣∣∣∣

=
c2(c+ 1)(A−B)2

4(a+ 1)(a+ λ)(a+ 3λ)

∣∣∣∣B2(K1 −K2)

4
p4 − B(K1 −K2)

2
(4− p2)p2x

− 1

4
(4− p2)

{
K1p

2 +K2(4− p2)
}
x2 +

K1

2
(4− p2)p(1− |x|2)z

∣∣∣∣
for some complex numbers x (|x| ≤ 1) and z (|z| ≤ 1). Applying the triangle
inequality in (2.11) and upon replacing |x| by y in the resulting expression,
we get

(2.12)

∣∣a2a4 − a23
∣∣ ≤ c2(c+ 1)(A−B)2

4(a+ 1)(a+ λ)(a+ 3λ)

{ |B|2(K1 −K2)

4
p4

+
|B|(K1 −K2)

2
(4− p2)p2y

+
1

4
(4− p2)

{
K1p

2 +K2(4− p2)− 2K1p
}
y2

+
K1

2
(4− p2)p

}
=: G(p, y)

(0 ≤ p ≤ 2, 0 ≤ y ≤ 1). We next maximize the function G(p, y) on the
closed rectangle [0, 2]× [0, 1]. Since

2K2 > K1 > K2 > 0,

we have

∂G
∂y

=
c2(c+ 1)(A−B)2

8(a+ 1)(a+ λ)(a+ 3λ)
(4− p2)

× [
(K1 −K2)|B|p2 + (2− p) {(2 + p)K2 −K1p} y

]
> 0
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for 0 < p < 2 and 0 < y < 1. Thus, G(p, y) cannot have a maximum in the
interior on the closed rectangle [0, 2]× [0, 1]. Therefore, for fixed p ∈ [0, 2]

max
0≤y≤1

G(p, y) = G(p, 1) =: F(p),

where

F(p) = c2(c+ 1)(A−B)2

8(a+ 1)(a+ λ)(a+ 3λ)

[ |B|2(K1 −K2)

4
p4

+
|B|(K1 −K2)

2
(4− p2)p2 +

1

4
(4− p2)

{
K1p

2 +K2(4− p2)
}]

.

A routine calculation yields

F ′(p) = p
{
(|B|2 − 2|B| − 1)(K1 −K2)p

2 + 2(1 + 2|B|)K1 − 4(1 + |B|)K2

}
.

Thus, F ′(p) = 0 implies that either p = 0 or

p2 = −2 {2(1 + |B|)K2 − (1 + 2|B|)K1}
{2− (1− |B|2)}(K1 −K2)} < 0,

which is not true. We, further observe that

F ′′(0) = 2 {(1 + 2|B|)K1 − 2(1 + |B|)K2} < 0

by (2.8). Since F(2) < F(0), max0≤p≤2F(p) occurs at p = 0. Thus, the
upper bound of (2.12) corresponds to p = 0 and y = 1, from which we get
the estimate in (2.9).
It is easily seen that the estimate (2.9) is sharp for the function f , given
by (2.7) and thus the proof of Theorem 2.2 is completed. �

Setting λ = 0, A = 1− 2α (0 ≤ α < 1) and B = −1 in Theorem 2.2, we
get the following result obtained by Mishra and Kund [21].

Corollary 2.3. If a ≥ c > 0, ac−2a+5c+2 ≥ 0 and the function f , given
by (1.1) belongs to the class Ra,c(α), then∣∣a2a4 − a23

∣∣ ≤ {
2(c)2(1− α)

(a)2

}2

.

The estimate is sharp for the function f , defined by

f(z) = ϕ(c, a; z) �
z{1 + (1− 2α)z2}

1− z2
(0 ≤ α < 1; z ∈ U).

Letting a = 2, c = 2 − μ, A = β(1 − 2α), B = −β and λ = 2 in
Theorem 2.2, we obtain

Corollary 2.4. If the function f , given by (1.1) belongs to the classR(μ, α, β),
then∣∣a2a4 − a23

∣∣ ≤ {β(1− α)(2− μ)(3− μ)}2
9

(0 ≤ μ < 1, 0 ≤ α < 1, 0 < β ≤ 1)
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and the estimate is sharp for the function f , defined by

f(z) = z 3F2(1, 1, 2− μ; 2, 2; z) �
z{1 + β(1− 2α)z2}

1− βz2
(z ∈ U).

Taking a = 2, c = 1, A = 1− 2α and B = −1 in Theorem 2.2, we get the
following result, which in turn yields the corresponding work of Mishra and
Kund [21] for λ = 0, and the work of Janteng et al. [8] for λ = α = 0.

Corollary 2.5. If the function f , given by (1.1) belongs to the class Rλ(α),
then ∣∣a2a4 − a23

∣∣ ≤ 4(1− α)2

9(1 + λ)2

(
0 ≤ α < 1, 0 ≤ λ ≤ 5 + 2

√
10

3

)
and the estimate is sharp for the function f , defined in U by

f(z) =

{
ϕ(1, 2; z) � z{1+(1−2α)z2}

1−z2
, λ = 0

z 3F2

(
1, 1, 2

λ ; 2, 1 +
2
λ ; z

)
� z{1+(1−2α)z2}

1−z2
, λ > 0.

3. Majorization properties. We prove the following lemmas, which will
be used in our investigation of majorization properties for the class
R̃λ(a, c, A,B).

Lemma 3.1. If a ≥ c > 0 and the function g, given by (1.2) belongs to the
class R̃λ(a, c, A,B), then

(3.1)
∞∑
n=1

bn+1 ≤ c(A−B)

{a+ Re(λ)}(1−B)
.

Proof. It follows from (1.11) that

Re
{
(1− λ)

L (a, c)f(z)

z
+ λ

L (a+ 1, c)f(z)

z

}
>

1−A

1−B
(z ∈ U)

which upon substituting the series expansion of L (a, c)f(z)/z and
L (a+ 1, c)f(z)/ gives

Re

{
1−

∞∑
n=1

(a)n
(c)n

(
1 +

λn

a

)
bn+1z

n

}
>

1−A

1−B
(z ∈ U).

Letting z → 1− through real values in the above expression, we find that

1−
∞∑
n=1

(a)n
(c)n

{
1 +
Re(λ)n

a

}
bn+1 >

1−A

1−B
.

Since a ≥ c > 0, bn+1 ≥ 0 and Re(λ) ≥ 0, the above inequality implies that

a

c

{
1 +
Re(λ)

a

} ∞∑
n=1

bn+1 ≤
∞∑
n=1

(a)n
(c)n

{
1 +
Re(λ)n

a

}
bn+1 ≤ A−B

1−B
.

This completes the proof of Lemma 3.1. �
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Lemma 3.2. Under the hypothesis of Lemma 3.1, we have for |z| = r < 1

(3.2)
1− c(A−B)r

{a+ Re(λ)}(1−B)
≤ Re

(
g(z)

z

)
≤

∣∣∣∣g(z)z

∣∣∣∣ ≤ 1− c(A−B)r

{a+ Re(λ)}(1−B)
.

Proof. Since ∣∣∣∣g(z)z

∣∣∣∣ ≤ 1 +

( ∞∑
n=1

bn+1

)
|z| (z ∈ U),

Lemma 3.1 leads to∣∣∣∣g(z)z

∣∣∣∣ ≤ 1 +
c(A−B)r

{a+ Re(λ)}(1−B)
(|z| = r < 1).

Similarly, we have

Re
(
g(z)

z

)
= 1− Re

( ∞∑
n=1

bn+1z
n

)
≥ 1−

∣∣∣∣∣
∞∑
n=1

bn+1z
n

∣∣∣∣∣
≥ 1−

( ∞∑
n=1

bn+1

)
|z| ≥ 1− c(A−B)r

{a+ Re(λ)}(1−B)
(|z| = r < 1)

and the proof of Lemma 3.2 is completed. �
Now, we prove

Theorem 3.1. Let the function g be in the class T . If a ≥ c > 0, the
function h ∈ T satisfies

(3.3)
z2 (L (a, c)h)′ (z)

L (a, c)h(z)
∈ R̃λ(a, c, A,B)

and L (a, c)g 	 L (a, c)h in U, then

(3.4)
∣∣(L (a, c)g)′ (z)

∣∣ ≤ ∣∣(L (a, c)h)′ (z)
∣∣ (|z| ≤ r(λ, a, c, A,B)),

where r(λ, a, c, A,B) is the root of the cubic equation

(3.5)

c(A−B)r3 − {a+ Re(λ)}(1−B)r2

− [2{a+ Re(λ)}(1−B) + c(A−B)] r

+ {a+ Re(λ)}(1−B) = 0

in (0, 1).

Proof. From (3.3), by using Lemma 3.2, we get for |z| = r < 1

(3.6) |L(a, c)h(z)| ≤ {a+ Re(λ)}(1−B)r

{a+ Re(λ)}(1−B)− c(A−B)r

∣∣(L(a, c)h)′ (z)∣∣ .
Since L (a, c)g(z)	 L (a, c)h(z) in U, we have by (1.5)

L (a, c)g(z) = ψ(z)L (a, c)h(z) (z ∈ U),
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where the function ψ is analytic in U and satisfies |ψ(z)| ≤ 1 in U, so that

(3.7) (L (a, c)g)′ (z) = ψ(z) (L (a, c)h)′ (z) + ψ′(z)L (a, c)h(z) (z ∈ U).

Using the following estimate [22]

(3.8)
∣∣ψ′(z)

∣∣ ≤ 1− |ψ(z)|2
1− |z|2 (z ∈ U)

followed by (3.6) in (3.7), we obtain∣∣(L (a, c)g)′ (z)
∣∣

≤
[
|ψ(z) + 1− |ψ(z)|2

1− |z|2
{a+ Re(λ)}(1−B)r

{a+ Re(λ)}(1−B)− c(A−B)r

] ∣∣(L (a, c)h)′ (z)
∣∣

which upon setting |ψ(z)| = x (0 ≤ x ≤ 1) yields the inequality

(3.9)

∣∣(L (a, c)g)′ (z)
∣∣

≤
{

Ψ(x)

(1− r2) {(a+ Re(λ))(1−B)− c(A−B)r}
} ∣∣(L (a, c)h)′ (z)

∣∣ ,
where

Ψ(x) = {a+ Re(λ)}(1−B)rx2

+ (1− r2) [{a+ Re(λ)}(1−B)− c(A−B)r]x

+ {a+ Re(λ)}(1−B)r.

The function Ψ attains its maximum value at x = 1 with r = r(λ, a, c, A,B),
the root of the equation (3.5) contained in (0, 1). Furthermore, if 0 ≤ y ≤
r(λ, a, c, A,B), then the function

Θ(x) = − {a+ Re(λ)}(1−B)yx2

+ (1− y2) [{a+ Re(λ)}(1−B)− c(A−B)y]x

+ {a+ Re(λ)}(1−B)y

increases in the interval 0 ≤ x ≤ 1, so that

Θ(x) ≤ Θ(1) = (1− y2) [{a+ Re(λ)}(1−B)− c(A−B)y] .

Thus, by substituting x = 1 in (3.9), we conclude that the inequality in
(3.4) holds true for |z| ≤ r(λ, a, c, A,B), where r(λ, a, c, A,B) is given by
(3.5). This completes the proof of Theorem 3.1. �

For a = c = 1, A = 1− 2α (0 ≤ α < 1) and B = −1, Theorem 3.1 gives
the following result.

Corollary 3.1. If the function g ∈ T and g 	 h in U, where z2h′(z)/h(z) ∈
R̃λ(α), then ∣∣g′(z)∣∣ ≤ ∣∣h′(z)∣∣ (|z| ≤ r(λ, α)),
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where r(λ, α) is the root of the cubic equation

(1− α)r3 − {1 + Re(λ)}r2 − {3− α+ 2Re(λ)}r + 1 + Re(λ) = 0

in (0, 1).

In the special case λ = 0, Corollary 3.1 simplifies to the following result.

Corollary 3.2. Let the function g be in the class T . If the function h ∈
S �(α) ∩T and g 	 h in U, then∣∣g′(z)∣∣ ≤ ∣∣h′(z)∣∣ (|z| ≤ r(α)),

where r(α) is the root of the cubic equation (1−α)r3− r2− (3−α)r+1 = 0
in (0, 1).

With the aid of the following inclusion relation [27, Theorem 7]

C (α) ∩T ⊂ S �

(
2

3− α

)
∩T (0 ≤ α < 1),

we get the following result from Corollary 3.2.

Corollary 3.3. Let the function g be in the class T . If the function h ∈
C (α) ∩T and g 	 h in U, then∣∣g′(z)∣∣ ≤ ∣∣h′(z)∣∣ (|z| ≤ r̃(α)),

where r̃(α) is the root of the cubic equation (1 − α)r3 − (3 − α)r2 − (7 −
3α)r + (3− α) = 0 in (0, 1).

Finally, we prove

Theorem 3.2. Let the function f be in the class A . If the function g ∈ A
satisfies the subordination condition:

(3.10)
z (L (a, c)g)′ (z)

L (a, c)g(z)
≺ 1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U)

and L (a, c)f 	 L (a, c)g in U, then

(3.11) |L (a+ 1, c)f(z)| ≤ |L (a+ 1, c)f(z)| (|z| ≤ r(a,A,B)),

where r(a,A,B) is the root of the cubic equation

(3.12) |A+ (a− 1)B|r3 − (a+ 2|B|)r2 − (|A+ (a− 1)B|+ 2)r + a = 0

in (0, 1).

Proof. From the definition of subordination, it follows from (3.10) that

(3.13)
z (L (a, c)g)′ (z)

L (a, c)g(z)
=

1 +Aω(z)

1 +Bω(z)
(z ∈ U),
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where ω is analytic in U with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U. Now,
making use of the the identity (1.9) for the function g in (3.13), we deduce
that

(3.14)
|L (a, c)g(z)| ≤ a(1 + |B||ω(z)|)

a− |A+ (a− 1)B||ω(z)| |L (a+ 1, c)g(z)|

≤ a(1 + |B||z|)
a− |A+ (a− 1)B||z|) |L (a+ 1, c)g(z)| (z ∈ U).

Since L (a, c)f is majorized by L (a, c)g in U, we have

L (a, c)f(z) = ψ(z)L (a, c)g(z) (z ∈ U),

where ψ is analytic in U and satisfies |ψ(z)| ≤ 1 in U. Differentiating the
above expression with respect to z, using the identity (1.9) for both the
functions f and g in the resulting equation, we obtain

(3.15) a L (a+ 1, c)f(z) = a ψ(z)L (a+ 1, c)g(z) + zψ′(z)L (a, c)g(z)

(z ∈ U). Using the estimate (3.8) and (3.14) in (3.15), we get

|L (a+ 1, c)f(z)|

≤
{
|ψ(z)|+ 1− |ψ(z)|2

1− |z|2
(1 + |B||z|)|z|

a− |A+ (a− 1)B||z|
}
|L (a+ 1, c)g(z)|

which upon setting |z| = r and |ψ(z)| = x (0 ≤ x ≤ 1) yields the inequality

|L (a+ 1, c)f(z)| ≤
[

Ψ(x)

(1− r2){a− |A+ (a− 1)B|r}
]
|L (a+ 1, c)g(z)| ,

where

Ψ(x) = −r(1 + |B|r)x2 + (1− r2){a− |A+ (a− 1)B|r}x+ (1 + |B|r)r
which takes on its maximum value at x = 1 with r = r(a,A,B), where
r(a,A,B) is the root of the equation (3.12) in (0, 1).
The remaining part of the proof of Theorem 3.2 is much akin to that of
Theorem 3.1, and so we omit the details. �
Letting a = c = 1, A = β(1− 2α) and B = −β in Theorem 3.2, we get
Corollary 3.4. Let the function f be in the class A . If the function g ∈ A
satisfies∣∣∣∣ zg′(z)/g(z)− 1

zg′(z)/g(z) + 1− 2α

∣∣∣∣ < β (0 ≤ α < 1, 0 < β ≤ 1; z ∈ U)

and f 	 g in U, then

|f ′(z)| ≤ |g′(z)| (|z| ≤ r(α, β)),

where

r(α, β) =

{
3+β|1−2α|−

√
β2|1−2α|2+2β|1−2α|+9

2β|1−2α| , α �= 1
2 ,

1
3 , α = 1

2 .
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Using the following best possible inclusion relationship [18]

C (α) ⊂ S � (κ(α)) ,

where

(3.16) κ(α) =

{
1−2α

22(1−α)(1−22α−1)
, α �= 1

2 ,
1

2 ln 2 , α = 1
2 ,

and taking β = 1 in Corollary 3.4, we obtain

Corollary 3.5. Let the function f be in the class A . If the function g ∈
C (α) and f 	 g in U, then

|f ′(z)| ≤ |g′(z)| (|z| ≤ r(κ(α)),

where

r(κ(α)) =

{
3+|1−2κ(α)|−

√
|1−2κ(α)|2+2|1−2κ(α)|+9

2|1−2κ(α)| , κ(α) �= 1
2 ,

1
3 , κ(α) = 1

2

and κ(α) is given by (3.16).

Remark. (i) For the choice β = 1 in Corollary 3.4, we get the result due to
Altintaş et al. [1, Theorem 1], which in turn yields the corresponding work
of MacGregor [19, Theorem 1B] for α = 0.
(ii) Corollary 3.5 improves the corresponding result obtained by Altintaş
et al. [1, Theorem 2].
(iii) For the case α = 0, Corollary 3.5 yields a result due to MacGregor
[19, Theorem 1C].

Acknowledgement. The authors would like to thank the referee(s) for the
suggestions/comments which improved the presentation of the paper.
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