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Abstract. In recent ten years, there has been much concentration and in-
creased research activities on Hamilton’s Ricci flow evolving on a Riemann-
ian metric and Perelman’s functional. In this paper, we extend Perelman’s
functional approach to include logarithmic curvature corrections induced by
quantum effects. Many interesting consequences are revealed.

During the last decades, there has been more attention focused on the
Ricci flow which was introduced in 1982 by Hamilton [19, 20, 21] and ex-
tended later by Perelman [28, 26, 27]. In fact, the Ricci flow is a system
of the 2nd order nonlinear weakly parabolic partial differential equations
(PDEs) on the metric which can be viewed as a nonlinear heat equation of
a metric and contains at most the second derivative of the metric which led
Perelman to the proof of the famous Thurston’s geometrization conjecture
[29]. In fact, Ricci flow plays a crucial role in string theory [5] as it describes
the flow energy effective action. Besides, the Ricci flow plays a significant
role in the thermodynamics of black holes [22] which is one of the most im-
portant objects in string theory. Strings, higher order curvature and black
holes have been found to be inextricably knotted [25]. In string theory, there
are higher curvature corrections in addition to the Einstein–Hilbert term.
Different forms of curvature corrections may be added [6], nevertheless, a
logarithmic correction of the form may be induced by quantum effects and
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this is quite interesting. It is thus natural to extend the Perelman’s func-
tionals to include logarithmic correction of the Ricci scalar and discuss their
main properties. It is noteworthy that one of the most motivating questions
in quantum gravity concerns the topological change due to quantum effects,
a consequence recognized as quantum foam [7, 8, 9, 16, 1]. Topological
change in general is an important topic in differential topology with surgery
and mainly Ricci flow. This will be the main topic discussed in this paper.
We start by introducing the following definition.

Definition 1. Let M denote an infinite-dimensional manifold with smooth
Riemannian metrics g and smooth metric tensor gij evolving in a Riemann-
ian closed manifold M . The tangent space T gM consists of the sym-
metric covariant 2-tensors νij ∈ T gM on M . The extended functional
F : M× C∞(M)→ R is given by:

(1) F[f, gij ] :=

∫
M

e−f
[
|∇f |2 +R+ a lnR

]
dV,

where f : M → R and a should be chosen so as to have proper dimensions.

Theorem 1. We have

(2)

δF[f, g] =

∫
M

e−f
[
−νij

((
1− a

R

)
Rij+

(
1− a

R

)
∇i∇jf+

a

R
∇if∇jf

)
+
(ν

2
− h
)(

2∆f − |∇f |2 − 2a

R

(
∆f − |∇f |2

)
+R

)]
dV.

Proof. We follow the arguments of [24]. Let h = δf , ν = gijνij , δ(dV ) =
νdV/2 where dV =

√
det g

∏n
i=1 dxi, then the following equalities hold:

(3) δR = −∆ν +∇i∇jνij −Rijνij ,

(4) δ
(
e−f
)
dV =

(ν
2
− h
)
e−fdV,

(5) δ|∇f |2 = −νij∇if∇jf + 2〈∇f,∇h〉,

(6) δ(lnR) = − 1

R
δR = − 1

R
(−∆ν +∇i∇jνij −Rijνij) ,

(7) ∆e−f =
(
|∇f |2 −∆f

)
e−f ,

(8)
∫
M

e−f (−∆ν)dV =

∫
M

e−f
(
∆f − |∇f |2

)
νdV,

(9)
∫
M

e−f∇i∇jνijdV =

∫
M

e−f (∇if∇jf −∇i∇jf)νijdV,
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(10) 2

∫
M

e−f 〈∇f,∇h〉dV = 2

∫
M

e−f
(
|∇f |2 −∆f

)
hdV.

Making use of equalities (3)–(10), we obtain the required result. �

Remark 1. When a = 0, equality (2) is reduced to the Perelman’s main
result [28].

By fixing a measure dm = e−fdV which should be constant in time and
taking ν = 2h, we obtain

(11) δF[ν]=

∫
M

[
−νij

((
1− a

R

)
Rij+

(
1− a

R

)
∇i∇jf +

a

R
∇if∇jf

)]
dm,

and the gradient flow is

(12)
∂gij
∂t

= −2
((

1− a
R

)
Rij+

(
1− a

R

)
D2f +

a

R
(Df)2

)
,

where D , ∇i.

Corollary 1. f evolves according to the following modified heat equation:

(13)
∂f

∂t
= −

(
1− a

R

)
R−

(
1− a

R

)
∆f − a

R
(∇f)2.

Proof. Making use of the fact that 2∂f/∂t = tr(∂g/∂t), we obtain straight-
forwardly the required result. �

Corollary 2. If f and g evolve according to equations (12) and (13), then

(14)
dF

dt
= 2

∫
M

∣∣∣(1− a
R

)
Rij+

(
1− a

R

)
D2f +

a

R
(Df)2

∣∣∣2 e−fdV.
The proof is direct.

Corollary 3. The flow (14) is equivalent to the Ricci flow with logarithmic
curvature correction.

Proof. Let φt be the flow generated by ∇f and let g = φtg and f = f ◦φt.
Then

dg

dt
= φ∗t

(
∂g

∂t
+ L∇fg

)
(15)

= φ∗t

(
−2
((

1− a
R

)
Rij+

(
1− a

R

)
D2f +

a

R
(Df)2

)
+ 2D2f

)
(16)

= φ∗t

(
−2
((

1− a
R

)
Rij−

a

R
D2f +

a

R
(Df)2

))
(17)

= −2
((

1− a
R

)
Rij−

a

R
D

2
f +

a

R
(Df)2

)
,(18)
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where

(19) (LXg)ij = g

(
∇ ∂

∂xi

X,
∂

∂xj

)
+ g

(
∇ ∂

∂xj

X,
∂

∂xi

)
is the Lie derivative. Besides,

∂f

∂t
=
∂f

∂t
◦ φt + 〈∇̂f, φ̇t〉 ◦ φt(20)

= −
{(

1− a
R

)
R+

(
1− a

R

)
∆f +

a

R
(∇f)2

}
◦ φt + 〈∇̂f, φ̇t〉 ◦ φt(21)

=−R◦φt+a◦φt−∆f ◦φt+
a

R
∆f ◦φt−

a

R
(∇f)2◦φt+〈∇̂f, φ̇t〉◦φt(22)

= −
(

1− a
R

)
R−

(
1− a

R

)
∆f − a

R
(∇f)2 + |df |2g,(23)

where R and ∆f are respectively the curvature and Laplacian of g. �

Theorem 2. If f and g evolve respectively according to the flow:

∂f

∂t
= −

(
1− a

R

)
R−

(
1− a

R

)
∆f +

(
1− a

R

)
|∇f |2(24)

= −R−∆f + |∇f |2 +
a

R

(
R+ ∆f − |∇f |2

)
,(25)

∂gij
∂t

= −2
((

1− a
R

)
Rij −

a

R
∆f +

a

R
(∇f)2

)
(26)

= −2Rij +
2a

R

(
Rij + ∆f − (∇f)2

)
,(27)

then

(28)
dF

dt
= 2

∫
M

∣∣∣(1− a
R

)
Rij+

(
1− a

R

)
D2f +

a

R
(Df)2

∣∣∣2 e−fdV,
and in particular F[f(t), g(t)] is non-decreasing and the monotonicity is
strict unless

(29) Rij +D2f − a

R

(
Rij +D2f − (Df)2

)
= 0.

Remark 2. Under the flow represented by equations (23) and (24),∫
M

e−fdV remains constant with time.

A controlled quantity for the Ricci flow is obtained if we define λ(M , g) =
inf(M , g, f)/f :

∫
M

e−fdV = 1. Hence

(30) λ(gij(t)) ≤ F[f(t), gij(t)] ≤ F[f(t0), gij(t0)] = λ(gij(t0)),

for t < t0.
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Theorem 3. Given a steady breather solution of the Ricci flow on an in-
terval [t1, t2] satisfying the equation g(t2) = φ∗g(t1) for some φ ∈ Diff(M).
Then for (Df)2 = 0 and Rij + D2f = 0, a steady breather is a gradient
steady soliton and is independent of quantum effects.

Proof. We have λ(g(t2)) = λ(g(t1)), then F[f(t), g(t)] must be constant in
time. From equations (27) and (28), we conclude for R 6= 0:

(31)
∂f

∂t
= |∇f |2,

(32)
∂gij
∂t

= 2D2f = −2Rij .

These solutions are independent of a and hence of quantum effects. The
proof is then complete. �

Remark 3. More generally, we can write using equation (28):

(33)
∂f

∂t
= |∇f |2,

∂gij
∂t

= 2∆f = −2Rij −
2a

R− a
(∇f)2(34)

≈
R�a

−2Rij −
2a

R
(∇f)2,(35)

≈
R�a

−2Rij + 2(∇f)2.(36)

We can write equation (28) like

(37) ∇i∇jf +
a

R− a
∇if∇jf = −Rij .

Taking the covariant derivatives and using ∇i(R− a)−1 = −(R− a)−2∇iR
= 2(R− a)−2∇jRij , we get

(38) ∇i∇j∇kf +
a

R− a
∇i∇jf∇kf +

2a

(R− a)2
∇jRij∇jf∇kf = −∇iRjk,

(39) ∇j∇i∇kf +
a

R− a
∇j∇if∇kf +

2a

(R− a)2
∇iRji∇if∇kf = −∇jRik.

Subtracting equation (38) from (37), we obtain

(40)
∇i∇j∇kf −∇j∇i∇kf +

a

R− a
(∇i∇jf∇kf −∇j∇if∇kf)

+
2a

(R− a)2
(∇jRij∇jf∇kf −∇iRji∇if∇kf) = ∇jRik −∇iRjk.

Making use of the commutating relation

(41) ∇i∇j∇kf −∇j∇i∇kf = Rijkl∇lf,
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we find

(42)
∇jRik −∇iRjk = Rijkl∇lf +

a

R− a
(∇i∇jf −∇j∇if)∇kf

+
2a

(R− a)2
(∇jRij∇jf −∇iRji∇if)∇kf.

After taking the trace on j and k, and making use ∇iR = 2∇jRij , we find

(43)
∇iR = 2Rij∇jf −

2a

R− a
(∇i∇jf −∇j∇if)∇jf

− 4a

(R− a)2

(
1

2
∇iR∇jf −

1

2
∇jR∇if

)
∇jf.

Accordingly,

(44)

∇i

(
|∇f |2 +R

)
= 2∇jf

(
∇i∇jf +Rij −

a

R− a
(∇i∇jf −∇j∇if)

− a

(R− a)2
(∇iR∇jf −∇jR∇if)

)
.

For |∇f |2 +R = 0, we need either ∇jf = 0 or

(45)
∇i∇jf +Rij −

a

R− a
(∇i∇jf −∇j∇if)

− a

(R− a)2
(∇iR∇jf −∇jR∇if) = 0.

Taking now the difference of equation |∇f |2 + R = 0 and the trace of
equation (36), we find effortlessly:

(46) ∆f − |∇f |2 =
a

a−R
(∇f)2.

If the condition (44) is fulfilled, taking its trace, we get ∆f + R = 0 and
then

(47) R = −∆f = − a

a−R
(∇f)2 − |∇f |2.

Then it follows that

(48)

−
∫
M

∆(e−f )dV =

∫
M

(
∆f − |∇f |2

)
e−fdV

= a

∫
M

1

a−R
(∇f)2e−fdV 6= 0.

After integrating equation (45), it follows that f is not a constant and gij
is not a Ricci flat. In fact, there exist non-compact steady gradient Ricci
solitons that are not Ricci flat like the 2-dimensional Hamilton cigar soliton
[19, 20, 21, 3, 2].
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Proposition 1. Let gij be a complete steady gradient Ricci soliton on a
manifold M so that equality (36) holds. Then a gradient steady or expanding
Ricci soliton is not necessarily an Einstein metric unless quantum effects
due to the logarithmic curvature corrections are absent.

The problem of the topological change at the quantum level is a serious
affair and is connected with the Ricci flows. This issue may be addressed
making use of different schemes, e.g. Euclidean path integral approach [17].
In this work, we investigated the topic by adding a logarithmic curvature
correction to Perelman’s F functional. Quantum corrections can be treated
in a variety of ways; however, we have shown that a logarithmic one may lead
to many interesting consequences. The topic of Ricci flow with quantum
corrections is open and consequently much work is needed. Nevertheless, let
us briefly recall that quantum corrections play a leading role in noncommu-
tative geometry. To this end, noncommutative generalization of the Ricci
flow was discussed recently by Vacaru in [30]. Vacaru’s work is highly impor-
tant and motivated as it was revealed that unification may exist between
the spectral triple action approach to noncommutative geometry and the
Ricci flow theory. This paradigm has several applications in physics, mainly
string theory and gauge gravity. It might be meaningful to extend Vacaru’s
work for computing noncommutative Ricci flow quantum corrections with
certain new applications in physics. Another motivating direction concerns
the fractional formulation of Ricci flow theory which was constructed as well
by Vacaru in [32]. In fact, fractional field theory is a new successful branch
of theoretical physics characterized by fractional dimensions and with frac-
tional differential operators [4, 15, 14, 11, 13, 12, 10, 18, 23, 31]. One main
outcome resulting from Vacaru’s approach is that a fractional Ricci flow
can be considered as a nonholonomic evolution model deforming the Rie-
mann geometry characterized by integer metrics and connections, symmetric
and commutative spaces respectively to fractional metrics and connections,
nonsymmetric and noncommutative spaces. It will be as well motivating to
extend Vacaru’s work on fractional and noncommutative Ricci flows theory
[33] to include quantum corrections as well. Work in this direction is under
progress.
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