doi: 10.2478/v10062-010-0010-1

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXIV, NO. 2, 2010 SECTIO A 15–1

EDOARDO BALLICO

On the real X-ranks of points of $\mathbb{P}^n(\mathbb{R})$ with respect to a real variety $X \subset \mathbb{P}^n$

ABSTRACT. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate *m*-dimensional variety defined over \mathbb{R} . For any $P \in \mathbb{P}^n(\mathbb{R})$ the real X-rank $r_{X,\mathbb{R}}(P)$ is the minimal cardinality of $S \subset X(\mathbb{R})$ such that $P \in \langle S \rangle$. Here we extend to the real case an upper bound for the X-rank due to Landsberg and Teitler.

1. Introduction. Fix an integral and non-degenerate variety $X \subseteq \mathbb{P}^n$ defined over \mathbb{C} . For any $P \in \mathbb{P}^n(\mathbb{C})$ the X-rank $r_X(P)$ of P is the minimal cardinality of a finite set $S \subset X(\mathbb{C})$ such that $P \in \langle S \rangle$, where $\langle \rangle$ denote the linear span. Hence $r_X(P) = 1$ if and only if $P \in X(\mathbb{C})$. Since X is non-degenerate, the X-ranks are defined and $r_X(P) \leq n+1$ for all $P \in \mathbb{P}^n(\mathbb{C})$. As a motivation for the study of X-ranks, see [1], [5], [7], [9], [11] and references therein. Now assume that X is defined over \mathbb{R} and that the embedding $X \subset \mathbb{P}^n$ is defined over \mathbb{R} , i.e. the scheme X is cut out inside \mathbb{P}^n by homogeneous polynomials with real coefficients. For any $P \in \mathbb{P}^n(\mathbb{R})$ the real X-rank $r_{X,\mathbb{R}}(P)$ is the minimal cardinality of a finite set $S \subset X(\mathbb{R})$ such that $P \in \langle S \rangle$, with the convention $r_{X,\mathbb{R}}(P) = +\infty$ if no such set exists. Notice that $r_{X,\mathbb{R}}(P) = +\infty$ if and only if $P \notin \langle X(\mathbb{R}) \rangle$. Hence the function $r_{X,\mathbb{R}}(P) \neq +\infty$, then $r_{X,\mathbb{R}}(P) \leq n+1$. Now assume that the smooth quasi-projective variety X_{reg} has real points, i.e. assume

²⁰⁰⁰ Mathematics Subject Classification. 14N05, 14H50.

Key words and phrases. Ranks, real variety, structured rank.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

E. Ballico

 $X_{reg}(\mathbb{R}) \neq \emptyset$. Thus around P the set $X(\mathbb{R})$ contains a smooth real algebraic manifold of dimension m. Since X is irreducible, we get that $X_{reg}(\mathbb{R})$ is Zariski dense in $X(\mathbb{C})$. Since $X(\mathbb{C})$ spans \mathbb{P}^n , $\langle X(\mathbb{R}) \rangle = \mathbb{P}^n$ if $X_{reg}(\mathbb{R}) \neq \emptyset$. If $X_{reg}(\mathbb{R}) = \emptyset$, then $X(\mathbb{R})$ is contained in a proper Zariski closed subset Sing(X) of X. Quite often $\langle \text{Sing}(X) \rangle \neq \mathbb{P}^n$ even when $\text{Sing}(X) \neq \emptyset$. If X is a reduced curve, then $X_{reg}(\mathbb{R}) \neq \emptyset$ if and only if the set $X(\mathbb{R})$ is infinite.

We prove the following extension of [11], Proposition 5.1, under the assumption $X_{reg}(\mathbb{R}) \neq \emptyset$.

Theorem 1. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate *m*-dimensional variety defined over \mathbb{R} . Set $d := \deg(X)$. Assume $X_{reg}(\mathbb{R}) \neq \emptyset$. Then:

- (i) $r_{X,\mathbb{R}}(P) \leq n+2-m$ for all $P \in \mathbb{P}^n(\mathbb{R})$.
- (ii) If $d-m+1 \equiv n \pmod{2}$, then $r_{X,\mathbb{R}}(P) \leq n+1-m$ for all $P \in \mathbb{P}^n(\mathbb{R})$.

By [11], Proposition 5.1, we have $r_X(P) \leq n + 1 - m$ for all $P \in \mathbb{P}^n$ and this bound is in general sharp. Moreover, the most important case in which the upper bound $r_X(P) = n + 1 - m$ is reached is defined over \mathbb{R} , it is smooth and with non-empty real locus: the rational normal curve of \mathbb{P}^n ([8] or [11], Theorem 4.1). Hence the bound in part (ii) of Theorem 1 cannot be improved without making additional assumptions on the variety X. See Example 1 for a case in which equality holds in part (i) of Theorem 1.

Our proof of Theorem 1 is just an adaptation of the proof of [11], Proposition 5.1.

The interested reader may find related topics in [3] (definition of the X-K-rank $r_{X,K}(P)$ for an arbitrary field K and some computations of it when X is a rational normal curve), and in [4], Proposition 3 (subsets of X(K)computing the integer $r_{X,K}(P)$ when X is a rational normal curve).

2. Proof of Theorem 1 and an example.

Lemma 1. Let $X \subset \mathbb{P}^2$ be an integral curve of even degree d defined over \mathbb{R} . Assume $X_{reg}(\mathbb{R}) \neq \emptyset$. Then $r_{X,\mathbb{R}}(P) \leq 2$ for all $P \in \mathbb{P}^2(\mathbb{R})$.

Proof. If $P \in X(\mathbb{R})$, then $r_{X,\mathbb{R}}(P) = 1$. Fix any $P \in \mathbb{P}^2(\mathbb{R}) \setminus X(\mathbb{R})$. Since we work in characteristic zero, X is not a strange curve ([10] Ex. IV.3.8). Thus there is a non-empty open subset E of $X_{reg}(\mathbb{C})$ such that $P \notin T_Q X$ for all $Q \in E$. Since $X_{reg}(\mathbb{R}) \neq \emptyset$, the set $X_{reg}(\mathbb{R})$ is Zariski dense in $X(\mathbb{C})$. Hence there is $Q \in E \cap X_{reg}(\mathbb{R})$. Thus the line $D := \langle \{P, Q\} \rangle$ intersects transversally X at Q. Since d is even, the line D must contain another point of $X(\mathbb{R})$. Thus $r_{X,\mathbb{R}}(P) \leq 2$.

Proof of Theorem 1. The proof of the reduction of the case " $m \ge 2$ " to the case "m = 1" is an easy adaption of the proof given by Landsberg and Teitler over \mathbb{C} . Only the case m = 1 gives a small surprise.

(a) Here we assume m = 1. If d - n is odd, then there is nothing to prove, because $X_{reg}(\mathbb{R})$ spans \mathbb{P}^n . Hence we may assume $d \equiv n \pmod{2}$.

We use induction on n. If n = 2, then apply Lemma 1. Now assume $n \ge 3$. Fix a general $Q \in X(\mathbb{C})$. Hence X is smooth at Q. Thus the linear projection $\ell_Q : \mathbb{P}^n \setminus \{Q\} \to \mathbb{P}^{n-1}$ induces a morphism $v_Q : X \to \mathbb{P}^{n-1}$ such that $\deg(v_Q) \cdot \deg(v_Q(X)) = d - 1$. In characteristic zero a general secant line of X is not a multisecant line. Hence for a general Q we have $\deg(v_Q) = 1$, i.e., the curve $v_Q(X)$ is an integral and non-degenerate subcurve of \mathbb{P}^{n-1} with degree d-1. Since $X_{req}(\mathbb{R})$ is Zariski dense in $X_{req}(\mathbb{R})$, this is true also for almost all (except at most finitely many) points $Q \in X_{reg}(\mathbb{R})$. Fix $Q \in X_{reg}(\mathbb{R})$ such that $\deg(v_Q) = 1$. Thus $T \coloneqq v_Q(X) \subset \mathbb{P}^{n-1}$ is an integral and non-degenerate curve defined over \mathbb{R} and such that $T_{reg}(\mathbb{R}) \neq \emptyset$. Since $d-1 \equiv n-1 \pmod{2}$, the inductive assumption gives $r_{T,\mathbb{R}}(v_Q(P)) \leq n-1$. This is not sufficient to conclude that $r_{X,\mathbb{R}}(P) \leq n$, because $v_P(X)(\mathbb{R})$ may be larger than $v_P(X(\mathbb{R}))$. However, we may adapt the proof of Lemma 1 in the following way. Fix a general $(Q_1, \ldots, Q_{n-2}) \in X(\mathbb{C})^{(n-2)}$. Hence X is smooth at each Q_i . Set $U \coloneqq \langle Q_1, \ldots, Q_{n-2} \rangle$. Since the points Q_1, \ldots, Q_{n-2} are general and X is non-degenerate, $\dim(U) = n - 3$. Since we are in characteristic zero, a general hyperplane section of X is in linearly general position ([2], p. 109). Hence $X \cap U = \{Q_1, \ldots, Q_{n-2}\}$ (scheme-theoretic intersection). Since $X(\mathbb{R})$ is Zariski dense in $X(\mathbb{C})$, we may find $Q_i \in X(\mathbb{R})$ with the same property. Let $\ell_U : \mathbb{P}^n \setminus U \to \mathbb{P}^2$ denote the linear projection from U. Since $X \cap U = \{Q_1, \dots, Q_{n-2}\}$ (scheme-theoretically) and $Q_1 \in X$ $Q_i \in X_{reg}$ for all i, the map $\ell_U|(X \setminus X \cap U)$ induces a birational morphism v_U : $X \to \mathbb{P}^2$ such that $\deg(v_U(X)) = d - n + 2$ is even. The morphism v_U is defined over \mathbb{R} . For a general $Q_{n-1} \in X(\mathbb{R})$ the line $\langle \{v_U(P), v_U(Q_{n-1})\} \rangle$ intersects transversally $v_U(X)$ at $v_U(Q_{n-1})$. Since $\deg(v_U(X))$ is even, this line intersects $v_U(X)$ at another real point, P'. Since v_U induces a real isomorphism between the normalizations of X and of $v_U(X)$, the set $v_U(X)(\mathbb{R}) \setminus v_U(X(\mathbb{R}) \setminus U)$ is finite. Thus for a general Q_{n-1} we may assume that P' is in the image of a real point of $X \setminus U$. Hence $r_{X,\mathbb{R}}(P) \leq n$, concluding the proof in the case m = 1.

(b) Here we assume $m \geq 2$ and that Theorem 1 is true for varieties of dimension m-1. Assume the existence of $P \in \mathbb{P}^n(\mathbb{R})$ such that $r_{X,\mathbb{R}}(P) \geq n+2-m$ (case $d-m+1 \equiv 0 \pmod{2}$), or $r_{X,\mathbb{R}}(P) \geq n+1-m$ (case $d-m+1 \equiv 0 \pmod{2}$). If $P \in X(\mathbb{R})$, then $r_{X,\mathbb{R}}(P) = 1$. Hence we may assume $P \notin X(\mathbb{R})$. Since $X(\mathbb{R}) = \mathbb{P}^n(\mathbb{R}) \cap X(\mathbb{C})$, we have $P \notin X(\mathbb{C})$. Let $A_P(\mathbb{C})$ denote the set of all hyperplanes $H \subset \mathbb{P}^n(\mathbb{C})$ containing P. The set A_P is an (n-1)-dimensional complex projective space. Since $P \in \mathbb{P}^n(\mathbb{R})$, the variety $A_P(\mathbb{C})$ has a real structure such that the set $A_P(\mathbb{R})$ of its real points parametrizes the set of all real hyperplanes containing P. Since $A_P(\mathbb{R})$ is Zariski dense in $A_P(\mathbb{C})$, every non-empty Zariski open subset of $A_P(\mathbb{C})$ intersects $A_P(\mathbb{R})$. Hence any non-empty open subset of $A_P(\mathbb{C})$ defined over \mathbb{R} has a real point. Moreover, for a general $Q \in X(\mathbb{C})$ there is $H \in A_P(\mathbb{C})$ such that $Q \in H$. Since $X_{req}(\mathbb{R}) \neq \emptyset$, we get the existence E. Ballico

of $H \in A_P(\mathbb{R})$ containing a sufficiently general point of $X_{reg}(\mathbb{R})$. Hence we may find a sufficiently general $H \in A_P(\mathbb{R})$ with the additional condition $X_{reg}(\mathbb{R}) \cap H \neq \emptyset$. Bertini's theorem says that if H is general, then $X \cap H$ is an integral (m-1)-dimensional variety and $(X \cap H)_{reg} = X_{reg} \cap H$. Since $H \in A_P(\mathbb{R})$, the variety $X \cap H$ is defined over \mathbb{R} . Notice that $r_{X,\mathbb{R}}(P) \leq r_{X \cap H,\mathbb{R}}(P)$. Since $(X \cap H)_{reg}(\mathbb{R}) \neq \emptyset$ and $d-n+m \equiv d-(n-1)+(m-1)$ (mod 2), we may apply the inductive assumption to the variety $X \cap H$. \Box

The next example shows that the inequality in part (i) of Theorem 1 may be an equality. Hence in part (ii) of Theorem 1 the parity condition cannot be dropped without making other assumptions on X.

Example 1. Fix positive integers k, c such that $k \leq 2c$ and (2c+1, k) = 1. Take homogeneous coordinates x, y, z of \mathbb{P}^2 and set $X := \{z^{2c+1-k}y^k = x^{2c+1}\}$ and P := (1;0;0). Hence $P \notin X$. Thus $r_{X,\mathbb{R}}(P) \geq 2$. The linear projection from P sends any $(x_0; y_0; z_0) \neq (1;0;0)$, onto the point $(y_0; z_0) \in \mathbb{P}^1$. Since 2c+1 is odd, the equation $z_0^{2c+1-k}y_0^k = t^{2c+1}$ has a unique real root. Hence $r_{X,\mathbb{R}}(P) \neq 2$. If k = c = 1, then the curve X is an integral plane cubic with an ordinary cusp. Taking cones we get examples with arbitrary m and n = m + 1.

Fix a field K and an integral and non-degenerate subvariety $X \subset \mathbb{P}^n$. Assume that both X and the embedding $X \hookrightarrow \mathbb{P}^n$ are defined over K. For each $P \in \mathbb{P}^n(K)$ the X-K-rank $r_{X,K}(P)$ of P is the minimal cardinality of a set $S \subset X(K)$ such that $P \in \langle S \rangle$ or $+\infty$ if no such S exists, i.e. if $P \notin \langle X(K) \rangle$ ([3]). With this definition it is natural to analyze our proofs for an arbitrary field K.

Remark 1. Our proofs work verbatim if instead of \mathbb{R} we take a real closed field K in the sense of [6], §1.2, and instead of \mathbb{C} the algebraic closure \overline{K} of K. We recall that a field K is real closed if and only if -1 is not a sum of squares of elements of K, each odd degree $f \in K[t]$ has a root in K and for each $a \in K$, either a or -a has a square root in K. If K is a real closed field, then $\overline{K} \cong K[t]/(t^2 + 1)$ ([6], Theorem 1.2.2).

For curves our proofs give verbatim the following result.

Proposition 1. Fix a field K such that char(K) = 0 and an integral and non-degenerate curve $X \subset \mathbb{P}^n$. Assume that both X and the embedding $X \hookrightarrow \mathbb{P}^n$ are defined over K and that X(K) is infinite. Set $d \coloneqq \deg(X)$. Assume that every $f \in K[t]$ of degree d - n + 1 has a root in K, i.e. assume the non-existence of a field extension $K \subset L$ such that $\deg(L/K) = d - n + 1$. Then $r_{X,K}(P) \leq n$ for all $P \in \mathbb{P}^n(K)$.

The "i.e." part in Proposition 1 is true because every finite and separable extension of fields has a primitive element ([12], Theorem VII.5.4 on p. 156).

A small part of the inductive procedure in the proof of Theorem 1 works verbatim for an arbitrary field K such that $\operatorname{char}(K) = 0$. Indeed, for any $P \in \mathbb{P}^n(K)$ the set of A_P all hyperplanes of $\mathbb{P}^n(\overline{K})$ containing P is defined over K and $A_P(K)$ is dense in $A_P(\overline{K})$. However, the curve section C inductively obtained from X may have C(K) finite. For instance, take as Ka finite extension of \mathbb{Q} and as X a smooth surface birational to \mathbb{P}^2 over K. The set X(K) is Zariski dense in $X(\mathbb{C})$. Quite often, X has sectional genus at least 2. A theorem of Faltings (formerly Mordell's conjecture) says that C(K) is finite for any integral curve C defined over K whose normalization has genus at least 2. We do not know a single field K (except the real closed ones and the algebraically closed ones) in which many curve sections C of a large class of varieties X have C(K) infinite.

References

- Albera, L., Chevalier, P., Comon, P. and Ferreol, A., On the virtual array concept for higher order array processing, IEEE Trans. Signal Process. 53(4) (2005), 1254–1271.
- [2] Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves. I, Springer-Verlag, New York, 1985.
- [3] Ballico, E., Ranks of subvarieties of Pⁿ over non-algebraically closed fields, Int. J. Pure Appl. Math. 61(1) (2010), 7–10.
- [4] Ballico, E., Subsets of the variety $X \subset \mathbb{P}^n$ computing the X-rank of a point of \mathbb{P}^n , preprint.
- [5] Bernardi, A., Gimigliano, A. and Idà, M., Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34–55.
- [6] Bochnak, J., Coste, M. and Roy, F.-M., *Real Algebraic Geometry*, Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36, Springer-Verlag, Berlin, 1998.
- Buczyński, J., Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, arXiv:0909.4262v1 [math.AG].
- [8] Comas, G., Seiguer, M., On the rank of a binary form, arXiv:math.AG/0112311.
- [9] Comon, P., Golub, G., Lim, L.-H. and Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30(3) (2008), 1254–1279.
- [10] Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.
- [11] Landsberg, J. M., Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339–366.
- [12] Lang, S., Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.

E. Ballico Department of Mathematics University of Trento 38123 Povo (TN) Italy e-mail: ballico@science.unitn.it

Received January 8, 2010