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Horizontal lift of symmetric connections
to the bundle of volume forms V

ABSTRACT. In this paper we present the horizontal lift of a symmetric affine
connection with respect to another affine connection to the bundle of volume
forms V and give formulas for its curvature tensor, Ricci tensor and the scalar
curvature. Next, we give some properties of the horizontally lifted vector
fields and certain infinitesimal transformations. At the end, we consider some
substructures of a F'(3,1)-structure on V.

1. Introduction. Throughout the paper we assume that i, k,...=1,2,3,
..,nand a,3,...=0,1,2,...,n. Moreover, the Einstein summation con-
vention will be used with respect to these systems of indices.

Let M be an orientable n-dimensional manifold, V be the bundle of vol-
ume forms over M and let m : V — M be a projection of the bundle. We
consider two local charts (U,z*) and (U’,2") on M, UNU’" # § and the
volume form w € V. Assume that form w is given by

w=uv(z)dz' A...Adz",
in the local chart (U, '), where v > 0 is a smooth function and
w=1(2)dz" A...Adz"

in the chart (U,z"). Let functions # = 2% (z) be orientation-preserving
transition functions on manifold M. Then the transition functions on V are
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given by the following formulas

N

v =T v, ¥ =1 (z),

where Z = det (%) is the Jacobian of the map z = z%(z). Following
Dhooghe ([3]), we introduce a new coordinate system (z% x!,..., 2™) on
V, where 2 = Inv. Then the transition functions in the terms of these

coordinate system are
¥ = 2%(z) + nZ(x)
' =2 (2).

Let J(z) = InZ(x) and J(2') = InZ(2'). Since Z-Z = 1, we have

oJ 0J 0x)
oz’ Ozl Ozt
and - 3
0g  0J ox
ori  oxd dxt

Then the Jacobi matrix of the transition functions on V has the following
form

0T

1 39“?
x]

0 oxt

For the further purposes we quote some theorems describing the properties
of geometrical objects on the bundle of volume forms.

Theorem 1.1 ([3]). Let V = (Ffj) be a symmetric connection and v = v’ aii

be a vector field on a manifold M. Then

kO 9
& 50 oxt
is globally defined vector field on V, which is called the horizontal lift of v.

v=—v'T

Theorem 1.2 ([9]). Let V = (Ffj) be a symmetric connection and g = (gi;)
be a tensor of type (0,2) on a manifold M. Then

18 0
T 9 +T5L%
is globally defined (0,2)-tensor on V, which is called the horizontal lift of g.

Theorem 1.3 ([9]). Let V = (Ffj) be a symmetric connection and g be
a Riemannian metric on a manifold M. Then g is a Riemannian metric
onV and N N
(@) = {1 +gZ:jP§],§r§~t —gifﬂ '
—g Tk, g
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2. The horizontal lift of a symmetric connection. Curvatures of
a horizontally lifted connection. At the beginning, we present a theo-
rem on a horizontal lift of a symmetric connection with respect to another
connection to the bundle of volume forms V. Next, we give formulas for its
curvature tensor, the Ricci tensor and the scalar curvature. In the sequel
we will use the following conventions

k
ko ory;
ilm = gam?
1
ko k k
Llirij = 5 (Fikw - ij\z') :
1
k k k
F[ik\jm] = 9 (Fz‘k\jm - kam) )

_ Ogj
9jkli = Ot

Theorem 2.1. Let V = (FZ) be a symmetric connection and Vi = (@fj)
be a connection on M. Then an operator V1 whose nonzero coefficients are
given by

0

- o 9 _(rt _grpt) 0 gk 9
Vigs =V, _<F ! Frt> + o

i 9t it]j i Ox0 Gk

is a linear connection on V, which will be called the horizontal lift of the
connection V1 with respect to the connection V.

Proof. We are going to check that the coefficients (fi)zé ﬁ) of the connection

V1 satisfy the transformation rule of the connection. This transformation
rule for the zero coefficients of the connection V7 follows from simple cal-
culations. For the nonzero coefficients we have

_ Ox® oz oz = oxF 92z

927 Ozt 9y B + Ox® Ozt 0x7’

Oz Ot ozt n ox¥ 92k
OxV Oxd" Oxk ~ Y 9z OxV Oz’

= 1!
©i/j/

/
— ¢7];€/jl'

In the next part of the proof we use the following equality

" 9 (oF\ 0 (0T
Oxidxi — Ozt \0z9 )  Oxi \Ox')’

We receive from above identity

02z 922" 9x¢ B 02zd 922" 9z
Oz Oz Oxidx?d 9xt  Ox¥ dx Oridxd Oxd
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For the coefficients (®Y ) we have

iy’

oz 9zP dxV &7 oY 92z~

27 927 9x7 @0 " G a7 Bl

Ox® 9x° _, Oz 9z2° 0T T 020 oJ %P

= 0x7 027V 827 027 Oav o0 02707 | O 0a7 02T
ox® b , ox® Oz T

= 927 927 [F“t‘b <I> bF } 9z Oxd’ aqu)gb
920 0T O3zP

OxV 07’ + OzP Ozt Oz’

=0/
q)?/j/ =

+

_ st 0ab 0 [0a” Ly 0T

= aIi/ 817]/ axb 8xa ot 81"1
 Oa® 9ab | 0x? 0x Oa of 4 0 &z | | 0a” T 8.7
927 9x7 | 9xe 9zb Dl V¢ T 92¢ gpedat | | 0ar ' T G

| 02" 0a* 07 [axd’ 0z Da? | Oa? Oa” ]
Ox 0xd’ dxp | Hx® Oxb Oxf ¢ T dxe Hredab
9220 0T %P
t 927027 | 9ap 027 027
%z 9z dxb o 9T dx* dxb
= 0190zt 9 daI' v T Lyt 0x29xb Oz Oxd’
0T o _ 0%z dx 9a® w97 0%z 0z da
oxl’ 1" 9209z Oz Az’ Y T Oz Hxedzb Ozt O’
N 27 o, 0J 0% oat 02’ = F  0F &at
- ozt 0x€ 0xe0xb 0x¥ Oxd’  Ox¥Oxd’  OxP Ox¥OxJ’
2T Ox® ozt 2T 0T %P
029070 927 927 | 027027 | 0aP 027 0z

(I)C /FC/t/

+

— @5 Thy +

t/
=Ty —
Now, we have

PJ 0z 0z° 0% 9%V 0a® N PP 9x° 9z Oa®
Oxedxb Ozt Oz OxP' Oxt Oxedxb Oxd’  HxedrbOx® dxP’ Oxt dxd’

and

B3P dx° 9z HzP B 92xP 92z¢  Oxb O3ae ox?’
x99zt Oz’ dz¥ Oxd " OxeOzb O2P Oxt’ Oxi’  OxP Ox? D’ Oxe
oF a9z dxb
9z 9x*0xb Ox¥ Oxd"
PT 0% 92b 0% Pz Oa°
0z 9z’ Qxedxb Ozt Oz Oz’ * 0x¢ 0x7' 02V Ox®”

/
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Moreover,

) [axr’ 8x“] 9% oat 0x 9% Oav

0= Ozt | Oz dz7 | — Ox*Oxb Oz + 0z 9x¥ OzP dxb

and hence
0J 9*x" 0x° dxb  OF Ox" 0z OxP 9P
Oz 0xdxb Oz’ Bz’ dx Oz dxi' HxP Oxb Had
oF a9z dxb
Qa7 9z%0xb Ox' Hxd’
B 0T O%x®
T 9z 92 9z
Using the above formulas, we get
02z 92xP 9 5 02z 9%z Ozt
OxP' OxV dxedxb OxI’ Oxe0xb OxP' OxV OxJ’
dPxe ox¥  9F 9" 9z 9xb 92 b 9%ax°
02V 027 027 Bz¢ Oz Dx*Oxb Ox¥ OxT * 0x®0xb Ozt Oz Ox’
Pz 9z 0T %P
+ 0x¢ 0xV 07 Ox + 2P Ox¥ fzJ'
oF 9x" 9z 9xb 8T 9%

o + / +
(b-/ o) = Fi’t’|j’ - @f/j/rc/t, +

v

/

-1, — &, T, — A AT AT

= Ly — PirjrLew Ox"" 9x20xb Oz OxJ’ + OxP OxV Oz7

g, OF 0wt 0at 0a’ 0T v
i't|j i'j 8561"/ 0x20xb OV dxJ " Oxp Oz 027

_ Ft/ _ (I)C' Ft, _ aiﬂ 87\7%

Tl Y g 9 Omd” T O Ot Had

_ 1t c t/
— Fi/tllj/ - @i/jlrclt/. |:|

Now, we give formulas for coefficients of a curvature tensor, a Ricci tensor
and a scalar curvature for the horizontally lifted connection Vi. Let R be
the curvature tensor of a connection V on a manifold M. The coefficients
(Rjj),) of R are expressed in terms of the connection V = (I' fj) by the
formula ([1])

ki = Fékl—‘?l - Fé‘kal + Tty — Dini-

Theorem 2.2. Let (Rlﬁ) be the coefficients of the curvature tensor R of the
horizontal lift of the connection Vi = (@Z) with respect to the symmetric

connection V = (Ff}) Then nonzero coefficients of the tensor R are given

by the following formulas B
Ry = Riyj,

0 d d

R}y = =T Ry + 2030 0 + 205Dl + 20

where R = (Rfjk) is the curvature tensor of the connection Vi on M.



50 A. Gasior

Proof. From the definition of the curvature tensor we have
R/EW - (bqu)ga - ¢§7 Ea + (bz?vlt? - (I)gv\ﬁ'

The statements

pB _ pb _ _

ROOO - RiOO ROkO ROO] ROk;j RzO] Rsz 0
and

DS _ S
iki — 1likj

follows from the definition of the curvature tensor, Theorem 2.1 and simple
calculations. Next, we have

R = 85,89, — 05,87, +%\] <I>2k|i

= o, (F§t\d (I)Tdrrt) — B (Fft\d oI ) + 86 (th|k P Frt)
- % (Fét\k - q)?kF:t)
=T}, (q)?k — N0 + Dy — ‘I’?ku) + @, (F]t|d de)
+ <Ffit|i zt|d> + g — Djupmi
U1, Riy + 2001 0 + 295Dl + 20w O

We recall that the linear connection V is locally volume preserving at
p € M, if there exists a neighbourhood U of p in M and a volume form
w € U such that Vw = 0 ([4]). The integrability conditions for existence of
such a local volume forms in local coordinates (U, %) on a neighbourhood
of p € M are given by

Tl = Dk

where (I’fj) are the coefficients of the connection V ([13]). The connection is
called globally volume preserving, if such a volume form exists on M. More-
over, it is well known that the Riemannian connection on the Riemannian
manifold M is locally volume preserving.

Corollary 2.1. Let V be a Riemannian connection on a Riemannian man-
ifold (M, g) and Vi be a connection on the manifold M. Then the nonzero
coefficients of the curvature tensor R = ( aﬁv) of the horizontally lifted

connection V1 with respect to the connection V = (Ffj) are given by

ps  __ S
ikj — “Ykj>

t T
le_] F ikjs

where R = ( fjk) is the curvature tensor of the connection V1 on M.

For a Ricci tensor and a scalar curvature of the horizontally lifted con-
nection we have the following theorems.
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Theorem 2.3. Let V be a symmetric connection, V1 be a connection on
the manifold M and (Rag) be the coefficients of a Ricci tensor R of the
horizontally lifted connection V1 with respect to connection V. Then the
nonzero coefficients of R are given by the formulas

R, = Ry,

where (R;x) are the coefficients of Ricci tensor R of the connection Vi on
the manifold M.

Theorem 2.4. Let g be a Riemannian metric on the manifold M and let
g be a horizontally lifted Riemannian metric on V. If K is a scalar curva-
ture of the horizontally lifted connection V1 with respect to the symmetric
connection V, then
jr n— 1K,
n+1
where K is a scalar curvature of the connection V on M.

Proof. From the definition of the scalar curvature, Theorem 2.3 and for-
mula for (g*#) we have
1 S _aB 1

[ — - a = — . ik =
K= n(n + 1)Ra59 n(n + 1)leg

n—1
n+1

O

Let m be a non-singular tensor field of type (1,1) on the manifold M.
Rompala in [12] described some properties of 7w-conjugate connection with
respect to a given connection. Now, we prove that if we have a m-conjugate
connection Vo with respect to a connection Vi on the manifold M, then
the horizontally lifted connection Vs is 7-conjugate with respect to the
horizontally lifted connection Vi on V, where 7 is the horizontal lift of 7.

Definition 2.1. Let V = (Ffj) be the linear connection and let m be a non-
singular tensor field of the type (0,2) on M. The connection V* = (Gj,)
which is given by

2,5 = ﬂ'pivkﬂps + F};S
is said to be a m-conjugate connection with respect to the connection V.

For the horizontally lifted connections Vi and V, with respect to the
connection V and the horizontally lifted tensor field 7 of type (0, 2) we have
the following theorem.

Theorem 2.5. Let Vg be a m-conjugate connection with respect to a connec-
tion V1 on manifold M. Let V1 and Vo be horizontally lifted connections
with respect to a connection ¥V on V. Then Vs is a T-conjugate connection
with respect to a horizontally lifted connection V1, where 7 is horizontal lift
of ™ with respect to a connection V.
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Proof. We are going to show the nonzero coefficients (Gzlﬁ) of the connec-
tion Vs are given by the formulas

= c,
Gy =Tl — GT
From Definition 2.2 and definition of the covariant derivative of a tensor

t
itlj ij-rt:
field of type (0,2) we have

Glo = 7?ﬁT(ﬁﬁglw — 5, Ta0 — PgyTpa) + O3,

where (i)zﬁ) are the coefficients of the connection Vi and @ = (7,3). For
the nonzero coefficients we get

7?/80(7?68% - ‘i’gkﬁas - (i)gkﬁ—ﬁa) + (i)(lgs

r u

_ dbw T T t
= -7 Fbv [Trds|k - (I)dkﬂ-TS - (I)skﬂ-dr] + I‘kt|s — kst ru

b ~0
= I‘Il€~ct|s - vaks = Gks’
ﬁﬁi(ﬁﬁs\k - (T)%kﬁas - (i)?kﬁﬁa> + (ﬁcs
~01 r
=7 Z(Fgﬂk - Fi’ﬂk —®Ll — (I)gkrit)

+ 7 | g + LoD + Tl eus — gl + @0l T,
_(I)gk (7rrs + Ffﬂtrgu) - th|kzrgu + (bgkritrgu - (I)Zk (7rd7’ + thrgu) + (I)}cs

_di T T i
=7 (Task — PapTrs — PoTar) + Pps = Gls = Gs. O

3. Some properties of a horizontally lifted vector field. Dhooghe in
[3] described the horizontal lift of a vector field to the bundle of volume forms
V. In this chapter we give some properties of such horizontally lifted vector
fields. Let us consider when a horizontally lifted vector field is a Killing
field on V. We have

Theorem 3.1. Let (M, g) be a Riemannian manifold. If X is a vector field
and V is a symmetric, locally volume preserving connection on M, then the
horizontally lifted vector field X is a Killing field on (V,§) if and only if X
is a Killing field on M.

Proof. Let V = (FZ) Then X is a Killing field on the manifold (M, g)
if and only if Lxg = 0, where £ is a Lie derivative of the Riemannian
metric g ([7]). Let X be the Killing field on the manifold (M,g). From
the assumption that the V is the symmetric, locally volume preserving
connection and from the formula of the Lie derivative of the metric g with
respect to X we have

L %G00 = (—kaXk)m + (—F?kxkﬂo =0,
Lggo = Lzgro = X (Thye — Teypp) = 0,
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L gve = X" Goejo + Jac X[ + GraXe
= X (gue + TR+ Tl (-XTH)
+ (gac + T4, T%,) szl, + T, (—Xdl“gu) " + (goa + T Tl Xfi
= X gyejq + X Ty Tty + X Tyl = Lxgoe = 0.

We have Lg = 0 so X is the Killing field on V.

Let X be the Killing on the bundle of volume forms V. Then we have
L5g =0 and from the first part of the proof we get Lxg = 0, so X is the
Killing field on the manifold (M, g). O

Yamauchi in [15] studied certain types of an infinitesimal transformations
on tangent bundles. Now, we show that the horizontally lifted vector field
X is an infinitesimal affine transformation of horizontally lifted connection
on V if and only if the vector field X is an infinitesimal affine transformation
of a connection on the manifold M.

Theorem 3.2. Let Vi be the horizontal lift of the connection V1 with re-
spect to the symmetric connection V on M and let X be the horizontal lift
of the vector field X on V. Then X is an infinitesimal affine transformation
of the horizontally lifted connection V1 if and only if X is an infinitesimal
affine transformation of the connection V1 on M.

Proof. Let X be the infinitesimal affine transformation ([15]) of the con-
nection Vi = (<I>fj) on M. Then we have
L X(I)?j =0.
For the horizontally lifted connection Vi = (7 5) and the horizontally lifted
vector field X we have
Lx®y = Ly = LDy =0,
Lx®py = LxPpy =0,
Thus, X is the infinitesimal affine transformation of the connection Vion V.
On the other hand, let X be the infinitesimal affine transformation of the
connection Vi on V. Then from the first part of this proof we get
Lx® =0

and X is the infinitesimal affine transformation of the connection V4 on the
manifold M. ]

Now, we will examine a problem of a fibre-preserving infinitesimal trans-
formation on the bundle of volume forms V. We have the following theorem.
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Theorem 3.3. Let X be the horizontal lift of the vector field X to the
bundle of volume forms V. Then X is a fibre-preserving infinitesimal trans-
formation on V.

Proof. Since the fibres of the bundle V form a trivial foliation we have ([8])
that the horizontally lifted vector field is the fibre-preserving infinitesimal
transformation on V if and only if the coordinates X, ..., X™ of the vector

= 5.0 =9 O

field X = X’W + Xoﬁ depends only of the coordinates (x!, 22, ..., 2").
x x

From the above and Theorem 1.1 we get that the horizontally lifted vector

field X is the fibre-preserving infinitesimal transformation on the bundle
V. O

At the end of this chapter we show that a horizontally lifted vector field is
not a projective infinitesimal transformation of a horizontally lifted connec-
tion and is not a conformal infinitesimal transformation on V with respect
to horizontally lifted Riemannian metric. In the next part of the paper we
will use the following theorem.

Theorem 3.4. Let V be a locally volume preserving connection on a Rie-
mannian manifold (M,g). If there exists a nonzero function o such that
Lxg = 209, then Lgao = 0 and L Gse = 20" gye, where X is the horizon-
tal lift of the vector field X on a Riemannian manifold (V,g) and o¥ = gor.

Proof. It follows from definition of the Lie derivatives of the Riemannian
metric and simple calculations. O

Using the above theorem we get the following

Theorem 3.5. Let X be a vector field and let g be a Riemannian metric
on M. Then the horizontally lifted vector field X is never a conformal
infinitesimal transformation on V.

Proof. Let the horizontally lifted vector field X be the conformal infinites-
imal transformation ([15]) on V. Then there exist the nonzero function f
on V such that

Lxg=2fg.
From Theorem 3.4 we have that £ggoo = 0 and goo = 1. So f = 0 and X
is never the conformal infinitesimal transformation on V. O

Theorem 3.6. Let V1, V be symmetric connections on a connected mani-
fold M. If X denotes the horizontal lift of the vector field X to the bundle
of volume forms V and Vi denotes the horizontal lift of the connection V1
with respect to the connection V, then X is never the infinitesimal projective
transformation on V.
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Proof. Let X be the infinitesimal projective transformation ([15]) on V.
Then exist a nonzero 1-form ¢ such that

Lg®) 5= 0105+ 630a.
From the proof of Theorem 3.2 we have
LG = Lz Pom = Lz PG = LxPhy = 0.
On the other hand, we have
Lg®y = 05,00,

Lg®)0 = bm,
L X‘i’go = 2¢y.
Hence we get

oo =0,

¢m =0,

¢0 + ¢om =0,
so, » = 0 and X is never the infinitesimal projective transformation on the
bundle of volume forms V. O

4. F(3,1)-structures on V. In this chapter we consider some tensor
structures on V which depend of a tensor of type (1,1). In [9] authors
defined a horizontal lift of a tensor field of type (1,1) to the bundle of
volume forms V.

Theorem 4.1 ([9]). Let F' = (FZJ) be a tensor field of type (1,1) and let
V= (Ffj) be a linear connection on manifold M. Then

st —F;rfkgrr?k
7
0 F!

is a tensor field of type (1,1) on the bundle of volume forms, which is called
a horizontal lift of the tensor field F'.

A tensor field of type (1, 1) defines some interesting structures on mani-
folds. Now, we recall definition of a F(k, (—1)*+1)-structure.

Theorem 4.2 ([2]). Let F' be a nonzero tensor field of type (1,1) on an
n-dimensional manifold M such that

Fk’ . (_1)k+1F -0
and
for 1 < m < k, where k is a fixed positive integer greater than 2. Such
a structure is called F(k, (—1)**t1)-structure on M.
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We have the following theorem for F(k, (—1)¥*1)-structure on the mani-
fold M.

Theorem 4.3 ([2]). Let F be a tensor field of type (1,1) which defines
a F(k,(—1)**1)-structure on a manifold M. The F(k,(—1)*+1)-structure
is integrable if and only if Np(X,Y) =0 for any vector fields X, Y on the
manifold M, where Ng is the Nijenhuis tensor field of the tensor F.

Applying Definition 4.1 and Theorem 4.2 to the horizontally lifted tensor
field F' on V we obtain the following theorems.

Theorem 4.4. Let F' be a tensor field of type (1,1) which define the F(3,1)-
structure on a manifold M and let V be a linear connection on M. Then the
horizontally lifted tensor field F defines the F(3,1)-structure on the bundle
of volume forms V.

Theorem 4.5. Let F' be a tensor field of type (1,1) which define the F(3,1)-
structure on manifold the M and let V be a linear volume-preserving connec-
tion on M. Then the horizontally lifted tensor field F' defines an integrable

F(3,1)-structure on V if and only if the F(3,1)-structure is integrable on
M.

In the next part of this chapter we consider some special substructures
of F-structures on a manifold M. The authors in [14] defined some sub-
structures of differential manifolds with F-structures by using a covariant
derivative and a Lie derivative. Now, we recall necessary definitions and
theorems.

Definition 4.1 ([14]). Let F' be a tensor field of type (1,1) on a manifold
M. The manifold M is called F(3,¢)-manifold, if

F3 =¢F,
where ¢ = +1.
Let
L =¢F?
and
A=1-—eF2

From [6] we know that on F'(3, ¢)-manifold there always exists a Riemannian
metric g satisfying a condition

9(X,)Y)=g(FX,FY)+g(AX,Y).

This metric is called the Ishihara—Yano metric. Let G be a tensor field of
type (0,2) defined by the form

G(X,Y) = g(FX,Y).

Let V be a metric connection of the Ishihara—Yano metric g on the manifold
M. Then we have the following definitions.
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Definition 4.2 ([14]). Let M be F(3,¢)-manifold. Then the F-structure is
called F'K-structure if and only if

Vex(F) =0,

FAK-structure if and only if
dS(FX,FY,FZ) =0,

F N K-structure if and only if
Vix(G)FY,FZ)—eVry(G)(FX,FZ) =0,

FQK-structure if and only if
2Vpx (G)(FY, FZ) + (1 = )V x (G)(F?Y, F2)
= (1+2) [Vpoz(G)(FX, F2Y) = V oy (G) (FZ, F2X)]

F H-structure if and only if
N(FX,FY) =0,

where S is a 1-form defined by S(X,Y) = =SV, X) = g(FX,Y), N is a
Nijenhuis tensor of F', X, Y, Z are vector fields on the manifold M and
G(X,Y)=g(FX,Y).

The authors in [14] studied a problem of inclusion of these substructures
and they gave the following theorems:

Theorem 4.6 ([14]). Let M be a F(3,¢)-manifold with o FK, FAK,
FNK, FQK, FH-structure. Then we have
C FAK
FK FNK} C FQK.
Theorem 4.7 ([14]). Let F be a tensor field of type (1,1) which defines
a F(3,¢)-structure on a manifold M. Then the F(3,¢)-structure is a FH-
structure, if

Vrx(F)(FY) = FVx(F)(FY),

where V is the Levi-Civita connection of an Ishihara—Yano metric g.

Let F be a tensor field of type (1,1) on a manifold M which gives
a F(3,¢)-structure and let g be a Ishihara—Yano metric on the manifold
M. It is easy to check that a horizontally lifted Riemannian metric g on V
is Ishihara—Yano metric on V, thus we have the following theorem for g:
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Theorem 4.8 ([5]). Let g be a Riemannian metric on manifold M and let
g be the horizontal lift of the Riemannian metric g to the bundle of volume
forms V. Then the nonzero coefficients of a Levi-Civita connection V for
the horizontally lifted Riemannian metric g are given by the formulas

~ 0 ~ 0 ) O d
Vi Hxm = vm% = (Ffmt\n - annrtk) @ + ann%v
where V = (Ffj) is the Levi-Civita connection on M.

Now, we consider a problem of particular substructures of F(3,1)-struc-
ture on the bundle of volume forms V.

Theorem 4.9. Let F be a tensor field of type (1,1) which defines a F(3,¢)-
structure and V be the Levi-Ciwita connection on a Riemannian manifold
(M,g). Let g be the horizontally lifted Riemannian metric and let V be
the Levi-Civita connection on the Riemannian manifold (V,g). Then the
horizontal lift F of the tensor field F defines the FQK -structure on V if
and only if the tensor field F' defines the FQK -structure on M.

Proof. First we determine coefficients of a tensor G = (gagFﬁ) on the
bundle on volume forms V and we get

Goo = gaoF§' =1,

o = GaoF® =T%,,

Goj = Gaj Iy =Tl

Gij = Gaj FY* = gai F' + T,

Q

In our case ¢ = 1 and the condition from Definition 4.3 takes the form
Vix(G)(FY,FZ) = Viez(G)(FX,F?Y) — Vay (G)(FZ, F?X).

Let the tensor field F' define the F'Q)QK-structure on the manifold M. We
want to show that then on V the condition

Vix(G)FY,FZ) =V (G)FX,F?Y) — Vey (G)(FZ, F?X)

is true, where F is the horizontal lift of the tensor F nad X, Y, Z are
the vector fields on V. For the nonzero terms of the left side of the above
formula we get

F'(VaGoy) FOFY = F{(VaGoy) EFY) + F{(VaGro) Fy FY
= FA(VaGri) FIEY = B (Groga — T4Gau — T34Goar) FL Y
= B (auta P + gauFa = gouFiTha — gun i) Fy

= F (V4Gru) FLFY.
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For the terms of the right side of the condition from Definition 4.3 we have
Hg(vaé&y)pfﬁ; o FIS(VOCC_?M)FSFI; = ﬁg(vdéru)pgﬁﬁ
— HY(V4Gr) FLHY = HY(V 4Gru) Fy HY — HY(V aGro) FL HY,
where
oo [U —FIETh ¢ - ) ~FFTh, + ) - [H H]
0 FF} 0 H) H} H}
So, on the bundle of volume forms we have
F (VaGru) FyFY = HY(N 4G Fy Hy — HY(VaGru) FL HY
and from the assumption, that F' defines the F'QK-structure on the manifold
M, we have that F' defines FFQK-structure on V.
On the other hand, let F' defines the F'QK-structure on V, then we have
Vi (CVFY, FZ) = V a1 (G)(FX, F2Y) = V pay (G) (FZ, F2X),
From the calculations from the first part of this proof we get
F (VyGru) FyFY = HY(N 4G Fy Hy — HY(V 4Gru) L HY
So, F' defines the F'Q K-structure on the manifold M. O

From the above theorem and Theorem 4.4 we get

Corollary 4.1. Let F be a tensor field of type (1,1) which defines a F(3,¢)-
structure and V be the Levi-Ciwita connection on a Riemannian manifold
(M,g). Let g be a horizontally lifted Riemannian metric and let ¥V be the
Levi-Civita connection on the Riemannian manifold (V,g). Then a hori-
zontally lifted tensor field F defines the FK, FAK, FNK -structure on V
if and only if the tensor F defines the FK, FAK, FN K-structure on the
M, respectively.

At the end of this paper we give a theorem on a F H-structure on the
bundle of volume forms.

Theorem 4.10. Let F' be a tensor field of type (1,1) which defines a F(3,¢)-
structure and V be the Levi-Ciita connection on a Riemannian manifold
(M,g). Let g be a horizontally lifted Riemannian metric and let ¥V be the
Levi-Civita connection on a Riemannian manifold (V,g). Then a horizon-
tally lifted tensor field F defines a FH-structure on V if and only if the
tensor field F' defines a F H-structure on M.

Proof. Let I define the F'H-structure on the manifold M. Then from the
Theorem 4.5 we have

F{(ViF])F] = F] (ViF,)FY.
We prove that on the bundle of volume forms V we get

Vix(F)(FY) = FVx(F)(FY),
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for all vector fields X, Y, Z on V. For the nonzero terms of the left side of
the above formula we get

F(VaF§)F] = —FT(ViF) FY,

Fg(VoFj)F] = Fo(ViF))FL.
The terms of the right side corresponding to the nonzero terms of the left
side, are equal to

(VIF§)FJF] = —F FIT} (V. F}),

(ViE§)FRF) = (ViFg)FFF] = (ViF)) FFY.
From the assumption that F' defines the F'H-structure on the manifold M,
we have

F(VaFQ)FP = —FITK (ViF) F] = —FLFITH(V.FY) = (V,F5) FOFY,
Fg(VoFj)F] = FiU(N/F))F] = (ViF})Ff F] = (ViF§)FSF)
and the horizontally lifted tensor field F' defines the F'H-structure on V.

On the other hand, let F define the F'H-structure on V. Then from the
first part of the proof we have

FITh(VaF )] = FUTh (Ve F) FY,
FHVaF)F = F§(V F)F.
Thus the tensor field F' defines the F'H-structure on the manifold M. O
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