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of complex harmonic functions with
a two-parameter coefficient condition

Abstract. The article of J. Clunie and T. Sheil-Small [3], published in 1984,
intensified the investigations of complex functions harmonic in the unit disc
∆. In particular, many papers about some classes of complex mappings with
the coefficient conditions have been published. Consideration of this type
was undertaken in the period 1998–2004 by Y. Avci and E. Złotkiewicz [2],
A. Ganczar [5], Z. J. Jakubowski, G. Adamczyk, A. Łazińska and A. Sibelska
[1], [8], [7], H. Silverman [12] and J. M. Jahangiri [6], among others. This work
continues the investigations described in [7]. Our results relate primarily to
the order of starlikeness and convexity of functions of the aforementioned
classes.

1. Introduction. Let

∆ := {z ∈ C : |z| < 1},
∆r := {z ∈ C : |z| < r}, r > 0,

A := {(α, p) ∈ R2 : 0 ≤ α ≤ 1, p > 0},
Un(α, p) := αnp + (1− α)np+1, n = 2, 3, . . . , (α, p) ∈ A.

In [7] the following classes of complex harmonic functions have been in-
troduced:
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Definition 1. Let (α, p) be a fixed pair of parameters in the set A. By
HS(α, p) we denote the class of the functions f of the form:

(1.1)

f(z) = h(z) + g(z),

h(z) = z +
∞∑
n=2

an z
n, g(z) =

∞∑
n=1

bn z
n, z ∈ ∆, |b1| < 1,

satisfying the condition

(1.2) |b1|+
∞∑
n=2

Un(α, p)
(
|an|+ |bn|

)
≤ 1.

Definition 2. Let (α, p) ∈ A be fixed. Let us denote

HS0(α, p) := {f ∈ HS(α, p) : b1 = 0}.
The classes HS(1, 1), HS0(1, 1), HS(1, 2), HS0(1, 2) were investigated

in the paper [2]. The results contained in [5] refer to the classes HS(1, p),
HS0(1, p), p > 0 and in [8] the classes HS(α, 1), HS0(α, 1) for α ∈ [0, 1]
were considered.

In this paper we will show results related to the order of starlikeness and
convexity of functions which belong to the aforementioned classes.

Recall the definition of complex harmonic functions starlike (convex) and
starlike (convex) of the order β, β ∈ [0, 1).

Definition 3. A univalent and sense-preserving complex harmonic function
f of the form (1.1) is called starlike with respect to the origin (starlike) in
∆, if f(∆) is a domain starlike with respect to the origin.

Definition 4. A univalent and sense-preserving complex harmonic function
f of the form (1.1) is called convex in ∆ if f(∆) is a convex domain.

Remark 1. It is known that in order to prove starlikeness of the image of
the disc ∆ by a univalent sense-preserving mapping f it is sufficient to prove
starlikeness of f(∆r) for every r ∈ (0, 1), i.e. to show that for any r ∈ (0, 1)
we have

∂

∂θ

(
arg f(reiθ)

)
> 0, θ ∈ [0, 2π].

By analogy, in order to prove convexity of the image of the disc ∆ by
a univalent sense-preserving mapping f , it is sufficient to prove convexity
of f(∆r) for every r ∈ (0, 1), i.e. to show that for any r ∈ (0, 1) we have

∂

∂θ

(
arg

∂

∂θ
(f(reiθ))

)
> 0, θ ∈ [0, 2π].

Definition 5. Let β ∈ [0, 1). A univalent and sense-preserving complex
harmonic function f of the form (1.1) is called starlike of the order β with
respect to the origin in ∆ if for any r ∈ (0, 1), we have

(1.3)
∂

∂θ

(
arg f(reiθ)

)
> β, θ ∈ [0, 2π].
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Definition 6. Let β ∈ [0, 1). A univalent and sense-preserving complex
harmonic function f of the form (1.1) is called convex of the order β in ∆
if for any r ∈ (0, 1), we have

(1.4)
∂

∂θ

(
arg

∂

∂θ
(f(reiθ))

)
> β, θ ∈ [0, 2π].

Remark 2. Definitions 5 and 6 are analogues of the appropriate classical
definitions for the normalized holomorphic functions in ∆. In [9], among
other things, the definition of a starlike (convex) function f of the form
f(z) = z + a2z

2 + . . . , z ∈ ∆ is stated. The subclass of the class of starlike
(convex) functions satisfying the condition Re{zf ′(z)/f(z)} > β (Re{1 +
zf ′′(z)/f ′(z)} > β), z ∈ ∆, 0 < β < 1 is called the class of functions starlike
(convex) of the order β.

In his paper B. Pinchuk ([10]) noted that in 1936 M. S. Robertson ([11])
introduced more restrictive definitions of the classes of holomorphic func-
tions starlike (convex) of the order β. Namely, holomorphic, normalized
starlike (convex) functions were called by him starlike (convex) functions of
the order β, β ∈ [0, 1), if they satisfy the condition Re{zf ′(z)/f(z)} ≥ β,
z ∈ ∆ (Re{1 + zf ′′(z)/f ′(z)} ≥ β, z ∈ ∆) and for any sufficiently small
ε > 0 there exists a point z0 ∈ ∆ such that Re{z0f ′(z0)/f(z0)} < β + ε
(Re{1 + z0f

′′(z0)/f
′(z0)} < β + ε). The second part of Robertson’s defini-

tion is overlooked by his followers.
In this paper we use generalization of the classical definition of the func-

tions starlike (convex) of the order β, for complex harmonic functions.
It is worth remembering that the property of starlikeness (convexity)

is hereditary for functions holomorphic in ∆, but for complex harmonic
functions it need not be so [4].

Let α ∈ [0, 1] and

p1(α) := 1− log2(2− α),

p2(α) := 1 + p1(α),

p3(α) := 1 + p2(α), log2 1 = 0.

Let us denote

A1 := {(α, p) ∈ A : p ≥ p1(α)},
A2 := {(α, p) ∈ A : p ≥ p2(α)},
A3 := {(α, p) ∈ A : p ≥ p3(α)}.
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α

p

1

2

3

1

A1

A2

A3

p = p1(α)

p = p2(α)

p = p3(α)

A3 ⊂ A2 ⊂ A1

In [7] the following theorems are proved:

Theorem 1. Let (α, p) ∈ A1. Then HS(α, p) is the class of univalent and
sense-preserving functions in ∆.
A1 is the largest set, in which every function f ∈ HS(α, p), (α, p) ∈ A is

univalent in ∆.

Theorem 2. If (α, p) ∈ A1, then the functions of the class HS0(α, p) are
starlike in ∆. If (α, p) ∈ A2, then the functions of the class HS0(α, p) are
convex in ∆.

Remark 3. The sets A1 and A2 are the largest subsets of A, in which every
function f ∈ HS0(α, p) is starlike, convex in ∆, respectively.

2. Main results. In view of Theorem 2 it seems natural to ask a question
about the order of starlikeness of functions of the class HS0(α, p), (α, p) ∈
A1 and about the order of convexity of functions of the class HS0(α, p),
(α, p) ∈ A2. The next theorems solve this problem.

Theorem 3. Let (α, p) ∈ A1. If f ∈ HS0(α, p), then f is a univalent
sense-preserving function starlike of the order β∗(α, p) := U2(α,p)−2

U2(α,p)+1 in ∆.
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Proof. The univalence and sense-preservation of the function f in ∆ are
guaranteed by Theorem 1.

Using a method similar to previously used in [2], J. M. Jahangiri ([6]) has
proved that if a function f of the form (1.1) satisfies the condition

∞∑
n=1

(
n− β
1− β

|an|+
n+ β

1− β
|bn|
)
≤ 2, 0 ≤ β < 1,

then for every r ∈ (0, 1), θ ∈ [0, 1], the condition (1.3) holds, so f is starlike
of the order β in ∆.

If f belongs to HS0(α, p), the aforementioned coefficient condition takes
the form

(2.1)
∞∑
n=2

(
n− β
1− β

|an|+
n+ β

1− β
|bn|
)
≤ 1, 0 ≤ β < 1.

It is obvious that for any β ∈ [0, 1) we have n−β
1−β ≤

n+β
1−β , n = 2, 3, . . . .

Therefore, it is sufficient to show that β∗ is the largest constant such that
for every fixed (α, p) ∈ A1, we have β∗ ∈ [0, 1) and, due to the condition
(1.2), n+β∗

1−β∗ ≤ Un(α, p) for any n = 2, 3, . . . .
We have 0 ≤ β∗(α, p) < 1 if (α, p) ∈ A1. Indeed, the inequality p ≥

p1(α), α ∈ [0, 1] is equivalent to 2p(2 − α) ≥ 2, i.e. U2(α, p) ≥ 2, therefore
β∗(α, p) ≥ 0, (α, p) ∈ A1. The upper estimation is immediate.

The inequality n+β∗

1−β∗ ≤ Un(α, p), n = 2, 3, . . . is equivalent to the inequal-
ity

(2.2) β∗(α, p) ≤ Un(α, p)− n
Un(α, p) + 1

, n = 2, 3, . . . , (α, p) ∈ A1.

Let us consider the function of the form

t(x) = t(α, p;x) :=
xp(α+ (1− α)x)− x
xp(α+ (1− α)x) + 1

,

x ≥ 2, (α, p) ∈ A1. We will prove that minx≥2 t(x) = t(2). We have

t′(x) =
xp+1p(1− α) + xp(1− 2α+ p) + xp−1pα− 1

[xp(α+ (1− α)x) + 1]2
, x ≥ 2.

Let us denote s(x) := xp+1p(1 − α) + xp(1 − 2α + p) + xp−1pα − 1, x ≥ 2,
(α, p) ∈ A1. Then we have s′(x) = pxp−2

[
(p+ 1)(1−α)x2 + (1− 2α+ p)x+

α(p− 1)
]
, x ≥ 2.

Let us consider three cases:
1) Let α ∈ [0, 1] and p ≥ 1. Then s′(x) > 0, x ≥ 2, therefore s is an

increasing function in (2,+∞). Moreover, s(2) ≥ 0.
Indeed, s(2) = 2p−1(2− α)(3p+ 4)− 6 · 2p−1 − 1 ≥ 2p−1(3p− 2)− 1. Let

us note that 3p− 2 ≥ 21−p for p ≥ 1 and 2p−1(3p− 2) ≥ 1. Hence s(x) ≥ 0,
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x ≥ 2, therefore t′(x) ≥ 0, x ≥ 2 and consequently minx≥2 t(x) = t(2) =
β∗(α, p), α ∈ [0, 1], p ≥ 1.

2) Let now α ∈ (0, 1) and p1(α) ≤ p < 1. We will investigate the
quadratic equation (p+ 1)(1− α)x2 + (1− 2α+ p)x+ α(p− 1), x ≥ 2 with
zeros x1 = −1, x2 = α(1−p)

(1−α)(p+1) ≤ 2. The last inequality is equivalent to

p ≥ 3α−2
2−α and χ(α) := 3α−2

2−α − p1(α) < 0, α ∈ (0, 1). Hence s′(x) ≥ 0, x ≥ 2.
In this case we need to show that s(2) ≥ 0, α ∈ (0, 1), p1(α) ≤ p < 1. We

have

s′p(2) = 2p−1
{

(2− α)[(3p+ 4) ln 2 + 3]− 6 ln 2
}
.

The inequality (2 − α)[(3p + 4) ln 2 + 3] − 6 ln 2 ≥ 0 is equivalent to p ≥
2

2−α −
3+4 ln 2
3 ln 2 .

Let us denote ψ(α) := 2
2−α −

3+4 ln 2
3 ln 2 , α ∈ (0, 1). We have ψ(α) < 0

for α ∈ (0, 1), so ψ(α) < p1(α) ≤ p, α ∈ (0, 1), i.e. s is an increasing
function of variable p in (p1(α), 1), α ∈ (0, 1). Moreover, s(2)|p=p1(α) =

6− 3 log2(2− α)− 6
(2−α) ≥ 0, α ∈ (0, 1).

Indeed, the last inequality has an equivalent form log2(2 − α) ≤ 2(1−α)
2−α .

Let us denote m(α) := log2(2 − α) − 2(1−α)
2−α , α ∈ (0, 1). We have m(0) =

m(1) = 0 and m′(α) = 2(ln 2−1)+α
(2−α)2 ln 2

. Hence m is a continuous function
decreasing in (0, 2(1 − ln 2)) and increasing in (2(1 − ln 2), 1). Therefore
m(α) < 0, α ∈ (0, 1).

The above considerations imply s(x) ≥ 0, x ≥ 2, therefore t′(x) ≥ 0,
x ≥ 2, hence minx≥2 t(x) = t(2) = β∗(α, p), α ∈ (0, 1), p1(α) ≤ p < 1.

3) Finally let us consider the case when α = 0, p ∈ (0, 1). Then s′(x) =
p(p + 1)xp−2(x2 + x) > 0, x ≥ 2 and s(2) = 2p(3p + 1) − 1 > 0, hence
minx≥2 t(x) = t(2) = β∗(0, p), p ∈ (0, 1).

Therefore, we showed that for any point (α, p) ∈ A1 there is minx≥2 t(x) =
t(2). From the form of the function t we conclude that β∗(α, p), (α, p) ∈ A1,
is the largest constant such that for every fixed (α, p) ∈ A1 the system of
conditions (2.2) holds for any n = 2, 3, . . . .

Thus, for each function of the class HS0(α, p), (α, p) ∈ A1, with any
β ∈ [0, β∗(α, p)], the coefficient condition (2.1) holds. Hence the proof is
completed. �

Proposition 1. In every class HS0(α, p), (α, p) ∈ A1 there exists a func-
tion starlike of the order β∗(α, p) in the sense of the restrictive Robertson’s
definition ([11]). The following formula

(2.3) f∗2 (α, p; z) = z + b∗2z
2, z ∈ ∆, (α, p) ∈ A1, b∗2 =

1

U2(α, p)
.

gives an example of such function.
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Proof. Since

|b∗1|+
∞∑
n=2

Un(α, p)(|a∗n|+ |b∗n|) = U2(α, p)|b∗2| = 1,

we have f∗2 ∈ HS0(α, p), (α, p) ∈ A1. Therefore, according to Theorem 3,
the function f∗2 is starlike of the order β∗(α, p) =

1−2b∗2
1+b∗2

, β∗(α, p) ∈ [0, 1).
Therefore, for any r ∈ (0, 1), θ ∈ [0, 2π] we have

∂

∂θ

(
arg f∗2 (reiθ)

)
= Re

{
1− 2b∗2e

−3iθr

1 + b∗2e
−3iθr

}
≥ β∗(α, p).

Putting θ = 0, we obtain

1− 2b∗2r

1 + b∗2r
≥ β∗(α, p), r ∈ (0, 1).

Let us denote u(r) :=
1−2b∗2r
1+b∗2r

, r ∈ [0, 1). The function u is continuous

and decreasing in (0, 1), so for any r ∈ [0, 1), u(r) >
1−2b∗2
1+b∗2

. Moreover,

limr→1− u(r) =
1−2b∗2
1+b∗2

. Hence the function f∗2 cannot be starlike of the order
higher than β∗(α, p).

Let us note that for the function f∗2 (α, p; ·) the equality in condition (2.1)
holds for β = β∗(α, p). �

Property 1. Let (α, p) ∈ A1, a ≥ 0. If (α, p) is any point on the curve
p = pa(α), α ∈ [0, 1], where pa(α) := p1(α) + a, then HS0(α, p) is the class
of functions starlike of the order β∗(a) := β∗(α, pa(α)) = 21+a−2

21+a+1
and in this

class there exists a function starlike of the order β∗(a), in the sense of the
restrictive Robertson’s definition ([11]).

If a = 0 (p0(α) = p1(α)), then β∗(0) = β∗(α, p1(α)) = 0.
Moreover, if 0 ≤ a1 < a2, then 0 ≤ β∗(a1) < β∗(a2) < 1.

Indeed, let us note that

U2(α, p
a(α)) = α21+a−log2(2−α) + (1− α)22+a−log2(2−α) = 21+a,

hence β∗(α, pa(α)) = 21+a−2
21+a+1

. Moreover, U2(α, p
0(α)) = 2, α ∈ [0, 1], so

if (α, p) is a point on the curve p = p1(α), α ∈ [0, 1], which is the arc of
boundary of the set A1, then functions of the class HS0(α, p) are starlike of
the order 0, so starlike in ∆.

Moreover, (β∗(a))′ = 21+a3 ln 2
(21+a+1)2

> 0, a ≥ 0, therefore, the function β∗ is
an increasing mapping of variable a. We also have the following result.

Theorem 4. Let (α, p) ∈ A2. If f ∈ HS0(α, p), then f is an univalent
sense-preserving function convex of the order βc(α, p) := U2(α,p)−4

U2(α,p)+2 in ∆.
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Proof. Univalence and sense-preservation of the function f in ∆ are guar-
anteed by Theorem 1.

We will use the fact (see [6]) that if f of the form (1.1) (b1 = 0) satisfies
the condition

(2.4)
∞∑
n=2

(
n(n− β)

1− β
|an|+

n(n+ β)

1− β
|bn|
)
≤ 1, 0 ≤ β < 1,

then for any r ∈ (0, 1), f satisfies the condition (1.4), so it is a function
convex of the order β in the disc ∆.

Using the fact that for any β ∈ [0, 1), n−β
1−β ≤

n+β
1−β , n = 2, 3, . . . , we will

show that βc(α, p), (α, p) ∈ A2 is the largest constant from the range [0, 1)

such that n(n+βc(α,p))
1−βc(α,p) ≤ Un(α, p), (α, p) ∈ A2 for any n = 2, 3, . . . .

It is obvious that βc(α, p) ∈ [0, 1) if (α, p) ∈ A2. Indeed, the inequality
p ≥ p2(α), α ∈ [0, 1] is equivalent to U2(α, p) ≥ 4.

Let us consider a function of the form a(x) = a(α, p;x) := xp(α+(1−α)x)−x2
xp(α+(1−α)x)+x ,

x ≥ 2, (α, p) ∈ A2 and q := p− 1. Investigation of the behavior of the func-
tion a(α, p; ·), (α, p) ∈ A2 in the range [2,+∞) is equivalent to examination
of a function t(α, q; ·), (α, q) ∈ A1 considered in the proof of Theorem 3.

Therefore, we have minx≥2 a(x) = a(2) = U2(α,p)−4
U2(α,p)+2 , (α, p) ∈ A2.

Hence
∞∑
n=2

(
n(n− βc(α, p))

1− βc(α, p)
|an|+

n(n+ βc(α, p))

1− βc(α, p)
|bn|
)

≤
∞∑
n=2

n(n+ βc(α, p))

1− βc(α, p)
(|an|+ |bn|)

≤
∞∑
n=2

Un(α, p)(|an|+ |bn|) ≤ 1, (α, p) ∈ A2,

so, if β = βc(α, p), then the condition (2.4) holds.
Therefore, for any function of the class HS0(α, p), (α, p) ∈ A2 and for

each β ∈ [0, βc(α, p)], the coefficient condition (2.4) holds. It is a sufficient
condition for convexity of the order β of a function f in ∆. �

Proposition 2. In each class HS0(α, p), (α, p) ∈ A2 there exists a function
which is convex of the order β∗(α, p) in the sense of the restrictive Robert-
son’s definition ([11]). Formula (2.3) gives an example of such function.

In the proof we use the same method, as in the proof of Proposition 1.

Property 2. Let (α, p) ∈ A2, a ≥ 0. If (α, p) is any point of the curve
p = pb(α), α ∈ [0, 1], where pb(α) := p2(α) + b, then HS0(α, p) is the class
of the functions convex of the order βc(b) := βc(α, pb(α)) = 22+b−4

22+b+2
and in
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this class there exists a function convex of the order βc(b) in the sense of
the restrictive Robertson’s definition ([11]).

Moreover, if 0 ≤ b1 < b2, then 0 ≤ βc(b1) < βc(b2) < 1.

Justification of validity of this property is analogous to the proof of Prop-
erty 1.

3. On other properties of functions of the classes HS(α, p) and
HS0(α, p). The very well-known Alexander theorem for univalent holo-
morphic functions shows relationships between starlike and convex func-
tions. P. Duren ([4], p. 108) gave the partial extension of this theorem in
the case of complex harmonic functions. We show an analogous extension
for functions of the classes investigated in this paper.

Property 3. Let α ∈ [0, 1], p > 1. If f of the form (1.1) is a function of
the class HS(α, p− 1) (HS0(α, p− 1)), then a function K of the form

K(z) =

∫ 1

0

f(zt)

t
dt =

∫ z

0

h(u)

u
du+

∫ z

0

g(u)

u
du, z ∈ ∆

belongs to the class HS(α, p) (HS0(α, p)).

Indeed, we have

K(z) =

∫ 1

0

f(zt)

t
dt =

∫ 1

0

(
tz +

∑∞
n=2 ant

nzn

t
+
b1zt+

∑∞
n=2 bnt

nzn

t

)
dt

=

∫ 1

0

(
z + b1z +

∞∑
n=2

anz
ntn−1 +

∞∑
n=2

bnznt
n−1
)
dt

= z +
∞∑
n=2

anz
n

n
+ b1z +

∞∑
n=2

bnzn

n
, z ∈ ∆,

therefore, K is of the form (1.1).
Moreover,

|b1|+
∞∑
n=2

Un(α, p)
( |an|
n

+
|bn|
n

)
= |b1|+

∞∑
n=2

Un(α, p− 1)(|an|+ |bn|) ≤ 1.

The next theorems concern the convolutions of complex harmonic func-
tions in ∆.

Definition 7. Let fk(z) = hk(z) + gk(z), where hk(z) = z +
∑∞

n=2 a
(k)
n zn,

gk(z) =
∑∞

n=1 b
(k)
n zn are holomorphic in ∆, k = 1, 2.

Hadamard’s convolution of the functions f1 and f2 is given by the formula

(f1 ∗ f2)(z) := z +

∞∑
n=2

a(1)n a(2)n zn +

∞∑
n=1

b
(1)
n b

(2)
n zn, z ∈ ∆.
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Definition 8. Let fk(z) = hk(z) + gk(z), where hk(z) = z +
∑∞

n=2 a
(k)
n zn,

gk(z) =
∑∞

n=1 b
(k)
n zn are holomorphic in ∆, k = 1, 2.

The integral convolution of the functions f1 and f2 is given by the formula

(f1 � f2)(z) := z +

∞∑
n=2

a
(1)
n a

(2)
n

n
zn +

∞∑
n=1

b
(1)
n b

(2)
n

n
zn, z ∈ ∆.

We have the following result.

Theorem 5. Let f̃(z) = z+
∑∞

n=2 ãnz
n+
∑∞

n=2 b̃nz
n, z ∈ ∆ be a univalent

complex harmonic function convex in ∆.
If f ∈ HS0(α, p), (α, p) ∈ A2, then f ∗ f̃ is a univalent sense-preserving

function starlike in ∆ and f � f̃ is a univalent sense-preserving function
convex in ∆.

If f ∈ HS0(α, p), (α, p) ∈ A3, then f ∗ f̃ is a univalent sense preserving
function convex in ∆.

Proof. It is obvious that in each considered case f ∗ f̃ and f � f̃ are complex
harmonic functions in ∆ and have the form required in the class HS0(α, p).

Let us assume that (α, p) ∈ A2. According to the fact that the estimations
|ãn| ≤ n+1

2 , |b̃n| ≤ n−1
2 , n = 2, 3, . . . hold ([3], th. 5.10), we have |ãn|n ≤ 1,

|b̃n|
n ≤ 1, n = 2, 3, . . . . Hence

∞∑
n=2

n(|anãn|+ |bnb̃n|) =
∞∑
n=2

n2

(
|an|

∣∣∣∣ ãnn
∣∣∣∣+ |bn|

∣∣∣∣ b̃nn
∣∣∣∣
)

≤
∞∑
n=2

n2(|an|+ |bn|) ≤
∞∑
n=2

Un(α, p)(|an|+ |bn|) ≤ 1,

so f∗f̃ ∈ HS0(1, 1), therefore the convolution is a univalent sense-preserving
starlike function.

Due to the fact that (f � f̃)(z) =
∫ 1
0

(f∗f̃)(zt)
t dt, z ∈ ∆ and f ∗ f̃ ∈

HS0(1, 1), we obtain from Property 3 that a function f � f̃ belongs to the
class HS0(1, 2), so it is a univalent and sense-preserving function convex in
∆ (see [2]).

Let (α, p) ∈ A3. Then it can be shown that Un(α, p) ≥ n3, n = 2, 3, . . . .
Hence, using an analogous method as above, we can show that for the
function f ∗ f̃ the inequalities
∞∑
n=2

n2(|anãn|+ |bnb̃n|) ≤
∞∑
n=2

n3(|an|+ |bn|) ≤
∞∑
n=2

Un(α, p)(|an|+ |bn|) ≤ 1

hold. Therefore, for the convolution f ∗ f̃ the condition sufficient for univa-
lence sense-preservation and convexity holds. �



On the order of starlikeness and convexity... 91

References

[1] Adamczyk, G., Łazińska, A., On some generalization of coefficient conditions for
complex harmonic mappings, Demonstratio Math. 38 (2) (2004), 317–326.

[2] Avci, Y., Złotkiewicz E., On harmonic univalent mappings, Ann. Univ. Mariae Curie-
Skłodowska Sec. A. 44 (1) (1990), 1–7.

[3] Clunie, J., Sheil-Small, T., Harmonic univalent mappings, Ann. Acad. Sci. Fenn.,
Ser. A. I. Math., 9 (1984), 3–25.

[4] Duren, P., Harmonic mappings in the plane, Cambridge University Press, Cambridge,
2004.

[5] Ganczar, A., On harmonic univalent functions with small coefficients, Demonstratio
Math. 34 (3) (2001), 549–558.

[6] Jahangiri, J. M., Harmonic functions starlike in the unit disk, J. Math. Anal. Appl.,
235 (1999), 470–477.

[7] Jakubowski, J. Z., Łazińska, A. and Sibelska, A., On some properties of complex
harmonic mappings with a two-parameter coefficient condition, Math. Balkanica, New
Ser. 18 (2004), 313–319.

[8] Łazińska, A., On complex mappings in the unit disc with some coefficient conditions,
Folia Sci. Univ. Techn. Resoviensis 199 (26) (2002), 107–116.

[9] Mocanu, S. S., Miller, P. T., Differential Subordinations: Theory and Applications,
Marcel Dekker, New York and Basel, 2000.

[10] Pinchuk, B., Starlike and convex functions of order α, Duke Math. J. 35 (4) (1968),
721–734.

[11] Robertson, M., On the theory of univalent functions, Ann. of Math. 37 (1936), 374–
408.

[12] Silverman, H., Harmonic univalent functions with negative coefficients, J. Math.
Anal. Appl. 220 (1998), 283–289.

Agnieszka Sibelska
Departament of Nonlinear Analysis
Faculty of Mathematics and Computer Science
University of Łódź
ul. S. Banacha 22
90-238 Łódź
Poland
e-mail: sibelska@math.uni.lodz.pl

Received September 21, 2009


