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Periodic solutions for second-order
Hamiltonian systems with a p-Laplacian

Abstract. In this paper, by using the least action principle, Sobolev’s in-
equality and Wirtinger’s inequality, some existence theorems are obtained for
periodic solutions of second-order Hamiltonian systems with a p-Laplacian
under subconvex condition, sublinear growth condition and linear growth con-
dition. Our results generalize and improve those in the literature.

1. Introduction. Consider the second-order Hamiltonian systems

(1.1)
{
ü(t) = ∇F (t, u(t)) + e(t), a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

where T > 0, e(t) ∈ L1([0, T ];RN ) and F : [0, T ] × RN → R satisfies the
following assumption:

(A) F (t, x) is measurable in t for every x ∈ RN and continuously dif-
ferentiable in x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+) and
b ∈ L1([0, T ],R+) such that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [0, T ].
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The corresponding function ϕ on H1
T given by

ϕ(u) =
1

2

∫ T

0
|u̇(t)|2dt+

∫ T

0
F (t, u(t))dt+

∫ T

0
(e(t), u(t))dt

is continuously differentiable and weakly lower semicontinuous on H1
T (see

[3]), where

H1
T =

{
u : [0, T ]→ RN | u is absolutely continuous, u(0) = u(T )

and u̇ ∈ L2([0, T ])
}

is a Hilbert space with the norm defined by

(1.2) ‖u‖ =

[∫ T

0
|u(t)|2dt+

∫ T

0
|u̇(t)|2dt

]1/2
for each u ∈ H1

T . Moreover, one has

(ϕ′(u), v) =

∫ T

0
[(u̇(t), v̇(t)) + (∇F (t, u(t)), v(t)) + (e(t), v(t))]dt

for u, v ∈ H1
T . It is well known that the solutions of problem (1.1) correspond

to the critical points of ϕ (see [3]).
When e(t) ≡ 0, it has been proved that problem (1.1) has at least one

solution by the least action principle and the minimax methods (see [1]–
[15]). Many solvability conditions are given, such as the coercive condition
(see [1]), the periodicity condition (see [11]), the convexity condition (see
[2]), the subadditive condition (see [7]). Specially, when e(t) ≡ 0, in [13],
Wu and Tang obtained the following theorem:

Theorem A. Suppose F = G(t, x) + H(t, x) with G and H satisfying as-
sumption (A) and the following conditions:
(A1) G(t, ·) is (λ, µ)-subconvex for a.e. t ∈ [0, T ], where λ, µ > 1/2 and
µ < 2λ2;
(A2) there exist α ∈ [0, 1), f, g ∈ L1([0, T ];R+) such that

|∇H(t, x)| ≤ f(t)|x|α + g(t)

for all x ∈ RN and a.e. t ∈ [0, T ];

(A3)
1

|x|2α

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
→ +∞ as |x| → ∞.

Then problem (1.1) has at least one solution which minimizes ϕ on H1
T .

Remark 1.1. A function G : RN → R is called (λ, µ)-subconvex if

G(λ(x+ y)) ≤ µ(G(x) +G(y))

for some λ, µ > 0 and all x, y ∈ RN (see [13]).
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Let

(1.3) G(t, x) = h(t)|x|5/4, H(t, x) = sin

(
2πt

T

)
|x|7/4 + (0.6T − t)|x|3/2.

where h(t) ∈ L1([0, T ];R+). Then G(t, x) is (2, 29/4)-subconvex for a.e.
t ∈ [0, T ]. In fact, by Young’s inequality,

G(t, 2(x+ y)) = h(t)|2(x+ y)|5/4

= 25/4h(t)|x+ y||x+ y|1/4

≤ 25/4h(t)(|x|+ |y|)(|x|+ |y|)1/4

≤ 25/4h(t)(|x|+ |y|)(|x|1/4 + |y|1/4)

= 25/4h(t)(|x|5/4 + |y|5/4 + |x||y|1/4 + |y||x|1/4)

≤ 25/4h(t)

(
|x|5/4 + |y|5/4 +

4|x|5/4

5

+
|y|5/4

5
+

4|y|5/4

5
+
|x|5/4

5

)
= 29/4h(t)(|x|5/4 + |y|5/4)

= 29/4(G(t, x) +G(t, y)).

Obviously, λ = 2 > 1/2 and µ = 29/4 < 23 = 2λ2. Therefore, G satisfies
(A1). Moreover, it is easy to see that

|∇H(t, x)| ≤ 7

4

∣∣∣∣sin(2πt

T

)∣∣∣∣ |x|3/4 +
3

2
|0.6T − t||x|1/2

≤ 7

4

(∣∣∣∣sin(2πt

T

)∣∣∣∣+ ε

)
|x|3/4 +

T 3

ε2

for all x ∈ RN and t ∈ [0, T ], where ε > 0. The above inequality shows that
(A2) holds with α = 3/4 and

f(t) =
7

4

(∣∣∣∣sin(2πt

T

)∣∣∣∣+ ε

)
, g(t) =

T 3

ε2
.

However, F (t, x) does not satisfy (A3). In fact,

lim inf
|x|→∞

|x|−2α
∫ T

0
F (t, x)dt

= lim inf
|x|→∞

|x|−3/2
∫ T

0

[
h(t)|x|5/4 + sin

(
2πt

T

)
|x|7/4 + (0.6T − t)|x|3/2

]
dt

= 0.1T 2.

The above example shows that it is valuable to improve (A3).
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When α = 1, e(t) ≡ 0, in [14], the authors obtained the following theorem:

Theorem B. Suppose F = G(t, x) + H(t, x) with G and H satisfying as-
sumption (A). Assume that (A1) and the following conditions hold:
(B2) there exist f, g ∈ L1([0, T ];R+) with 0 <

∫ T
0 f(t)dt < 12/T such that

|∇H(t, x)| ≤ f(t)|x|+ g(t)

for all x ∈ RN and a.e. t ∈ [0, T ];

(B3)
1

|x|2

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
→ +∞ as |x| → ∞.

Then problem (1.1) has at least one solution which minimizes ϕ on H1
T .

Theorem B is not correct. In fact, by condition (A1), in a similar way to
[13], we get

G(t, x) ≤ 2µ(|x|β + 1)a0b(t)

for a.e. t ∈ [0, T ] and all x ∈ RN , where β < 2, a0 = max0≤s≤1 a(s). Then

(1.4) lim sup
|x|→∞

∫ T
0 G(t, x)dt

|x|2
≤ 0.

By condition (B2), we get

|H(t, x)| ≤
∫ 1

0
|∇H(t, sx)||x|ds+ |H(t, 0)|

≤
∫ 1

0
(f(t)|sx|+ g(t))|x|ds+ |H(t, 0)|

=
f(t)

2
|x|2 + g(t)|x|+ |H(t, 0)|.

Then

(1.5) lim sup
|x|→∞

∫ T
0 H(t, x)dt

|x|2
≤ 1

2

∫ T

0
f(t)dt.

Thus, it follows from (1.4) and (1.5) that

lim sup
|x|→∞

1

|x|2

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
≤ 1

2

∫ T

0
f(t)dt,

which contradicts condition (B3) of Theorem B. Therefore, there are no
functions satisfying Theorem B. Hence, it is necessary to improve Theo-
rem B.

In our paper, by using the least action principle, we will further study the
existence of solutions to problem (1.1) based on Theorem A and Theorem B.

In Section 2, we consider more general system

(1.6)
{

(|u′(t)|p−2u′(t))′ = ∇F (t, u(t)) + e(t), a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,
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where p > 1, q > 1, with p and q satisfying 1/p + 1/q = 1, and T , e(t)
and F (t, x) are the same as in problem (1.1). When e(t) ≡ 0, by using the
minimax principle and the dual least action principle, it has been proved in
[16] and [17], respectively, that system (1.6) has at least one solution. In
this section, we improve two inequalities (which are often called Sobolev’s
inequality and Writinger’s inequality) given in [3] (see Proposition 1.1 in
[3]) and then by using them and the least action principle, we obtain some
existence results for system (1.6).

In Section 3, we consider system (1.1), which is the special case p = 2
of (1.6). When p = 2, we have sharp estimates for Sobolev’s inequality
and Writinger’s inequality (see Proposition 1.3 in [3]) so we can obtain
better results than those following from the general Sobolev’s inequality
and Writinger’s inequality. Even if e(t) ≡ 0, our Theorem 2.1 with p = 2
and α ∈ (0, 1) and Theorem 3.1 with α ∈ (0, 1) still improve Theorem
A. Theorem 2.2 with p = 2 and Theorem 3.2 improve Theorem B. Our
Theorems 2.3–2.5 and Theorems 3.3–3.5 cover the case when

∫ T
0 e(t) = 0 in

Theorem 2.1 is deleted which leads to some new results. In Section 4, some
examples will be given to illustrate our results.

2. Case p > 1. In this section, we consider system (1.6). Let

W 1,p
T =

{
u : [0, T ]→ RN | u(t) is absolutely continuous on [0, T ],

u(0) = u(T ) and u̇ ∈ Lp(0, T ;RN )
}
.

Then W 1,p
T is a Banach space with the norm defined by

‖u‖ =

[∫ T

0
|u(t)|pdt+

∫ T

0
|u̇(t)|pdt

] 1
p

, u ∈W 1,p
T .

It follows from [3] that W 1,p
T is reflexive and uniformly convex.

The following two lemmas (that is Lemma 2.1 and Lemma 2.2) also have
been proved in our another paper [18] which is in press.

Lemma 2.1 (see [18]). Let a > 0, b, c ≥ 0, ε > 0.
(i) If α ∈ (0, 1], then

(2.1) (a+ b+ c)α ≤ aα + bα + cα;

(ii) If α ∈ (1,+∞), then there exists B(ε) > 1 such that

(2.2) (a+ b+ c)α ≤ (1 + ε)aα +B(ε)bα +B(ε)cα.

Proof. It is easy to verify (i). In the sequel, we only prove (ii). Since

lim
x→+∞

xα/(α−1) − 1[
x1/(α−1) − 1

]α = 1,
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there exists a constant M = M(ε) > 1 such that

Mα/(α−1) − 1[
M1/(α−1) − 1

]α < 1 + ε.

Set
f(t) = (1 + t)α −Mtα, t ∈ [0, 1].

Then

f(t) ≤ Mα/(α−1) − 1[
M1/(α−1) − 1

]α < 1 + ε, t ∈ [0, 1].

It follows that

(2.3) (1 + t)α ≤ 1 + ε+Mtα, t ∈ [0, 1].

If a ≤ b+ c, then

(a+ b+ c)α ≤ 2α(b+ c)α ≤ 22α−1bα + 22α−1cα.

This shows that (2.2) holds. If a > b+ c, then by (2.3), we have

(a+ b+ c)α ≤ aα
(

1 +
b+ c

a

)α
≤ aα

(
1 + ε+M

(b+ c)α

aα

)
≤ (1 + ε)aα + 2α−1Mbα + 2α−1Mcα.

This shows that (2.2) also holds. The proof is complete. �

Lemma 2.2 (see [18]). Let u ∈W 1,p
T and

∫ T
0 u(t)dt = 0. Then

(2.4) ‖u‖∞ ≤
(

T

q + 1

)1/q (∫ T

0
|u̇(s)|pds

)1/p

and

(2.5)
∫ T

0
|u(s)|pds ≤ T pΘ(p, q)

(q + 1)p/q

∫ T

0
|u̇(s)|pds,

where

Θ(p, q) =

∫ 1

0

[
sq+1 + (1− s)q+1

]p/q
ds.

Proof. Fix t ∈ [0, T ]. For every τ ∈ [0, T ], we have

(2.6) u(t) = u(τ) +

∫ t

τ
u̇(s)ds.

Set

φ(s) =

{
s, 0 ≤ s ≤ t,
T − s, t ≤ s ≤ T.



Periodic solutions for second-order Hamiltonian systems... 99

Integrating (2.6) over [0, T ] and using the Hölder inequality, we obtain

(2.7)

T |u(t)| =
∣∣∣∣∫ T

0
u(τ)dτ +

∫ T

0

∫ t

τ
u̇(s)dsdτ

∣∣∣∣
≤
∫ t

0

∫ t

τ
|u̇(s)|dsdτ +

∫ T

t

∫ τ

t
|u̇(s)|dsdτ

=

∫ t

0
s|u̇(s)|ds+

∫ T

t
(T − s)|u̇(s)|ds

=

∫ T

0
φ(s)|u̇(s)|ds

≤
(∫ T

0
[φ(s)]qds

)1/q (∫ T

0
|u̇(s)|pds

)1/p

=
1

(q + 1)1/q
[
tq+1 + (T − t)q+1

]1/q (∫ T

0
|u̇(s)|pds

)1/p

.

Since tq+1 + (T − t)q+1 ≤ T q+1 for t ∈ [0, T ], it follows from (2.7) that (2.4)
holds. On the other hand, from (2.7), we have

T p
∫ T

0
|u(t)|pdt ≤ 1

(q + 1)p/q

(∫ T

0
|u̇(s)|pds

)∫ T

0

[
tq+1 + (T − t)q+1

]p/q
dt

≤ T 1+p(q+1)/q

(q + 1)p/q

(∫ T

0
|u̇(s)|pds

)∫ 1

0

[
sq+1 + (1− s)q+1

]p/q
ds

=
T 2pΘ(p, q)

(q + 1)p/q

∫ T

0
|u̇(s)|pds.

It follows that (2.5) holds. The proof is complete. �

Remark 2.1. Clearly, our Lemma 2.1 improves Proposition 1.1 in [3]. In
fact, according to the proof of Proposition 1.1 in [3], it is easy to show that
if
∫ T
0 u(t)dt = 0, then

(2.8) ‖u‖∞ ≤ T 1/q

(∫ T

0
|u̇(s)|pds

)1/p

and

(2.9)
∫ T

0
|u(s)|pds ≤ T p

∫ T

0
|u̇(s)|pds.

Obviously, our result is better.

Lemma 2.3 (see [16]). In Sobolev’s space W 1,p
T , for u ∈W 1,p

T , ‖u‖ → ∞ if
and only if (

|ū|p +

∫ T

0
|u̇(t)|pdt

)1/p

→∞.
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Let

W̃ 1,p
T =

{
u ∈W 1,p

T

∣∣∣∣ ∫ T

0
u(t)dt = 0

}
.

It is easy to show that W̃ 1,p
T is a subset of W 1,p

T and W 1,p
T = RN ⊕W̃ 1,p

T . For
u ∈W 1,p

T , let ū = 1
T

∫ T
0 u(t)dt and ũ(t) = u(t)− ū. By Lemma 2.2, we have

(2.10)
∫ T

0
|ũ(t)|pdt ≤ T pΘ(p, q)

(q + 1)p/q

∫ T

0
|u̇(t)|pdt for every u ∈W 1,p

T

and

(2.11) ‖ũ‖p∞ ≤
(

T

q + 1

)p/q ∫ T

0
|u̇(t)|pdt for every u ∈W 1,p

T .

Let ϕp : W 1,p
T → R be defined by

(2.12) ϕp(u) =
1

p

∫ T

0
|u̇(t)|pdt+

∫ T

0
F (t, u(t))dt+

∫ T

0
(e(t), u(t))dt.

Then ϕp is continuously differentiable and weakly lower semicontinuous in
W 1,p
T (see [3]). Moreover,

(2.13)
〈ϕ′p(u), v〉 =

∫ T

0

(
|u̇(t)|p−2u̇(t), v̇(t)

)
dt

+

∫ T

0
(∇F (t, u(t)), v(t))dt+

∫ T

0
(e(t), v(t))dt

for u, v ∈ W 1,p
T . It is well known that the solutions of problem (1.6) corre-

spond to the critical points of ϕp (see [3]).
Next, for the sake of convenience, we denote

M1 =

∫ T

0
f(t)dt, M2 =

∫ T

0
g(t)dt, M3 =

∫ T

0
|e(t)|dt.

Theorem 2.1. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A) and e ∈ L1([0, T ];R) satisfies

∫ T
0 e(t)dt = 0. Assume the

following conditions hold:
(I1) G(t, ·) is (λ, µ)-subconvex for a.e. t ∈ [0, T ], where λ, µ > 1/2 and
µ < 2p−1λp;

(I2) there exist α ∈ (0, p− 1), f, g ∈ L1([0, T ];R+) such that

|∇H(t, x)| ≤ f(t)|x|α + g(t)

for all x ∈ RN and a.e. t ∈ [0, T ];

(I3) lim inf
|x|→∞

1

|x|qα

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
>

T

q(q + 1)

(∫ T

0
f(t)dt

)q
.

Then (1.6) has at least one solution which minimizes ϕp on W 1,p
T .
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Proof. By (I3), we can choose constants ε > 0, a1 > [T/(q + 1)]1/q such
that

(2.14) lim inf
|x|→∞

1

|x|qα

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
>

[(1 + ε)a1M1]
q

q
.

Let β = log2λ(2µ). Then 0 < β < p. In a similar way as in [13], by the
(λ, µ)-subconvexity of G(t, ·), we can prove that

(2.15) G(t, x) ≤ (2µ|x|β + 1)a0b(t)

for a.e. t ∈ [0, T ] and all x ∈ RN , where 0 < β < p and a0 = max0≤s≤1 a(s).
It follows from (I1), (2.15) and (2.11) that

(2.16)

∫ T

0
G(t, u(t))dt ≥ 1

µ

∫ T

0
G(t, λū)dt−

∫ T

0
G(t,−ũ(t))

≥ 1

µ

∫ T

0
G(t, λū)dt− (2µ‖ũ‖β∞ + 1)a0

∫ T

0
b(t)dt

≥ 1

µ

∫ T

0
G(t, λū)dt− C1‖u̇‖βLp − C2

for some positive constants C1 and C2. By (I2), Lemma 2.1 and (2.11), we
get

(2.17)

∣∣∣∣∫ T

0
[H(t, u(t))−H(t, ū)]dt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫ 1

0
(∇H(t, ū+ sũ(t)), ũ(t))dsdt

∣∣∣∣
≤
∫ T

0

∫ 1

0
f(t)|ū+ sũ(t)|α · |ũ(t)|dsdt+

∫ T

0

∫ 1

0
g(t)|ũ(t)|dsdt

≤M1(1 + ε)|ū|α‖ũ‖∞ +M1B(ε)‖ũ‖α+1
∞ +M2‖ũ‖∞

≤ 1

pap1
‖ũ‖p∞ +

[(1 + ε)a1M1]
q

q
|ū|qα +M1B(ε)‖ũ‖α+1

∞ +M2‖ũ‖∞

≤ 1

pap1

(
T

q + 1

)p/q
‖u̇‖pLp +

[(1 + ε)a1M1]
q

q
|ū|qα

+

(
T

q + 1

)(α+1)/q

M1B(ε)‖u̇‖α+1
Lp +

(
T

q + 1

)1/q

M2‖u̇‖Lp .
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It follows from (2.12), (2.16), (2.17) and
∫ T
0 e(t)dt = 0 that

ϕp(u) =
1

p
‖u̇‖pLp +

∫ T

0
G(t, u(t))dt+

∫ T

0
[H(t, u(t))−H(t, ū)]dt

+

∫ T

0
H(t, ū)dt+

∫ T

0
(e(t), ū+ ũ(t))dt

≥ 1

p
‖u̇‖pLp +

1

µ

∫ T

0
G(t, λū)dt− C1‖u̇‖βLp − C2

− 1

pap1

(
T

q + 1

)p/q
‖u̇‖pLp −

[(1 + ε)a1M1]
q

q
|ū|qα

−
(

T

q + 1

)(α+1)/q

M1B(ε)‖u̇‖α+1
Lp −

(
T

q + 1

)1/q

M2‖u̇‖Lp

+

∫ T

0
H(t, ū)dt−

(
T

q + 1

)1/q

M3‖u̇‖Lp

=

(
1

p
− 1

pap1

(
T

q + 1

)p/q)
‖u̇‖pLp − C1‖u̇‖βLp − C2

−
(

T

q + 1

)(α+1)/q

M1B(ε)‖u̇‖α+1
Lp −

(
T

q + 1

)1/q

(M2 +M3)‖u̇‖Lp

+ |ū|qα
{

1

|ū|qα

[
1

µ

∫ T

0
G(t, λū)dt+

∫ T

0
H(t, ū)dt

]
− [(1 + ε)a1M1]

q

q

}
.

By Lemma 2.3, ‖u‖ → ∞ if and only if
(
|ū|p + ‖u̇‖pLp

)1/p →∞. Hence, the
above inequality, a1 > [T/(q + 1)]1/q and (2.14) imply that

ϕp(u)→ +∞, as ‖u‖ → ∞.

By Theorem 1.1 in [3], the proof of Theorem 2.1 is complete. �

Remark 2.2. Clearly, when p = 2 and α ∈ (0, 1), our Theorem 2.1 improve
Theorem A. We choose p = 4, λ = 1, µ = 3/2. There exist functions
satisfying our Theorem 2.1 but not satisfying Theorem A. For example, let

G(t, x) = h(t) + 1 + sin |x|2, H(t, x) = (0.5T − t)|x|7/2 + 2T 3|x|10/3,

where h ∈ L1([0, T ],R+) satisfies h(t) ≥ 1 for a.e. t ∈ [0, T ].

Theorem 2.2. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A). Assume (I1) and the following conditions hold:

(I4) there exist f, g ∈ L1([0, T ];R+) with
∫ T
0 f(t)dt <

(
q+1
T

)p/q
1

Dp−1
such
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that

|∇H(t, x)| ≤ f(t)|x|p−1 + g(t)

for all x ∈ RN and a.e. t ∈ [0, T ], where

Dp−1 =

{
1, p ∈ (1, 2],
2p−2, p ∈ (2,+∞);

(I5)

lim inf
|x|→∞

1

|x|p

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]

>
TDq

p−1

(∫ T
0 f(t)dt

)q
q
[
(q + 1)p/q −Dp−1T p/q

∫ T
0 f(t)dt

]q/p .
Then (1.6) has at least one solution which minimizes ϕp on W 1,p

T .

Proof. By (I5), we can choose an a2 > T 1/q/[(q + 1)p/q −M1Dp−1T
p/q]1/p

such that

(2.18) lim inf
|x|→∞

1

|x|p

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
>

[Dp−1a2M1]
q

q
.

By (I1), we can get (2.16). By (I4) and (2.11), we get

(2.19)

∣∣∣∣∫ T

0
[H(t, u(t))−H(t, ū)]dt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫ 1

0
(∇H(t, ū+ sũ(t)), ũ(t))dsdt

∣∣∣∣
≤
∫ T

0

∫ 1

0
f(t)|ū+ sũ(t)|p−1 · |ũ(t)|dsdt+

∫ T

0

∫ 1

0
g(t)|ũ(t)|dsdt

≤ Dp−1M1|ū|p−1‖ũ‖∞ +
M1Dp−1

p
‖ũ‖p∞ +M2‖ũ‖∞

≤ 1

pap2
‖ũ‖p∞ +

[Dp−1a2M1]
q

q
|ū|p +

M1Dp−1
p

‖ũ‖p∞ +M2‖ũ‖∞

≤ 1

pap2

(
T

q + 1

)p/q
‖u̇‖pLp +

[Dp−1a2M1]
q

q
|ū|p

+
M1Dp−1

p

(
T

q + 1

)p/q
‖u̇‖pLp +

(
T

q + 1

)1/q

M2‖u̇‖Lp .
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It follows from (2.16) and (2.19) that

ϕp(u) =
1

p
‖u̇‖pLp +

∫ T

0
G(t, u(t))dt+

∫ T

0
[H(t, u(t))−H(t, ū)]dt

+

∫ T

0
H(t, ū)dt+

∫ T

0
(e(t), ū+ ũ(t))dt

≥ 1

p
‖u̇‖pLp +

1

µ

∫ T

0
G(t, λū)dt− C1‖u̇‖βLp − C2

− 1

pap2

(
T

q + 1

)p/q
‖u̇‖pLp −

[Dp−1a2M1]
q

q
|ū|p

− M1Dp−1
p

(
T

q + 1

)p/q
‖u̇‖pLp −

(
T

q + 1

)1/q

M2‖u̇‖Lp

+

∫ T

0
H(t, ū)dt−

(
T

q + 1

)1/q

M3‖u̇‖Lp −M3|ū|

=

[
1

p
− 1

pap2

(
T

q + 1

)p/q
− M1Dp−1

p

(
T

q + 1

)p/q]
‖u̇‖pLp

− C1‖u̇‖βLp − C2 −
(

T

q + 1

)1/q

(M2 +M3)‖u̇‖Lp

+ |ū|p
{

1

|ū|p

[
1

µ

∫ T

0
G(t, λū)dt+

∫ T

0
H(t, ū)dt

]
− [Dp−1a2M1]

q

q

}
−M3|ū|.

As ‖u‖ → ∞ if and only if
(
|ū|p + ‖u̇‖pLp

)1/p → ∞, the above inequality,
a2 > T 1/q/[(q + 1)p/q −M1Dp−1T

p/q]1/p and (2.18) imply that

ϕp(u)→ +∞, as ‖u‖ → ∞.

By Theorem 1.1 in [3], the proof of Theorem 2.2 is complete. �

Remark 2.3. We choose p = 4, λ = 1, µ = 3/2. There exist functions
satisfying our Theorem 2.2. For example, let

G(t, x) = h(t) + 1 + sin |x|2, H(t, x) = T 4|x|4 + (k(t), x).

where k ∈ L1([0, T ],RN ) and h ∈ L1([0, T ],R+) satisfies h(t) ≥ 1 for a.e.
t ∈ [0, T ].

Next, we consider the case when
∫ T
0 e(t)dt = 0 in Theorem 2.1 is deleted.

We will consider three cases: α ∈ (1/q, p− 1), α = 1/q and α ∈ (0, 1/q).

Theorem 2.3. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A). Assume (I1), (I3) and the following condition hold:
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(I ′2) there exist α ∈ (1/q, p− 1), f, g ∈ L1([0, T ];R+) such that

|∇F (t, x)| ≤ f(t)|x|α + g(t);

Then (1.6) has at least one solution which minimizes ϕp on W 1,p
T .

Proof. By (I3), we can choose an a3 > [T/(q + 1)]1/q such that

(2.20) lim inf
|x|→∞

1

|x|qα

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
>

[(1 + ε)a3M1]
q

q
.

By (I1), we can get (2.16). By (I ′2), we can get (2.17) with α ∈ (1/q, p− 1).
It follows from (2.16) and (2.17) with α ∈ (1/q, p− 1) that

ϕp(u) =
1

p
‖u̇‖pLp +

∫ T

0
G(t, u(t))dt+

∫ T

0
[H(t, u(t))−H(t, ū)]dt

+

∫ T

0
H(t, ū)dt+

∫ T

0
(e(t), ū+ ũ(t))dt

≥

(
1

p
− 1

pap3

(
T

q + 1

)p/q)
‖u̇‖pLp − C1‖u̇‖βLp

− C2 −
(

T

q + 1

)(α+1)/q

M1B(ε)‖u̇‖α+1
Lp

−
(

T

q + 1

)1/q

(M2 +M3)‖u̇‖Lp −M3|ū|

+ |ū|qα
{

1

|ū|qα

[
1

µ

∫ T

0
G(t, λū)dt+

∫ T

0
H(t, ū)dt

]
− [(1 + ε)a3M1]

q

q

}
.

As ‖u‖ → ∞ if and only if
(
|ū|p + ‖u̇‖pLp

)1/p → ∞, the above inequality,
a3 > [T/(q + 1)]1/q, α ∈ (1/q, p− 1) and (2.20) imply that

ϕp(u)→ +∞, as ‖u‖ → ∞.
By Theorem 1.1 in [3], the proof of Theorem 2.3 is complete. �

Remark 2.4. Theorem 2.3 shows that in Theorem 2.1,
∫ T
0 e(t)dt = 0 can

be deleted when α ∈ (1/q, p− 1).

Theorem 2.4. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A). Assume (I1) and the following conditions hold:
(I ′′2 ) there exist f, g ∈ L1([0, T ];R+) such that

|∇H(t, x)| ≤ f(t)|x|1/q + g(t);

(I ′′3 )
lim inf
|x|→∞

1

|x|

[
1

µ

∫ T

0
G(t, λx)dt +

∫ T

0
H(t, x)dt

]
>

T

q(q + 1)

(∫ T

0
f(t)dt

)q
+

∫ T

0
|e(t)|dt.
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Then (1.6) has at least one solution which minimizes ϕp on W 1,p
T .

Proof. By (I ′′3 ), we can choose constants ε > 0 and a4 > [T/(q+1)]1/q such
that

(2.21)
lim inf
|x|→∞

1

|x|

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
>

[(1 + ε)a4M1]
q

q
+

∫ T

0
|e(t)|dt.

By (I1), we can get (2.16). By (I ′′2 ), we can get (2.17) with α = 1/q. It
follows from p > (q + 1)/q, (2.16) and (2.17) with α = 1/q that

ϕp(u) ≥

(
1

p
− 1

pap4

(
T

q + 1

)p/q)
‖u̇‖pLp − C1‖u̇‖βLp − C2

−
(

T

q + 1

)(q+1)/q2

M1B(ε)‖u̇‖(q+1)/q
Lp −

(
T

q + 1

)1/q

(M2 +M3)‖u̇‖Lp

+ |ū|
{

1

|ū|

[
1

µ

∫ T

0
G(t, λū)dt+

∫ T

0
H(t, ū)dt

]
− [(1 + ε)a4M1]

q

q
−M3

}
.

As ‖u‖ → ∞ if and only if
(
|ū|p + ‖u̇‖pLp

)1/p → ∞, the above inequality,
a4 > [T/(q + 1)]1/q, and (2.21) imply that

ϕp(u)→ +∞, as ‖u‖ → ∞.
By Theorem 1.1 in [3], the proof of Theorem 2.4 is complete. �

Remark 2.5. We choose p = 4, λ = 1, µ = 3/2. There exist functions
satisfying our Theorem 2.4. For example, let

G(t, x) = h(t) + 1 + sin |x|2, H(t, x) = (0.5T − t)|x|7/4 +
|x|3

1 + |x|2
· l(t),

where l ∈ L1([0, T ],R+), h ∈ L1([0, T ],R+) satisfies h(t) ≥ 1 for a.e. t ∈
[0, T ], and let e(t) ∈ L1([0, T ];RN ) satisfy∫ T

0
|e(t)|dt <

∫ T

0
l(t)dt− 9

28
·
(

7

16

)4/3

T 11/3.

Theorem 2.5. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A). Assume (I1) and the following conditions hold:
(I ′′′2 ) there exist α ∈ (0, 1/q), f, g ∈ L1([0, T ];R+) such that

|∇H(t, x)| ≤ f(t)|x|α + g(t);

(I ′′′3 ) lim inf
|x|→∞

1

|x|

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
>

∫ T

0
|e(t)|dt.

Then (1.6) has at least one solution which minimizes ϕp on W 1,p
T .
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Proof. Choose an a5 > [T/(q+1)]1/q. By (I1), we can get (2.16). By (I ′′′2 ),
we can get (2.17) with α ∈ (0, 1/q). It follows from (2.16) and (2.17) with
α ∈ (0, 1/q) that

ϕp(u) ≥

(
1

p
− 1

pap5

(
T

q + 1

)p/q)
‖u̇‖pLp − C1‖u̇‖βLp

− C2 −
(

T

q + 1

)(α+1)/q

M1B(ε)‖u̇‖α+1
Lp

−
(

T

q + 1

)1/q

(M2 +M3)‖u̇‖Lp − [(1 + ε)a5M1]
q

q
|ū|qα

+ |ū|
{

1

|ū|

[
1

µ

∫ T

0
G(t, λū)dt+

∫ T

0
H(t, ū)dt

]
−M3

}
.

As ‖u‖ → ∞ if and only if
(
|ū|p + ‖u̇‖pLp

)1/p → ∞, the above inequality,
a5 > [T/(q + 1)]1/q, α ∈ (0, 1/q) and (I ′′′3 ) imply that

ϕp(u)→ +∞, as ‖u‖ → ∞.

By Theorem 1.1 in [3], the proof of Theorem 2.5 is complete. �

Remark 2.6. We choose p = 4, λ = 1, µ = 3/2. There exist functions
satisfying our Theorem 2.5. For example, let

G(t, x) = h(t) + 1 + sin |x|2, H(t, x) = (0.5T − t)|x|5/4 +
|x|3

1 + |x|2
· l(t),

where l ∈ L1([0, T ],R+), h ∈ L1([0, T ],R+) satisfies h(t) ≥ 1 for a.e. t ∈
[0, T ] and let e(t) ∈ L1([0, T ];RN ) satisfy∫ T

0
|e(t)|dt <

∫ T

0
l(t)dt.

3. Case p = 2. For u ∈ H1
T = W 1,2

T , let ū = 1
T

∫ T
0 u(t)dt and ũ = u(t)− ū.

Then we have the following estimates sharper than (2.11) and (2.10) with
p = 2.

‖ũ‖2∞ ≤
T

12

∫ T

0
|u̇(t)|2dt (Sobolev’s inequality)(3.1)

‖ũ‖2L2 ≤
T 2

4π2

∫ T

0
|u̇(t)|2dt (Wirtinger’s inequality)(3.2)

(see Proposition 1.3 in [3]).
Consequently, for the special case p = 2, we can obtain better results.

The proofs are similar to those in Section 2. We only need to replace (2.11)
with (3.1) in the proof. Hence, we just give the results.
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Theorem 3.1. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A) and e ∈ L1([0, T ];R) satisfies

∫ T
0 e(t)dt = 0. Assume (A1),

(A2) with α ∈ (0, 1) and the following condition hold:

(A′3)

lim inf
|x|→∞

1

|x|2α

[
1

µ

∫ T

0
G(t, λx)dt +

∫ T

0
H(t, x)dt

]
>

T

24

(∫ T

0
f(t)dt

)2

.

Then (1.1) has at least one solution which minimizes ϕ on H1
T .

Theorem 3.2. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A). Assume (A1), (B2) and the following condition hold:

(B′3)

lim inf
|x|→∞

1

|x|2

[
1

µ

∫ T

0
G(t, λx)dt +

∫ T

0
H(t, x)dt

]

>
T
(∫ T

0 f(t)dt
)2

2
(

12− T
∫ T
0 f(t)dt

) .
Then (1.1) has at least one solution which minimizes ϕ on H1

T .

Theorem 3.3. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A). Assume (A1), (A′3) and the following condition hold:
(A′2) there exist α ∈ (1/2, 1), f, g ∈ L1([0, T ];R+) such that

|∇F (t, x)| ≤ f(t)|x|α + g(t);

Then (1.1) has at least one solution which minimizes ϕ on H1
T .

Theorem 3.4. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A). Assume (A1) and the following conditions hold:
(A′′2) there exist f, g ∈ L1([0, T ];R+) such that

|∇H(t, x)| ≤ f(t)|x|1/2 + g(t);

(A′′3)

lim inf
|x|→∞

1

|x|

[
1

µ

∫ T

0
G(t, λx)dt +

∫ T

0
H(t, x)dt

]
>

T

24

(∫ T

0
f(t)dt

)2

+

∫ T

0
|e(t)|dt.

Then (1.1) has at least one solution which minimizes ϕ on H1
T .

Remark 3.1. There exist functions satisfying our Theorem 3.4. For exam-
ple, let

G(t, x) =
|x|6/5

1 + |x|6/5
· h(t), H(t, x) = (0.5T − t)|x|3/2 +

|x|3

1 + |x|2
· l(t).
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where h, l ∈ L1([0, T ],R+), and let e(t) ∈ L1([0, T ];RN ) satisfy∫ T

0
|e(t)|dt <

∫ T

0
l(t)dt− 9T 5

1536
.

Theorem 3.5. Suppose F = G(t, x) + H(t, x) with G and H satisfying
assumption (A). Assume (A1) and the following conditions hold:

(A′′′2 ) there exist α ∈ (0, 1/2), f, g ∈ L1([0, T ];R+) such that

|∇H(t, x)| ≤ f(t)|x|α + g(t);

(A′′′3 ) lim inf
|x|→∞

1

|x|

[
1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
>

∫ T

0
|e(t)|dt.

Then (1.1) has at least one solution which minimizes ϕ on H1
T .

Remark 3.2. There exist functions satisfying our Theorem 3.5. For exam-
ple, let

G(t, x) = (h(t), x), H(t, x) = (0.5T − t)|x|5/4 +
|x|3

1 + |x|2
· l(t).

where h ∈ L1([0, T ],RN ) with
∫ T
0 h(t)dt = 0 and l ∈ L1([0, T ],R+) and let

e(t) ∈ L1([0, T ];RN ) satisfy∫ T

0
|e(t)|dt <

∫ T

0
l(t)dt.

4. Examples. In this section, we verify three examples. The others can
be verified by using the similar way.

Example 4.1. Let G and H be as in Remark 2.2. Then G(t, x) is (1, 3/2)-
convex for a.e. t ∈ [0, T ] and satisfies (I1). In fact, since h(t) ≥ 1 for a.e.
t ∈ [0, T ], it is easy to get

G(t, x+ y) = h(t) + 1 + sin |x+ y|2

≤ 3

2
(2h(t) + 2 + sin |x|2 + sin |y|2)

=
3

2
(G(t, x) +G(t, y)).

Obviously, λ = 1 > 1/2, µ = 3/2 > 1/2 and µ = 3/2 < 23 = 2p−1λp.
Next we show that H satisfies (I2). By Young’s inequality, it is easy to

obtain

|∇H(t, x)| ≤ 7

2
|0.5T − t||x|5/2 +

20

3
T 3|x|7/3

≤ 7

2
(|0.5T − t|+ ε)|x|5/2 +A1(ε)
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for all x ∈ RN and a.e. t ∈ [0, T ], where A1(ε) > 1. Let

f(t) =
7

2
(|0.5T − t|+ ε), g(t) = A1(ε).

Then H satisfies condition (I2) with α = 5/2.
Note that

|x|−qα
[

1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
= |x|−10/3

[
2

3

∫ T

0
G(t, x) +

∫ T

0
H(t, x)dt

]
= |x|−10/3

∫ T

0

[
2

3
h(t) +

2

3
+

2

3
sin |x|2 + (0.5T − t)|x|7/2 + 2T 3|x|10/3

]
dt.

Then if T > 0.00244, we can choose ε > 0 sufficient small such that

lim inf
|x|→∞

|x|−10/3
[

1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
= 2T 4

>
9T

28

(
7T 2

8
+

7Tε

2

)4/3

=
T

q(q + 1)

(∫ T

0
f(t)dt

)q
.

This shows that (I3) holds. By Theorem 2.1, problem (1.6) has at least one
solution.

Example 4.2. Let G(t, x) and H(t, x) be as in (1.3). Then arguing as in
the introduction, we get

lim inf
|x|→∞

|x|−2α
∫ T

0
F (t, x)dt

= lim inf
|x|→∞

|x|−3/2
∫ T

0

[
h(t)|x|5/4 + sin

(
2πt

T

)
|x|7/4 + (0.6T − t)|x|3/2

]
dt

= 0.1T 2.

Moreover,

T

24

(∫ T

0
f(t)dt

)2

=
T

24

[
7

4

∫ T

0

(∣∣∣∣sin(2πt

T

)∣∣∣∣+ ε

)
dt

]2
=

49T 3

384

(
2

π
+ ε

)2

.
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If T < 48π2/245, we choose 0 < ε <
√

192/245T − 2/π, then

lim inf
|x|→+∞

|x|−2α
∫ T

0
F (t, x)dt = 0.1T 2

>
49T 3

384

(
2

π
+ ε

)2

=
T

24

(∫ T

0
f(t)dt

)2

.

This shows that (A′3) holds. By Theorem 3.3, problem (1.1) has at least
one solution. If

∫ T
0 e(t)dt = 0, we can also use Theorem 3.1 to obtain the

conclusion.

Example 4.3. Let

G(t, x) = h(t)|x|5/4, H(t, x) = (0.6T − t)|x|2 − t|x|3/2 + (k(t), x).

where h ∈ L1([0, T ],R+) and k(t) ∈ L1([0, T ];RN ). Then arguing as in the
introduction, we show that G(t, x) is (2, 29/4)-subconvex and satisfies (A1).
It is easy to see that

|∇H(t, x)| ≤ 2|0.6T − t||x|+ 3t

2
|x|1/2 + |k(t)|

≤ 2 (|0.6T − t|+ ε) |x|+ T 2

2ε
+ |k(t)|

for all x ∈ RN and a.e. t ∈ [0, T ], where ε > 0. Let

f(t) = 2 (|0.6T − t|+ ε) , g(t) =
T 2

2ε
+ |p(t)|.

Note that

|x|−2
[

1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
= |x|−2

[
2−9/4

∫ T

0
G(t, 2x)dt+

∫ T

0
H(t, x)dt

]
= |x|−2

∫ T

0

[
h(t)

2
|x|5/4 + (0.6T − t)|x|2 − t|x|3/2 + (k(t), x)

]
dt

=
|x|−3/4

2

∫ T

0
h(t)dt+ 0.1T 2 − 0.5T 2|x|−1/2 +

(∫ T

0
k(t)dt, |x|−2x

)
.

On the other hand, we have∫ T

0
f(t)dt = 2

∫ T

0
(|0.6T − t|+ ε) dt = 0.52T 2 + 2εT,

and

T
(∫ T

0 f(t)dt
)2

2
(

12− T
∫ T
0 f(t)dt

) =
T 3(0.52T + 2ε)2

2[12− T 2(0.52T + 2ε)]
.
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If T 3 < 6, we choose ε > 0 sufficient small such that∫ T

0
f(t)dt = 0.52T 2 + 2εT <

12

T

and

lim inf
|x|→+∞

|x|−2
[

1

µ

∫ T

0
G(t, λx)dt+

∫ T

0
H(t, x)dt

]
= 0.1T 2

>
T (0.52T 2 + 2εT )2

2[12− T (0.52T 2 + 2εT )]
=

T
(∫ T

0 f(t)dt
)2

2
(

12− T
∫ T
0 f(t)dt

) .
This shows that (B2) and (B′3) hold. By Theorem 3.2, problem (1.1) has at
least one solution.

Acknowledgment. This work is supported by the Graduate degree thesis
Innovation Foundation of Central South University (No: 3960-71131100014)
and the Outstanding Doctor degree thesis Implantation Foundation of Cen-
tral South University (No: 2008yb032) and partially supported by the NNSF
(No: 10771215) of China.

References

[1] Berger, M.S., Schechter, M., On the solvability of semilinear gradient operator equa-
tions, Adv. Math. 25 (1977), 97–132.

[2] Mawhin, J., Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl.
Sci. 73 (1987), 118–130.

[3] Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-
Verlag, New York, 1989.

[4] Mawhin, J., Willem, M., Critical points of convex perturbations of some indefinite
quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H.
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