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On (2 − d)-kernels
in the cartesian product of graphs

Abstract. In this paper we study the problem of the existence of (2 − d)-
kernels in the cartesian product of graphs. We give sufficient conditions for
the existence of (2− d)-kernels in the cartesian product and also we consider
the number of (2− d)-kernels.

1. Introduction. In general we use the standard terminology and notation
of graph theory, see [3]. Graphs G = (V (G), E(G)) considered in this paper
are undirected, connected and simple. By Pn, n ≥ 2 and Cn, n ≥ 3 we
mean a path and a cycle on n vertices, respectively. By dG(x, y) we denote
the distance between vertices x and y in G being the length of the shortest
path from x to y. Consequently dG(X,Y ) = min{dG(u, v) : u ∈ X, v ∈ Y }
means the distance between sets X and Y . A simple graph G = G(V1, V2) is
called bipartite if its vertex set can be partitioned into two disjoint subsets
V1, V2 such that every edge has the form xy, where x ∈ V1 and y ∈ V2.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The cartesian
product of two graphs G1 and G2 is the graph G1 × G2 such that V (G1 ×
G2) = V1 × V2 and E(G1 × G2) = {(xi, yp)(xj , yq) : (xi = xj and ypyq ∈
E(G2)) or (yp = yq and xixj ∈ E(G1))}.

By the cartesian product of n graphs G1, . . . , Gn we mean the cartesian
product of Gn and G1 × G2 × . . . × Gn−1 denoted by G1 × G2 × . . . × Gn.
If n = 2, then we obtain the definition of cartesian product of two graphs.
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Theorem 1.1 ([12]). A graph G1×G2 is bipartite if and only if G1 and G2

are bipartite.

We say that a subset D ⊆ V (G) is dominating, if every vertex of G is
either in D or it is adjacent to at least one vertex of D. A subset S ⊆ V (G)
is independent if no two vertices of S are adjacent in G. A subset J being
dominating and independent is a kernel of G.

H. Galeana-Sánchez and C. Hernández-Cruz played an important role in
researching kernels in digraphs. During the last decades they studied not
only kernels in digraphs but some of its generalizations, mainly kernels by
monochromatic paths and (k, l)-kernels. Most of the existing results about
kernels and their generalizations in digraphs were related to operations in
digraphs and how the kernels are preserved. For results concerning kernels
which were obtained quite recently see [4, 6, 7, 5, 8, 9, 10, 11].

In [17] A. Włoch introduced and studied the concept of a 2-dominating
kernel (for convenience we will write shortly (2 − d)-kernel). A set J is a
(2 − d)-kernel of a graph G if it is independent and 2-dominating, i.e. J
is independent and each vertex from V (G) \ J has at least two neighbours
in J .

Not every graph possesses a (2 − d)-kernel, for example a graph P4 is a
graph without (2 − d)-kernel. In [1] it was proved that the problem of the
existence of (2− d)-kernel is NP-complete for a general graph.

Some results related to the existence of (2− d)-kernels in graphs can be
found in [1], [2] and [17]. Moreover, in [1] the number of all (2− d)-kernels
(denoted by σ(2−d)(G)) in graphs was studied. In this paper we consider the
problem of the existence of (2−d)-kernels in the cartesian product of graphs
and also we consider the number of (2− d)-kernels in this graph product.

The topic of kernels in graphs product was studied for example in [14,
13, 15, 16, 17, 18, 19].

2. Main results. In this section we give some necessary and sufficient
conditions for the existence of (2 − d)-kernels in the cartesian product of
graphs.

Theorem 2.1. If G and H are connected bipartite graphs, then G×H has
two disjoint (2− d)-kernels.

Proof. Let G = G(V1, V2) and H = H(V3, V4) be bipartite. Then the set
V (G × H) is the union of pairwise disjoint sets V1 × V3, V1 × V4, V2 × V3
and V2 × V4. We shall show that sets J = (V1 × V3) ∪ (V2 × V4) and
J∗ = (V2 × V3) ∪ (V1 × V4) are (2− d)-kernels of the graph G×H. Firstly
we shall show that J is a (2− d)-kernel. To prove that J is independent let
us assume that (xi, yj), (xp, yq) ∈ J and consider the following cases:

1.1 (xi, yj), (xp, yq) ∈ V1 × V3.
If i = p, then by the definition of H and the cartesian product
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G ×H we have that yj , yq ∈ V3, so yjyq /∈ E(H) and consequently
(xi, yj)(xp, yq) /∈ E(G×H).
If j = q, then we prove analogously with respect to the graph G.
Let i 6= p and j 6= q. Then the definition of G × H immediately
gives that (xi, yj)(xp, yq) /∈ E(G×H).

1.2 (xi, yj), (xp, yq) ∈ V2 × V4.
Then we prove in the same way as in 1.1.

1.3 (xi, yj) ∈ V1 × V3 and (xp, yq) ∈ V2 × V4.
Since G and H are bipartite, so xixp /∈ E(G) and yjyq /∈ E(H).
Then by the definition of G × H we have that (xi, yj)(xp, yq) /∈
E(G×H).

Consequently J is independent. Now we shall prove that J is 2-dominating.
Assume that (xi, yj) /∈ J . It suffices to show that there are two vertices
from the set J which dominate the vertex (xi, yj). We consider the following
possibilities:

2.1 (xi, yj) ∈ V1 × V4.
Then xi ∈ V1 and yj ∈ V4. Because H is connected and bipartite so
there is a vertex, say yq ∈ V3 such that yjyq ∈ E(H). Consequently
by the definition of G×H we have that there is (xi, yq) ∈ V1×V3 ⊂
V (G×H). This means that (xi, yq) ∈ J and (xi, yj)(xi, yq) ∈ E(G×
H). Analogously with respect to graph G we can show that there
exists a vertex (xp, yj) ∈ V2 × V3 ⊂ V (G×H). So (xp, yj) ∈ J and
(xi, yj)(xp, yj) ∈ E(G×H). Thus every vertex from the set V1× V4
is at least 2-dominated by the set J .

2.2 (xi, yj) ∈ V2 × V3,
Then we prove by using the same method as in 2.1.

Finally, the set J is a (2 − d)-kernel of G × H. In the same way we can
prove that J∗ is a (2− d)-kernel of G×H and it is obvious that J ∩J∗ = ∅,
which ends the proof. �

Using Theorems 1.1 and 2.1, we can prove the result for the cartesian
product of n graphs.

Theorem 2.2. Let n ≥ 2 be an integer. If Gi is bipartite, for i = 1, . . . , n,
then G1 ×G2 × . . .×Gn has two disjoint (2− d)-kernels.

From the above follow results for special bipartite graphs.

Corollary 2.3. Let n,m ≥ 2 be integers. A graph Pn × Pm has exactly
two disjoint (2 − d)-kernels J1, J2 and J1 ∪ J2 = V (Pn × Pm). Moreover,
|J1| = |J2| = m·n

2 if m · n is even and |J1| = b
m·n
2 c and |J2| = d

m·n
2 e,

otherwise.

Corollary 2.4. Let n,m ≥ 2 be integers. A graph C2n × Pm has exactly
two disjoint (2− d)-kernels J1, J2 and J1 ∪ J2 = V (C2n × Pm). Moreover,
|J1| = |J2| = m · n.
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Theorem 2.5. Let n,m ≥ 3 be integers. A graph Cn × Cm has a (2 − d)-
kernel if and only if n and m are even or n = m.

Proof. Let n, m be as in the statement of the theorem. If n and m are
even, then Cn and Cm are bipartite and Cn × Cm has a (2 − d)-kernel by
Theorem 2.1. Assume that n = m and n is odd. We will prove that Cn×Cn

has a (2−d)-kernel J . Let V (Cn) = {x1, . . . , xn}, n ≥ 3 with the numbering
of vertices in the natural fashion. We can illustrate the construction of the
set J in Cn × Cn using the matrix A = [aij ]n×n defined as follows

aij =

{
1 if the vertex (xi, xj) ∈ J,
0 otherwise.

Then aij = 1 if and only if

i− j ∈
{
−n+ 2p; p = 1, . . . ,

n− 3

2

}
∪
{
n− 2q − 1; q = 1, . . . ,

n− 1

2

}
and aij = 0 otherwise. For the explanation if n = 3, then

A =

 1 0 0
0 1 0
0 0 1

 .
Let n ≥ 5 be odd. Then the matrix A has the form

A =



1 0 0 1 0 . . . 1 0 1 0
0 1 0 0 1 . . . 0 1 0 1
1 0 1 0 0 . . . 1 0 1 0
0 1 0 1 0 . . . 0 1 0 1
1 0 1 0 1 . . . 1 0 1 0
...

...
...

...
...

. . .
...

...
...

...
0 1 0 1 0 . . . 1 0 0 1
1 0 1 0 1 . . . 0 1 0 0
0 1 0 1 0 . . . 1 0 1 0
0 0 1 0 1 . . . 0 1 0 1


.

Conversely suppose on the contrary that Cn × Cm has a (2 − d)-kernel,
say J where m 6= n and n is odd.

Let m be even and n be odd. Then the graph Cm has two disjoint (2−d)-
kernels J1 and J2. Let J (p)

i , i = 1, 2 be a (2 − d)-kernel in C
(p)
m , where

C
(p)
m ⊂ Cm ×Cn is a p-copy of Cm, p = 1, . . . ,m. It is clear that J = J

(1)
1 ∪

J
(2)
2 ∪ J

(3)
1 ∪ . . .∪ J

(n)
1 , because n is odd, but then dCm×Cn

(
J
(1)
1 , J

(n)
1

)
= 1,

a contradiction with the independence of J .
Let now m 6= n and m,n be odd. Since m 6= n, so without loss of the

generality let m > n. Suppose that Cm × Cn has a (2 − d)-kernel J . By



On (2− d)-kernels in the cartesian product of graphs 5

definition of Cm×Cn and (2−d)-kernel it is obvious that in each copy C(i)
m ,

i = 1, . . . , n of Cm×Cn we have to choose a maximal independent set Ji such
that |Ji| = bm2 c, for all i = 1, . . . , n and Ji is a subset of (2 − d)-kernel J .
Using given earlier construction of (2−d)-kernel J in Cm×Cn which preserve
2-domination we observe that in copy C(n)

m for every maximal independent
set Jn the set

⋃n
i=1 Ji is not independent, which is a contradiction with the

assumption. �

Corollary 2.6. Let m,n ≥ 3 be integers. If m,n are even, then σ(2−d)(Cn×
Cm) = 2. If n is odd, then σ(2−d)(Cn × Cn) = 2n.

Corollary 2.6 follows by the proof of Theorem 2.5.

Theorem 2.7. Let m,n ≥ 1 be integers. A graph Kn ×Km has a (2− d)-
kernel if and only if n = m.

Proof. Let V (Kn) = {x1, . . . , xn}, n ≥ 1 and V (Km) = {y1, . . . , ym}, m ≥
1. If m = n, then it is easy to observe that the set J = {(xi, yi), i = 1, . . . , n}
is (2− d)-kernel of the graph Kn ×Kn.

Suppose on the contrary that a graph Kn ×Km has a (2 − d)-kernel J∗

and n > m. Clearly in each copy of a complete graph Kn and Km we can
choose at most one vertex to the set J∗. Without loss of the generality let
(x1, y1) ∈ J∗. Then in the copy K(2)

m we choose an arbitrary vertex (x2, yi)

where i 6= 1 and (x2, yi) ∈ J∗. Analogously in the copy K
(3)
m we choose a

vertex (x3, yj) ∈ J∗ for j 6= 1 and j 6= i. Consequently in the copy K
(i)
n+1

for every vertex (xn+1, yp), p = 1, . . . ,m there is a vertex (xr, yp) where
1 ≤ r ≤ m. Then J∗ ∪ {(xn+1, yp), 1 ≤ p ≤ n} is not independent, which is
a contradiction with the assumption that J∗ is a (2− d)-kernel.

Thus the theorem is proved. �

Corollary 2.8. Let n ≥ 2 be integer. Then σ(2−d)(Kn ×Kn) = n!. More-
over, all (2− d)-kernels of Kn ×Kn have the same cardinality n.

Proof. Let J ⊂ V (Kn×Kn) be a (2−d)-kernel. Then it is clear that in the
copy K

(1)
n we can choose the vertex belonging to J on n ways. Moreover,

in the copy K
(p)
n , 2 ≤ p ≤ n we can choose the vertex belonging to J on

(n−p+1) ways. This gives that σ(2−d)(Kn×Kn) = n(n−1) · . . . ·1 = n!. �

Let X ⊂ V (G). A graph G is X-(2 − d)-kernel critical if G \ X has a
(2− d)-kernel.

Let X,Y ⊂ V (G) be two disjoint subsets of G. A graph G is (X,Y )-
(2− d)-kernel critical if Y is a (2− d)-kernel of G \X.

If a graph G is (X,Y )-(2 − d)-kernel critical and (Y,X)-(2 − d)-kernel
critical, then we will write that G is an {X,Y }-(2− d)-kernel critical.
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Theorem 2.9. Let G = G(J1, J2) be a bipartite graph such that Ji, i = 1, 2
are (2−d)-kernels of G. Let H be a graph with V1, V2 ⊂ V (H) such that H is
{V1, V2}-(2−d)-kernel critical. Then G×H has at least two (2−d)-kernels.

Proof. Let G = G(J1, J2) and H be as in the statement of the theorem. If
V1 ∪ V2 = V (H), then graphs G and H are bipartite and by Theorem 2.1,
a graph G×H has two (2− d)-kernels. Suppose that V1 ∪ V2 6= V (H). Let
R = V (H) \ (V1 ∪ V2). Then the set V (G × H) is the union of pairwise
disjoint sets J1 × V1, J1 × V2, J1 ×R, J2 × V1, J2 × V2 and J2 ×R. We will
prove that set J = (J1×V1)∪ (J2×V2) is (2−d)-kernel of the graph G×H.
Firstly we show that J is an independent set.

Let (xi, yj), (xp, yq) ∈ J and consider the following cases:

1.1 (xi, yj), (xp, yq) ∈ J1 × V1.
If j = q, then by the definition of G and the cartesian product
G×H we have that xi, xp ∈ J1, so xi, xp /∈ E(G) and consequently
(xi, yj)(xp, yq) /∈ E(G×H).
Let i = p. Since a graph H is {V1, V2}-(2−d)-kernel critical, then V1
is (2− d)-kernel of H \ V2 and this means that V1 is an independent
set of a graph H. So for all yj , yq ∈ V1 we have that yjyq /∈ E(H)
and finally (xi, yj)(xp, yq) /∈ E(G×H).
Let i 6= p and j 6= q. Then the definition of G × H immediately
gives that (xi, yj)(xp, yq) /∈ E(G×H).

1.2 (xi, yj), (xp, yq) ∈ J2 × V2.
Then we prove in the same way as in 1.1.

1.3 (xi, yj) ∈ J1 × V1 and (xp, yq) ∈ J2 × V2.
Since G is bipartite and H is {V1, V2}-(2−d)-kernel critical so xixp /∈
E(G) and yjyq /∈ E(H). Then by the definition of G ×H we have
that (xi, yj)(xp, yq) /∈ E(G×H).

Consequently J is independent. Let (xi, yj) /∈ J . We prove that J is 2-
dominating. Consider the following cases:

2.1. (xi, yj) ∈ J2 × V1,
Then xi ∈ J2 and yj ∈ V1. Because J1 is (2− d)-kernel of a graph G
then there exist at least two vertices, say xs, xr such that xsxi, xrxi ∈
E(G). By the definition of cartesian product we have that every
vertex from J2 × V1 is at least 2-dominated by the set J1 × V1.

2.2. (xi, yj) ∈ J1 × V2,
We can prove this using the same method as in 2.1.

2.3. (xi, yj) ∈ J1 ×R or (xi, yj) ∈ J2 ×R,
Then xi ∈ V (G) and yj ∈ R. Because the graph H is {V1, V2}-
(2 − d)-kernel critical then V1 is (2 − d)-kernel of H \ V2 and there
exist at least two vertices, say yw, yt such that ywyj , ytyj ∈ E(H).
Moreover every vertex from the set V1×R is at least 2-dominated by
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the set J1 × V1. Analogously, considering set V2, we can show that
every vertex from J2×R is at least 2-dominated by the set J2×V2.

All this together gives that J is a (2− d)-kernel of G×H. In the same way
we can prove that J∗ = J1×V2∪J2×V1 is a (2−d)-kernel of G×H, which
ends the proof. �

3. Conclusion and further study. The problem of finding the charac-
terization of the cartesian product G×H with a (2− d)-kernel is still open.
However, some sufficient conditions can be found if we add a restriction that
a graph G is fixed.
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