doi: 10.17951/a.2016.70.2.29

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXX, NO. 2, 2016	SECTIO A	29 - 49
-----------------------	----------	---------

SEVER S. DRAGOMIR

Jensen and Ostrowski type inequalities for general Lebesgue integral with applications

ABSTRACT. Some inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral are obtained. Applications for f-divergence measure are provided as well.

1. Introduction. Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω , a σ -algebra \mathcal{A} of subsets of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup \{\infty\}$. Assume, for simplicity, that $\int_{\Omega} d\mu(t) = 1$. Consider the Lebesgue space

$$L\left(\Omega,\mu\right) := \left\{ f: \Omega \to \mathbb{R} \mid f \text{ is } \mu \text{-measurable and } \int_{\Omega} \left| f\left(t\right) \right| d\mu\left(t\right) < \infty \right\}.$$

For simplicity of notation we write everywhere in the sequel $\int_{\Omega} w d\mu$ instead of $\int_{\Omega} w(t) d\mu(t)$.

The following reverse of the Jensen's inequality holds [12]:

Theorem 1. Let $\Phi : I \to \mathbb{R}$ be a continuous convex function on the interval of real numbers I and $m, M \in \mathbb{R}$, m < M with $[m, M] \subset \mathring{I}$, where \mathring{I} is the interior of I. If $f : \Omega \to \mathbb{R}$ is μ -measurable, satisfies the bounds

$$-\infty < m \leq f(t) \leq M < \infty$$
 for μ -a.e. $t \in \Omega$

²⁰¹⁰ Mathematics Subject Classification. Primary 26D15; Secondary 94A17.

 $Key\ words\ and\ phrases.$ Ostrowski's inequality, Jensen's inequality, f-divergence measures.

and such that $f, \Phi \circ f \in L(\Omega, \mu)$, then

(1.1)

$$0 \leq \int_{\Omega} \Phi \circ f d\mu - \Phi \left(\int_{\Omega} f d\mu \right)$$

$$\leq \left(M - \int_{\Omega} f d\mu \right) \left(\int_{\Omega} f d\mu - m \right) \frac{\Phi'_{-}(M) - \Phi'_{+}(m)}{M - m}$$

$$\leq \frac{1}{4} \left(M - m \right) \left[\Phi'_{-}(M) - \Phi'_{+}(m) \right],$$

where Φ'_{-} is the left and Φ'_{+} is the right derivative of the convex function Φ .

For other reverse of Jensen's inequality and applications to divergence measures see [12] and [15].

In 1938, A. Ostrowski [23] proved the following inequality concerning the distance between the integral mean $\frac{1}{b-a}\int_a^b \Phi(t) dt$ and the value $\Phi(x)$, $x \in [a, b]$.

Theorem 2. Let $\Phi : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b) such that $\Phi' : (a, b) \to \mathbb{R}$ is bounded on (a, b), i.e., $\|\Phi'\|_{\infty} := \sup_{t \in (a,b)} |\Phi'(t)| < \infty$. Then

(1.2)
$$\left| \Phi(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left| \frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right| \left\| \Phi' \right\|_{\infty} (b-a),$$

for all $x \in [a, b]$ and the constant $\frac{1}{4}$ is the best possible.

For various results related to Ostrowski's inequality see for instance [2], [3], [5]–[18] and the references therein.

Motivated by the above results, in this paper we investigate the magnitude of the quantity

$$\int_{\Omega} \Phi \circ g d\mu - \Phi \left(x \right) - \lambda \left(\int_{\Omega} g d\mu - x \right), \ x \in [a, b],$$

for various assumptions on the absolutely continuous function Φ , which in the particular case of $x = \int_{\Omega} g d\mu$ provides some results connected with Jensen's inequality while in the case $\lambda = 0$ provides some generalizations of Ostrowski's inequality. Applications for divergence measures are provided as well.

2. Some identities. The following result holds:

Lemma 1. Let $\Phi : I \to \mathbb{C}$ be an absolutely continuous function on $[a, b] \subset I$, the interior of I. If $g : \Omega \to [a, b]$ is Lebesgue μ -measurable on Ω and such

that $\Phi \circ g, g \in L(\Omega, \mu)$, then we have the equality

(2.1)
$$\int_{\Omega} \Phi \circ g d\mu - \Phi(x) - \lambda \left(\int_{\Omega} g d\mu - x \right) \\ = \int_{\Omega} \left[(g - x) \int_{0}^{1} \left(\Phi' \left((1 - s) x + sg \right) - \lambda \right) ds \right] d\mu$$

for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$.

In particular, we have

(2.2)
$$\int_{\Omega} \Phi \circ g d\mu - \Phi(x) = \int_{\Omega} \left[(g-x) \int_{0}^{1} \Phi'((1-s)x + sg) ds \right] d\mu,$$
for any $x \in [a, b]$

for any $x \in [a, b]$.

Proof. Since Φ is absolutely continuous on [a, b], then for any $u, v \in [a, b]$ we have

(2.3)
$$\Phi(u) - \Phi(v) = (u - v) \int_0^1 \Phi'((1 - s)v + su) \, ds.$$

This implies that

$$\Phi(g(t)) - \Phi(x) = (g(t) - x) \int_0^1 \Phi'((1 - s)x + sg(t)) ds$$

for any $t \in \Omega$, or, equivalently

(2.4)
$$\Phi \circ g - \Phi(x) = (g - x) \int_0^1 \Phi'((1 - s)x + sg) \, ds.$$

Since $\Phi: I \to \mathbb{C}$ is an absolutely continuous functions on [a, b], the Lebesgue integral over μ in the right side of (2.1) exists for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$.

Integrating (2.4) over the measure μ on Ω and since $\int_{\Omega} d\mu = 1$, then we have

(2.5)
$$\int_{\Omega} \Phi \circ g d\mu - \Phi(x) = \int_{\Omega} \left[(g-x) \int_{0}^{1} \Phi'((1-s)x + sg) ds \right] d\mu.$$

Now, observe that for $\lambda \in \mathbb{C}$ we have

$$\begin{aligned} \int_{\Omega} \left[(g-x) \int_{0}^{1} \left(\Phi' \left((1-s) x + sg \right) - \lambda \right) ds \right] d\mu \\ &= \int_{\Omega} \left[(g-x) \left(\int_{0}^{1} \Phi' \left((1-s) x + sg \right) ds - \lambda \right) \right] d\mu \\ &= \int_{\Omega} \left[(g-x) \int_{0}^{1} \Phi' \left((1-s) x + sg \right) ds \right] d\mu - \lambda \int_{\Omega} (g-x) d\mu \\ &= \int_{\Omega} \left[(g-x) \int_{0}^{1} \Phi' \left((1-s) x + sg \right) ds \right] d\mu - \lambda \left(\int_{\Omega} g d\mu - x \right). \end{aligned}$$
Making use of (2.5) and (2.6), we deduce the desired result (2.1).

Making use of (2.5) and (2.6), we deduce the desired result (2.1).

Remark 1. With the assumptions of Lemma 1 we have

(2.7)
$$\int_{\Omega} \Phi \circ g d\mu - \Phi\left(\frac{a+b}{2}\right)$$
$$= \int_{\Omega} \left[\left(g - \frac{a+b}{2}\right) \int_{0}^{1} \Phi'\left((1-s)\frac{a+b}{2} + sg\right) ds \right] d\mu.$$

Corollary 1. With the assumptions of Lemma 1 we have

(2.8)
$$\int_{\Omega} \Phi \circ g d\mu - \Phi\left(\int_{\Omega} g d\mu\right)$$
$$= \int_{\Omega} \left[\left(g - \int_{\Omega} g d\mu\right) \int_{0}^{1} \Phi'\left((1-s) \int_{\Omega} g d\mu + sg\right) ds \right] d\mu.$$

Proof. We observe that since $g : \Omega \to [a, b]$ and $\int_{\Omega} d\mu = 1$, then $\int_{\Omega} g d\mu \in [a, b]$ and by taking $x = \int_{\Omega} g d\mu$ in (2.2), we get (2.8).

Corollary 2. With the assumptions of Lemma 1 we have

(2.9)
$$\int_{\Omega} \Phi \circ g d\mu - \frac{1}{b-a} \int_{a}^{b} \Phi(x) dx - \lambda \left(\int_{\Omega} g d\mu - \frac{a+b}{2} \right)$$
$$= \int_{\Omega} \left\{ \frac{1}{b-a} \int_{a}^{b} \left[(g-x) \int_{0}^{1} \left(\Phi'((1-s)x+sg) - \lambda \right) ds \right] dx \right\} d\mu.$$

Proof. Follows by integrating the identity (2.1) over $x \in [a, b]$, dividing by b - a > 0 and using Fubini's theorem.

Corollary 3. Let $\Phi : I \to \mathbb{C}$ be an absolutely continuous function on $[a, b] \subset \mathring{I}$, the interior of I. If $g, h : \Omega \to [a, b]$ are Lebesgue μ -measurable on Ω and such that $\Phi \circ g, \Phi \circ h, g, h \in L(\Omega, \mu)$, then we have the equality

$$(2.10) \qquad \int_{\Omega} \Phi \circ g d\mu - \int_{\Omega} \Phi \circ h d\mu - \lambda \left(\int_{\Omega} g d\mu - \int_{\Omega} h d\mu \right)$$
$$= \int_{\Omega} \int_{\Omega} \left[\left(g \left(t \right) - h \left(\tau \right) \right) \int_{0}^{1} \left(\Phi' \left(\left(1 - s \right) h \left(\tau \right) + sg \left(t \right) \right) - \lambda \right) ds \right]$$
$$\times d\mu \left(t \right) d\mu \left(\tau \right)$$

for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$. In particular, we have

(2.11)

$$\int_{\Omega} \Phi \circ g d\mu - \int_{\Omega} \Phi \circ h d\mu$$

$$= \int_{\Omega} \int_{\Omega} \left[(g(t) - h(\tau)) \int_{0}^{1} \Phi' ((1 - s) h(\tau) + sg(t)) ds \right]$$

$$\times d\mu(t) d\mu(\tau),$$

for any $x \in [a, b]$.

Proof. From (2.1) we have for any $\tau \in \Omega$ that

$$\int_{\Omega} \Phi \circ g d\mu - \Phi \left(h\left(\tau\right) \right) - \lambda \left(\int_{\Omega} g d\mu - \Phi \left(h\left(\tau\right) \right) \right)$$
$$= \int_{\Omega} \left[\left(g - \Phi \left(h\left(\tau\right) \right) \right) \int_{0}^{1} \left(\Phi' \left(\left(1 - s \right) \Phi \left(h\left(\tau\right) \right) + sg \right) - \lambda \right) ds \right] d\mu$$

for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$.

Integrating on Ω over $d\mu(\tau)$ and using Fubini's theorem, we get the desired result (2.10).

Remark 2. The above equality (2.10) can be extended for two measures as follows

$$(2.12) \qquad \int_{\Omega_1} \Phi \circ g d\mu_1 - \int_{\Omega_2} \Phi \circ h d\mu_2 - \lambda \left(\int_{\Omega_1} g d\mu_1 - \int_{\Omega_2} h d\mu_2 \right)$$
$$= \int_{\Omega_1} \int_{\Omega_2} \left[(g(t) - h(\tau)) \int_0^1 \left(\Phi' \left((1 - s) h(\tau) + sg(t) \right) - \lambda \right) ds \right]$$
$$\times d\mu_1(t) d\mu_2(\tau) ,$$

for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$ and provided that $\Phi \circ g, g \in L(\Omega_1, \mu_1)$ while $\Phi \circ h, h \in L(\Omega_2, \mu_2)$.

Remark 3. If $w \ge 0$ μ -almost everywhere (μ -a.e.) on Ω with $\int_{\Omega} w d\mu > 0$, then by replacing $d\mu$ with $\frac{w d\mu}{\int_{\Omega} w d\mu}$ in (2.1), we have the weighted equality

(2.13)
$$\frac{1}{\int_{\Omega} w d\mu} \int_{\Omega} w \left(\Phi \circ g\right) d\mu - \Phi\left(x\right) - \lambda \left(\frac{1}{\int_{\Omega} w d\mu} \int_{\Omega} w g d\mu - x\right)$$
$$= \frac{1}{\int_{\Omega} w d\mu} \int_{\Omega} w \cdot \left[\left(g - x\right) \int_{0}^{1} \left(\Phi'\left(\left(1 - s\right)x + sg\right) - \lambda\right) ds\right] d\mu$$

for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$, provided $\Phi \circ g$, $g \in L_w(\Omega, \mu)$, where

$$L_w(\Omega,\mu) := \left\{ g | \int_{\Omega} w |g| \, d\mu < \infty
ight\}.$$

The other equalities have similar weighted versions. However, the details are omitted.

If we use the discrete measure, then for a function $\Phi: I \to \mathbb{C}$ which is absolutely continuous on $[a, b] \subset \mathring{I}$, the interior of $I, x_j \in [a, b]$ and $p_j \ge 0$ with $\sum_{j=1}^n p_j = 1$, we can state the following identity

(2.14)
$$\sum_{j=1}^{n} p_{j} \Phi(x_{j}) - \Phi(x) - \lambda \left(\sum_{j=1}^{n} p_{j} x_{j} - x\right) \\ = \sum_{j=1}^{n} p_{j} \left[(x_{j} - x) \int_{0}^{1} \left(\Phi'((1 - s) x + sx_{j}) - \lambda \right) ds \right]$$

for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$.

In particular, we have

(2.15)
$$\sum_{j=1}^{n} p_{j} \Phi(x_{j}) - \Phi(x) = \sum_{j=1}^{n} p_{j} \left[(x_{j} - x) \int_{0}^{1} \Phi'((1 - s) x + sx_{j}) ds \right]$$

for any $x \in [a, b]$ and

(2.16)
$$\sum_{j=1}^{n} p_{j} \Phi(x_{j}) - \Phi\left(\frac{a+b}{2}\right) \\ = \sum_{j=1}^{n} p_{j} \left[\left(x_{j} - \frac{a+b}{2}\right) \int_{0}^{1} \Phi'\left((1-s)\frac{a+b}{2} + sx_{j}\right) ds \right]$$

and

(2.17)
$$\sum_{j=1}^{n} p_{j} \Phi(x_{j}) - \Phi\left(\sum_{k=1}^{n} p_{k} x_{k}\right) = \sum_{j=1}^{n} p_{j} \left[\left(x_{j} - \sum_{k=1}^{n} p_{k} x_{k}\right) \int_{0}^{1} \Phi'\left((1-s)\sum_{k=1}^{n} p_{k} x_{k} + s x_{j}\right) ds \right].$$

If $x_j \in [a, b]$ and $p_j \ge 0, j \in \{1, \ldots, n\}$ with $\sum_{j=1}^n p_j = 1$ and if $y_k \in [a, b]$ and $q_k \ge 0, k \in \{1, \ldots, m\}$ with $\sum_{k=1}^m q_k = 1$, then we can state the following identity as well:

(2.18)
$$\sum_{j=1}^{n} p_{j} \Phi(x_{j}) - \sum_{k=1}^{m} q_{k} \Phi(y_{k}) - \lambda \left(\sum_{j=1}^{n} p_{j} x_{j} - \sum_{k=1}^{m} q_{k} y_{k} \right)$$
$$= \sum_{j=1}^{n} p_{j} \sum_{k=1}^{m} q_{k} \left[(x_{j} - y_{k}) \int_{0}^{1} \left(\Phi' \left((1-s) y_{k} + sx_{j} \right) - \lambda \right) ds \right].$$

In particular, we have

(2.19)
$$\sum_{j=1}^{n} p_{j} \Phi(x_{j}) - \sum_{k=1}^{m} q_{k} \Phi(y_{k}) \\ = \sum_{j=1}^{n} p_{j} \sum_{k=1}^{m} q_{k} \left[(x_{j} - y_{k}) \int_{0}^{1} \Phi'((1-s) y_{k} + sx_{j}) ds \right].$$

3. Bounds in terms of *p*-norms. We use the notations

$$\|k\|_{\Omega,p} := \begin{cases} \left(\int_{\Omega} |k(t)|^{p} d\mu(t) \right)^{1/p} < \infty, & p \ge 1, \ k \in L_{p}(\Omega,\mu); \\ ess \sup_{t \in \Omega} |k(t)| < \infty, & p = \infty, \ k \in L_{\infty}(\Omega,\mu); \end{cases}$$

and

$$\|\Phi\|_{[0,1],p} := \begin{cases} \left(\int_{0}^{1} |\Phi(s)|^{p} ds\right)^{1/p} < \infty, \quad p \ge 1, \ \Phi \in L_{p}(0,1); \\ ess \sup_{s \in [0,1]} |\Phi(s)| < \infty, \quad p = \infty, \ \Phi \in L_{\infty}(0,1). \end{cases}$$

If we consider the identity function $\ell:[0,1]\to [0,1],\,\ell\,(s)=s$ we have

$$\int_{0}^{1} \left| \Phi' \left((1-s) \, x + sg \left(t \right) \right) - \lambda \right|^{p} ds = \left\| \Phi' \left((1-\ell) \, x + \ell g \left(t \right) \right) - \lambda \right\|_{[0,1],p}^{p}$$

and

$$\sup_{s \in [0,1]} |\Phi'((1-s)x + sg(t)) - \lambda| = \|\Phi'((1-\ell)x + \ell g(t)) - \lambda\|_{[0,1],\infty}$$

for $t \in \Omega$.

Theorem 3. Let $\Phi : I \to \mathbb{C}$ be an absolutely continuous function on $[a, b] \subset \mathring{I}$, the interior of I. If $g : \Omega \to [a, b]$ is Lebesgue μ -measurable on Ω and such that $\Phi \circ g, g \in L(\Omega, \mu)$, then

$$(3.1) \qquad \left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(x \right) - \lambda \left(\int_{\Omega} g d\mu - x \right) \right| \\ \leq \int_{\Omega} \left| g - x \right| \left\| \Phi' \left((1 - \ell) \, x + \ell g \right) - \lambda \right\|_{[0,1],1} d\mu \\ \leq \begin{cases} \left\| g - x \right\|_{\Omega,\infty} \left\| \left\| \Phi' \left((1 - \ell) \, x + \ell g \right) - \lambda \right\|_{[0,1],1} \right\|_{\Omega,1}; \\ \left\| g - x \right\|_{\Omega,p} \left\| \left\| \Phi' \left((1 - \ell) \, x + \ell g \right) - \lambda \right\|_{[0,1],1} \right\|_{\Omega,q} \\ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \left\| g - x \right\|_{\Omega,1} \left\| \left\| \Phi' \left((1 - \ell) \, x + \ell g \right) - \lambda \right\|_{[0,1],1} \right\|_{\Omega,\infty}; \end{cases}$$

for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$. In particular, we have

$$(3.2) \qquad \left| \int_{\Omega} \Phi \circ g d\mu - \Phi (x) \right| \\ \leq \int_{\Omega} |g - x| \left\| \Phi' \left((1 - \ell) x + \ell g \right) \right\|_{[0,1],1} d\mu \\ = \begin{cases} \|g - x\|_{\Omega,\infty} \left\| \|\Phi' \left((1 - \ell) x + \ell g \right) \|_{[0,1],1} \right\|_{\Omega,1}; \\ \|g - x\|_{\Omega,p} \left\| \|\Phi' \left((1 - \ell) x + \ell g \right) \|_{[0,1],1} \right\|_{\Omega,q} \\ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \|g - x\|_{\Omega,1} \left\| \|\Phi' \left((1 - \ell) x + \ell g \right) \|_{[0,1],1} \right\|_{\Omega,\infty}; \end{cases}$$

for any $x \in [a, b]$.

Proof. Taking the modulus in the equality (2.1), we have

$$(3.3) \qquad \begin{aligned} \left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(x \right) - \lambda \left(\int_{\Omega} g d\mu - x \right) \right| \\ &\leq \int_{\Omega} \left| (g - x) \int_{0}^{1} \left(\Phi' \left((1 - s) x + sg \right) - \lambda \right) ds \right| d\mu \\ &\leq \int_{\Omega} \left| g - x \right| \int_{0}^{1} \left| \Phi' \left((1 - s) x + sg \right) - \lambda \right| ds d\mu \\ &= \int_{\Omega} \left| g - x \right| \left\| \Phi' \left((1 - \ell) x + \ell g \right) - \lambda \right\|_{[0,1],1} d\mu \end{aligned}$$

for any $\lambda \in \mathbb{C}$ and $x \in [a, b]$.

Utilising Hölder's inequality for the μ -measurable functions $F, G : \Omega \to \mathbb{C}$,

$$\left|\int_{\Omega} FGd\mu\right| \le \left(\int_{\Omega} |F|^p \, d\mu\right)^{1/p} \left(\int_{\Omega} |G|^q \, d\mu\right)^{1/q}, \ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1$$

and

$$\left|\int_{\Omega} FGd\mu\right| \leq \operatorname{ess\,sup}_{t\in\Omega} |F(t)| \int_{\Omega} |G| \, d\mu$$

we get from (3.3) the desired result (3.1).

Remark 4. If we take $x = \frac{a+b}{2}$ in (3.1), then we get

(3.4)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\frac{a+b}{2} \right) - \lambda \left(\int_{\Omega} g d\mu - \frac{a+b}{2} \right) \right|$$
$$\leq \int_{\Omega} \left| g - \frac{a+b}{2} \right| \left\| \Phi' \left((1-\ell) \frac{a+b}{2} + \ell g \right) - \lambda \right\|_{[0,1],1} d\mu$$

$$\leq \begin{cases} \|g - \frac{a+b}{2}\|_{\Omega,\infty} \left\| \|\Phi'\left((1-\ell)\frac{a+b}{2} + \ell g\right) - \lambda \|_{[0,1],1} \right\|_{\Omega,1}; \\ \|g - \frac{a+b}{2}\|_{\Omega,p} \left\| \|\Phi'\left((1-\ell)\frac{a+b}{2} + \ell g\right) - \lambda \|_{[0,1],1} \right\|_{\Omega,q} \\ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \|g - \frac{a+b}{2}\|_{\Omega,1} \left\| \|\Phi'\left((1-\ell)\frac{a+b}{2} + \ell g\right) - \lambda \|_{[0,1],1} \right\|_{\Omega,\infty}; \end{cases}$$

for any $\lambda \in \mathbb{C}$ and, in particular, for $\lambda = 0$ we have

$$(3.5) \qquad \left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\frac{a+b}{2} \right) \right| \\ \leq \int_{\Omega} \left| g - \frac{a+b}{2} \right| \left\| \Phi' \left((1-\ell) \frac{a+b}{2} + \ell g \right) \right\|_{[0,1],1} d\mu \\ \leq \begin{cases} \left\| g - \frac{a+b}{2} \right\|_{\Omega,\infty} \left\| \left\| \Phi' \left((1-\ell) \frac{a+b}{2} + \ell g \right) \right\|_{[0,1],1} \right\|_{\Omega,1}; \\ \left\| g - \frac{a+b}{2} \right\|_{\Omega,p} \left\| \left\| \Phi' \left((1-\ell) \frac{a+b}{2} + \ell g \right) \right\|_{[0,1],1} \right\|_{\Omega,q} \\ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \left\| g - \frac{a+b}{2} \right\|_{\Omega,1} \left\| \left\| \Phi' \left((1-\ell) \frac{a+b}{2} + \ell g \right) \right\|_{[0,1],1} \right\|_{\Omega,\infty}; \end{cases}$$

If we take $x = \int_{\Omega} g d\mu$ in (3.1), then we get

$$\begin{aligned} \left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\int_{\Omega} g d\mu \right) \right| \\ &\leq \int_{\Omega} \left| g - \int_{\Omega} g d\mu \right| \left\| \Phi' \left((1-\ell) \int_{\Omega} g d\mu + \ell g \right) - \lambda \right\|_{[0,1],1} d\mu \\ (3.6) \\ &\leq \begin{cases} \left\| g - \int_{\Omega} g d\mu \right\|_{\Omega,\infty} \left\| \left\| \Phi' \left((1-\ell) \int_{\Omega} g d\mu + \ell g \right) - \lambda \right\|_{[0,1],1} \right\|_{\Omega,1}; \\ \left\| g - \int_{\Omega} g d\mu \right\|_{\Omega,p} \left\| \left\| \Phi' \left((1-\ell) \int_{\Omega} g d\mu + \ell g \right) - \lambda \right\|_{[0,1],1} \right\|_{\Omega,q} \\ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \left\| g - \int_{\Omega} g d\mu \right\|_{\Omega,1} \left\| \left\| \Phi' \left((1-\ell) \int_{\Omega} g d\mu + \ell g \right) - \lambda \right\|_{[0,1],1} \right\|_{\Omega,\infty}; \end{aligned}$$

for any $\lambda \in \mathbb{C}$ and, in particular, for $\lambda = 0$ we have

$$\begin{aligned} \left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\int_{\Omega} g d\mu \right) \right| \\ &\leq \int_{\Omega} \left| g - \int_{\Omega} g d\mu \right| \left\| \Phi' \left((1-\ell) \int_{\Omega} g d\mu + \ell g \right) \right\|_{[0,1],1} d\mu \\ (3.7) \\ &\leq \begin{cases} \left\| g - \int_{\Omega} g d\mu \right\|_{\Omega,\infty} \left\| \left\| \Phi' \left((1-\ell) \int_{\Omega} g d\mu + \ell g \right) \right\|_{[0,1],1} \right\|_{\Omega,1}; \\ \left\| g - \int_{\Omega} g d\mu \right\|_{\Omega,p} \left\| \left\| \Phi' \left((1-\ell) \int_{\Omega} g d\mu + \ell g \right) \right\|_{[0,1],1} \right\|_{\Omega,q} \\ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \left\| g - \int_{\Omega} g d\mu \right\|_{\Omega,1} \left\| \left\| \Phi' \left((1-\ell) \int_{\Omega} g d\mu + \ell g \right) \right\|_{[0,1],1} \right\|_{\Omega,\infty}. \end{aligned}$$

Corollary 4. Let $\Phi : I \to \mathbb{C}$ be an absolutely continuous function on $[a, b] \subset \mathring{I}$, the interior of I. If $g : \Omega \to [a, b]$ is Lebesgue μ -measurable on Ω and such that $\Phi \circ g$, $g \in L(\Omega, \mu)$, then

(3.8)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(x \right) \right| \leq \left\| \Phi' \right\|_{[a,b],\infty} \int_{\Omega} \left| g - x \right| d\mu$$

for any $x \in [a, b]$.

In particular, we have

(3.9)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi\left(\frac{a+b}{2}\right) \right| \le \left\| \Phi' \right\|_{[a,b],\infty} \int_{\Omega} \left| g - \frac{a+b}{2} \right| d\mu$$

and

(3.10)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\int_{\Omega} g d\mu \right) \right| \leq \left\| \Phi' \right\|_{[a,b],\infty} \int_{\Omega} \left| g - \int_{\Omega} g d\mu \right| d\mu.$$

Proof. We have from (3.1) that

(3.11)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi(x) \right| \leq \int_{\Omega} |g - x| \left(\int_{0}^{1} \left| \Phi'((1 - s)x + sg) \right| ds \right) d\mu$$
for any $x \in [a, b]$

for any $x \in [a, b]$.

However, for any $t \in \Omega$ and almost every $s \in [0, 1]$ we have

$$|\Phi'((1-s)x + sg(t))| \le \operatorname{ess\,sup}_{u\in[a,b]} |\Phi'(u)| = ||\Phi'||_{[a,b],\infty},$$

for any $x \in [a, b]$.

Making use of (3.11), we get (3.8).

Remark 5. We remark that the quantity from Corollary 4

$$\delta_{\mu}\left(g,x\right) := \int_{\Omega} \left|g-x\right| d\mu$$

cannot be computed in general.

However, in the case when $\Omega = [a,b], g : [a,b] \to [a,b], g(t) = t$ and $\mu(t) = \frac{1}{b-a}dt$, we have

$$\begin{split} \delta_{\mu}\left(g,x\right) &\coloneqq \frac{1}{b-a} \int_{a}^{b} |t-x| \, dt = \frac{1}{b-a} \left[\int_{a}^{x} \left(x-t\right) dt + \int_{x}^{b} \left(t-x\right) dt \right] \\ &= \frac{1}{b-a} \left[\left(x-a\right)^{2} + \left(b-x\right)^{2} \right] \\ &= \left[\frac{1}{4} + \left(\frac{x-\frac{a+b}{2}}{b-a}\right)^{2} \right] \left(b-a\right), \end{split}$$

where $x \in [a, b]$.

Utilising the inequality (3.8), we get Ostrowski's inequality

(3.12)
$$\left| \frac{1}{b-a} \int_{a}^{b} \Phi(t) dt - \Phi(x) \right|$$
$$\leq \left\| \Phi' \right\|_{[a,b],\infty} \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a)$$

for any $x \in [a, b]$.

From the inequalities (3.9) and (3.10) we get the midpoint inequality

(3.13)
$$\left|\frac{1}{b-a}\int_{a}^{b}\Phi(t)\,dt - \Phi\left(\frac{a+b}{2}\right)\right| \leq \frac{1}{4}\left\|\Phi'\right\|_{[a,b],\infty}(b-a)\,.$$

Remark 6. If we consider the dispersion or the standard variation

$$\sigma_{\mu}(g) := \left(\int_{\Omega} \left(g - \int_{\Omega} g d\mu \right)^2 d\mu \right)^{1/2} = \left(\int_{\Omega} g^2 d\mu - \left(\int_{\Omega} g d\mu \right)^2 \right)^{1/2},$$

then by (3.10) we have the inequalities

(3.14)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\int_{\Omega} g d\mu \right) \right| \leq \left\| \Phi' \right\|_{[a,b],\infty} \delta_{\mu} \left(g, \int_{\Omega} g d\mu \right) \\ \leq \left\| \Phi' \right\|_{[a,b],\infty} \sigma_{\mu} \left(g \right).$$

In general, we have by Cauchy–Bunyakovsky–Schwarz's inequality that

(3.15)
$$\delta_{\mu}(g,x) := \int_{\Omega} |g-x| \, d\mu \le \left(\int_{\Omega} (g-x)^2 \, d\mu \right)^{1/2}.$$
 Since

Since

$$\int_{\Omega} (g-x)^2 d\mu = \int_{\Omega} \left(g - \int_{\Omega} g d\mu + \int_{\Omega} g d\mu - x \right)^2 d\mu$$
$$= \int_{\Omega} \left(g - \int_{\Omega} g d\mu \right)^2 d\mu + 2 \int_{\Omega} \left(g - \int_{\Omega} g d\mu \right) \left(\int_{\Omega} g d\mu - x \right) d\mu$$

$$+ \int_{\Omega} \left(\int_{\Omega} g d\mu - x \right)^2 d\mu$$
$$= \int_{\Omega} \left(g - \int_{\Omega} g d\mu \right)^2 d\mu + \left(\int_{\Omega} g d\mu - x \right)^2$$

for any $x \in [a, b]$, then by (3.8) and (3.15) we get the inequalities

(3.16)
$$\begin{aligned} \left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(x \right) \right| &\leq \left\| \Phi' \right\|_{[a,b],\infty} \delta_{\mu} \left(g, x \right) \\ &\leq \left\| \Phi' \right\|_{[a,b],\infty} \left[\sigma_{\mu}^{2} \left(g \right) + \left(\int_{\Omega} g d\mu - x \right)^{2} \right]^{1/2} \end{aligned}$$

for any $x \in [a, b]$.

If we use the discrete measure, then from (3.16) we have

$$\begin{aligned} \left| \sum_{j=1}^{n} p_{j} \Phi(x_{j}) - \Phi(x) \right| \\ (3.17) &\leq \left\| \Phi' \right\|_{[a,b],\infty} \sum_{j=1}^{n} p_{j} |x_{j} - x| \\ &\leq \left\| \Phi' \right\|_{[a,b],\infty} \left[\sum_{j=1}^{n} p_{j} x_{j}^{2} - \left(\sum_{j=1}^{n} p_{j} x_{j} \right)^{2} + \left(\sum_{j=1}^{n} p_{j} x_{j} - x \right)^{2} \right]^{1/2}, \end{aligned}$$

for any $x \in [a, b]$, where $x_j \in [a, b]$ and $p_j \ge 0$ with $\sum_{j=1}^n p_j = 1$. In particular, we have

(3.18)
$$\left| \sum_{j=1}^{n} p_{j} \Phi\left(x_{j}\right) - \Phi\left(\frac{a+b}{2}\right) \right| \leq \left\| \Phi' \right\|_{[a,b],\infty} \sum_{j=1}^{n} p_{j} \left| x_{j} - \frac{a+b}{2} \right|$$
$$\leq \frac{1}{2} \left(b-a \right) \left\| \Phi' \right\|_{[a,b],\infty}$$

and

$$\begin{aligned} \left| \sum_{j=1}^{n} p_{j} \Phi\left(x_{j}\right) - \Phi\left(\sum_{k=1}^{n} p_{k} x_{k}\right) \right| &\leq \left\| \Phi' \right\|_{[a,b],\infty} \sum_{j=1}^{n} p_{j} \left| x_{j} - \sum_{k=1}^{n} p_{k} x_{k} \right| \\ (3.19) \\ &\leq \left\| \Phi' \right\|_{[a,b],\infty} \left[\sum_{j=1}^{n} p_{j} x_{j}^{2} - \left(\sum_{j=1}^{n} p_{j} x_{j}\right)^{2} \right]^{1/2} \\ &\leq \frac{1}{2} \left(b - a \right) \left\| \Phi' \right\|_{[a,b],\infty}. \end{aligned}$$

4. Inequalities for bounded derivatives. Now, for γ , $\Gamma \in \mathbb{C}$ and [a, b] an interval of real numbers, define the sets of complex-valued functions

$$U_{[a,b]}(\gamma,\Gamma) := \left\{ f: [a,b] \to \mathbb{C} | \operatorname{Re}\left[(\Gamma - f(t)) \left(\overline{f(t)} - \overline{\gamma} \right) \right] \ge 0 \text{ for a.e. } t \in [a,b] \right\}$$

and

$$\begin{split} \bar{\Delta}_{[a,b]}\left(\gamma,\Gamma\right) \\ &:= \left\{ f:[a,b] \to \mathbb{C} | \left| f\left(t\right) - \frac{\gamma+\Gamma}{2} \right| \leq \frac{1}{2} \left|\Gamma-\gamma\right| \text{ for a.e. } t \in [a,b] \right\}. \end{split}$$

The following representation result may be stated.

Proposition 1. For any γ , $\Gamma \in \mathbb{C}$, $\gamma \neq \Gamma$, we have that $\overline{U}_{[a,b]}(\gamma,\Gamma)$ and $\overline{\Delta}_{[a,b]}(\gamma,\Gamma)$ are nonempty, convex and closed sets and

(4.1)
$$\bar{U}_{[a,b]}(\gamma,\Gamma) = \bar{\Delta}_{[a,b]}(\gamma,\Gamma) \,.$$

Proof. We observe that for any $z \in \mathbb{C}$ we have the equivalence

$$\left|z - \frac{\gamma + \Gamma}{2}\right| \le \frac{1}{2} \left|\Gamma - \gamma\right|$$

if and only if

$$\operatorname{Re}\left[\left(\Gamma-z\right)\left(\bar{z}-\bar{\gamma}\right)\right] \ge 0.$$

This follows by the equality

$$\frac{1}{4}\left|\Gamma - \gamma\right|^2 - \left|z - \frac{\gamma + \Gamma}{2}\right|^2 = \operatorname{Re}\left[\left(\Gamma - z\right)\left(\bar{z} - \bar{\gamma}\right)\right]$$

that holds for any $z \in \mathbb{C}$.

The equality (3.1) is thus a simple consequence of this fact.

On making use of the complex numbers field properties, we can also state that:

Corollary 5. For any $\gamma, \Gamma \in \mathbb{C}, \ \gamma \neq \Gamma$, we have

(4.2)
$$\begin{aligned} \bar{U}_{[a,b]}\left(\gamma,\Gamma\right) \\ &= \left\{f:[a,b] \to \mathbb{C} \mid (\operatorname{Re}\Gamma - \operatorname{Re}f\left(t\right))\left(\operatorname{Re}f\left(t\right) - \operatorname{Re}\gamma\right) \right. \\ &+ \left(\operatorname{Im}\Gamma - \operatorname{Im}f\left(t\right)\right)\left(\operatorname{Im}f\left(t\right) - \operatorname{Im}\gamma\right) \geq 0 \text{ for a.e. } t \in [a,b]\right\}. \end{aligned}$$

Now, if we assume that $\operatorname{Re}(\Gamma) \geq \operatorname{Re}(\gamma)$ and $\operatorname{Im}(\Gamma) \geq \operatorname{Im}(\gamma)$, then we can define the following set of functions as well:

(4.3)
$$\bar{S}_{[a,b]}(\gamma,\Gamma) := \{f : [a,b] \to \mathbb{C} \mid \operatorname{Re}(\Gamma) \ge \operatorname{Re}f(t) \ge \operatorname{Re}(\gamma)$$

and $\operatorname{Im}(\Gamma) \ge \operatorname{Im}f(t) \ge \operatorname{Im}(\gamma) \text{ for a.e. } t \in [a,b]\}.$

One can easily observe that $\bar{S}_{\left[a,b\right]}\left(\gamma,\Gamma\right)$ is closed, convex and

(4.4)
$$\emptyset \neq S_{[a,b]}(\gamma,\Gamma) \subseteq U_{[a,b]}(\gamma,\Gamma) .$$

The following result holds:

Theorem 4. Let $\Phi : I \to \mathbb{C}$ be an absolutely continuous function on $[a,b] \subset \mathring{I}$, the interior of I. For some $\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma$, assume that $\Phi' \in \overline{U}_{[a,b]}(\gamma,\Gamma) = \overline{\Delta}_{[a,b]}(\gamma,\Gamma)$. If $g : \Omega \to [a,b]$ is Lebesgue μ -measurable on Ω and such that $\Phi \circ g, g \in L(\Omega,\mu)$, then we have the inequality

(4.5)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi(x) - \frac{\gamma + \Gamma}{2} \left(\int_{\Omega} g d\mu - x \right) \right|$$
$$\leq \frac{1}{2} \left| \Gamma - \gamma \right| \int_{\Omega} \left| g - x \right| d\mu$$

for any $x \in [a, b]$.

In particular, we have

(4.6)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\frac{a+b}{2} \right) - \frac{\gamma + \Gamma}{2} \left(\int_{\Omega} g d\mu - \frac{a+b}{2} \right) \right|$$
$$\leq \frac{1}{2} \left| \Gamma - \gamma \right| \int_{\Omega} \left| g - \frac{a+b}{2} \right| d\mu \leq \frac{1}{4} \left(b-a \right) \left| \Gamma - \gamma \right|$$

and

(4.7)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\int_{\Omega} g d\mu \right) \right| \leq \frac{1}{2} \left| \Gamma - \gamma \right| \int_{\Omega} \left| g - \int_{\Omega} g d\mu \right| d\mu$$
$$\leq \frac{1}{2} \left| \Gamma - \gamma \right| \left(\int_{\Omega} g^{2} d\mu - \left(\int_{\Omega} g d\mu \right)^{2} \right)^{1/2}$$
$$\leq \frac{1}{4} \left(b - a \right) \left| \Gamma - \gamma \right|.$$

Proof. By the equality (2.1) for $\lambda = \frac{\gamma + \Gamma}{2}$ we have

(4.8)

$$\int_{\Omega} \Phi \circ g d\mu - \Phi(x) - \frac{\gamma + \Gamma}{2} \left(\int_{\Omega} g d\mu - x \right)$$

$$= \int_{\Omega} \left[(g - x) \int_{0}^{1} \left(\Phi'((1 - s)x + sg) - \frac{\gamma + \Gamma}{2} \right) ds \right] d\mu.$$

Since $\Phi' \in \overline{\Delta}_{[a,b]}(\gamma, \Gamma)$, we have

(4.9)
$$\left| \Phi'\left((1-s) \, x + sg\left(t\right) \right) - \frac{\gamma + \Gamma}{2} \right| \le \frac{1}{2} \left| \Gamma - \gamma \right|$$

for a.e. $s \in [0, 1]$ and for any $x \in [a, b]$ and any $t \in \Omega$. Integrating (4.9) over s on [0, 1], we get

(4.10)
$$\int_0^1 \left| \Phi'\left((1-s) x + sg\left(t\right) \right) - \frac{\gamma + \Gamma}{2} \right| ds \le \frac{1}{2} \left| \Gamma - \gamma \right|$$

for any $x \in [a, b]$ and any $t \in \Omega$.

Taking the modulus in (4.8), we get via (4.10) that

$$(4.11) \qquad \left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(x \right) - \frac{\gamma + \Gamma}{2} \left(\int_{\Omega} g d\mu - x \right) \right|$$
$$\leq \int_{\Omega} \left[\left| g - x \right| \left| \int_{0}^{1} \left(\Phi' \left((1 - s) x + sg \right) - \frac{\gamma + \Gamma}{2} \right) ds \right| \right] d\mu$$
$$\leq \int_{\Omega} \left[\left| g - x \right| \int_{0}^{1} \left| \Phi' \left((1 - s) x + sg \left(t \right) \right) - \frac{\gamma + \Gamma}{2} \right| ds \right] d\mu$$
$$\leq \frac{1}{2} \left| \Gamma - \gamma \right| \int_{\Omega} \left| g - x \right| d\mu$$

and the proof of (4.5) is completed.

Corollary 6. Let $\Phi : I \to \mathbb{R}$ be a convex function on $[a,b] \subset \mathring{I}$, the interior of I. If $g : \Omega \to [a,b]$ is Lebesgue μ -measurable on Ω and such that $\Phi \circ g$, $g \in L(\Omega,\mu)$, then we have the inequality

(4.12)
$$\left| \int_{\Omega} \Phi \circ g d\mu - \Phi(x) - \frac{\Phi'_{+}(a) + \Phi'_{-}(b)}{2} \left(\int_{\Omega} g d\mu - x \right) \right| \\ \leq \frac{1}{2} \left[\Phi'_{-}(b) - \Phi'_{+}(a) \right] \int_{\Omega} |g - x| \, d\mu$$

for any $x \in [a, b]$.

In particular, we have

$$\begin{aligned} \left| \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\frac{a+b}{2} \right) - \frac{\Phi'_{+}(a) + \Phi'_{-}(b)}{2} \left(\int_{\Omega} g d\mu - \frac{a+b}{2} \right) \right| \\ (4.13) &\leq \frac{1}{2} \left[\Phi'_{-}(b) - \Phi'_{+}(a) \right] \int_{\Omega} \left| g - \frac{a+b}{2} \right| d\mu \\ &\leq \frac{1}{4} \left(b - a \right) \left[\Phi'_{-}(b) - \Phi'_{+}(a) \right] \end{aligned}$$

and

(4.14)
$$0 \leq \int_{\Omega} \Phi \circ g d\mu - \Phi \left(\int_{\Omega} g d\mu \right) \\ \leq \frac{1}{2} \left[\Phi'_{-} (b) - \Phi'_{+} (a) \right] \int_{\Omega} \left| g - \int_{\Omega} g d\mu \right| d\mu.$$

The discrete case is as follows:

Remark 7. Let $\Phi: I \to \mathbb{C}$ be an absolutely continuous function on $[a, b] \subset \mathring{I}$, the interior of I. For some $\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma$, assume that $\Phi' \in \overline{\Delta}_{[a,b]}(\gamma, \Gamma)$.

If $x_j \in [a, b]$ and $p_j \ge 0$ with $\sum_{j=1}^n p_j = 1$ then we have the inequality

(4.15)
$$\left| \sum_{j=1}^{n} p_{j} \Phi\left(x_{j}\right) - \Phi\left(x\right) - \frac{\gamma + \Gamma}{2} \left(\sum_{k=1}^{n} p_{k} x_{k} - x \right) \right| \\ \leq \frac{1}{2} \left| \Gamma - \gamma \right| \sum_{j=1}^{n} p_{j} \left| x_{j} - x \right|$$

for any $x \in [a, b]$.

In particular, we have

(4.16)
$$\left| \sum_{j=1}^{n} p_{j} \Phi\left(x_{j}\right) - \Phi\left(\frac{a+b}{2}\right) - \frac{\gamma+\Gamma}{2} \left(\sum_{k=1}^{n} p_{k} x_{k} - \frac{a+b}{2}\right) \right|$$
$$\leq \frac{1}{2} \left|\Gamma-\gamma\right| \sum_{j=1}^{n} p_{j} \left|x_{j} - \frac{a+b}{2}\right| \leq \frac{1}{4} \left(b-a\right) \left|\Gamma-\gamma\right|$$

and

$$\left| \sum_{j=1}^{n} p_{j} \Phi\left(x_{j}\right) - \Phi\left(\sum_{k=1}^{n} p_{k} x_{k}\right) \right| \leq \frac{1}{2} \left|\Gamma - \gamma\right| \sum_{j=1}^{n} p_{j} \left|x_{j} - \sum_{k=1}^{n} p_{k} x_{k}\right|$$
$$\leq \frac{1}{2} \left|\Gamma - \gamma\right| \left(\sum_{j=1}^{n} p_{j} x_{j}^{2} - \left(\sum_{k=1}^{n} p_{k} x_{k}\right)^{2}\right)^{1/2} \leq \frac{1}{4} \left(b - a\right) \left|\Gamma - \gamma\right|.$$

If $\Phi: I \to \mathbb{R}$ is a convex function on $[a,b]\,,$ then we have

$$\left| \sum_{j=1}^{n} p_{j} \Phi(x_{j}) - \Phi(x) - \frac{\Phi'_{+}(a) + \Phi'_{-}(b)}{2} \left(\sum_{k=1}^{n} p_{k} x_{k} - x \right) \right|$$

$$\leq \frac{1}{2} \left[\Phi'_{-}(b) - \Phi'_{+}(a) \right] \sum_{j=1}^{n} p_{j} |x_{j} - x|$$

for any $x \in [a, b]$.

In particular, we have

$$\left| \sum_{j=1}^{n} p_{j} \Phi\left(x_{j}\right) - \Phi\left(\frac{a+b}{2}\right) - \frac{\Phi_{+}'\left(a\right) + \Phi_{-}'\left(b\right)}{2} \left(\sum_{k=1}^{n} p_{k} x_{k} - \frac{a+b}{2}\right) \right|$$

$$\leq \frac{1}{2} \left[\Phi_{-}'\left(b\right) - \Phi_{+}'\left(a\right) \right] \sum_{j=1}^{n} p_{j} \left| x_{j} - \frac{a+b}{2} \right|$$

$$\leq \frac{1}{4} \left(b-a\right) \left[\Phi_{-}'\left(b\right) - \Phi_{+}'\left(a\right) \right].$$

5. Applications for *f*-divergence. Assume that a set Ω and the σ -finite measure μ are given. Consider the set of all probability densities on μ to be $\mathcal{P} := \{p \mid p : \Omega \to \mathbb{R}, p(t) \ge 0, \int_{\Omega} p(t) d\mu(t) = 1\}$. The Kullback–Leibler divergence [22] is well known among the information divergences. It is defined as:

(5.1)
$$D_{KL}(p,q) := \int_{\Omega} p(t) \ln\left[\frac{p(t)}{q(t)}\right] d\mu(t), \quad p,q \in \mathcal{P},$$

where \ln is to base e.

In Information Theory and Statistics, various divergences are applied in addition to the Kullback–Leibler divergence. These are the: variation distance D_v , Hellinger distance D_H [19], χ^2 -divergence D_{χ^2} , α -divergence D_{α} , Bhattacharyya distance D_B [1], harmonic distance D_{Ha} , Jeffrey's distance D_J [20], triangular discrimination D_{Δ} [25], etc. They are defined as follows:

(5.2)
$$D_{v}\left(p,q\right) := \int_{\Omega} \left|p\left(t\right) - q\left(t\right)\right| d\mu\left(t\right), \ p,q \in \mathcal{P};$$

(5.3)
$$D_{H}(p,q) := \int_{\Omega} \left| \sqrt{p(t)} - \sqrt{q(t)} \right| d\mu(t), \quad p,q \in \mathcal{P};$$

(5.4)
$$D_{\chi^2}(p,q) := \int_{\Omega} p(t) \left[\left(\frac{q(t)}{p(t)} \right)^2 - 1 \right] d\mu(t), \quad p,q \in \mathcal{P};$$

(5.5)
$$D_{\alpha}(p,q) := \frac{4}{1-\alpha^2} \left[1 - \int_{\Omega} \left[p(t) \right]^{\frac{1-\alpha}{2}} \left[q(t) \right]^{\frac{1+\alpha}{2}} d\mu(t) \right], \quad p,q \in \mathcal{P};$$

(5.6)
$$D_B(p,q) := \int_{\Omega} \sqrt{p(t) q(t)} d\mu(t), \quad p,q \in \mathcal{P};$$

(5.7)
$$D_{Ha}\left(p,q\right) \coloneqq \int_{\Omega} \frac{2p\left(t\right)q\left(t\right)}{p\left(t\right)+q\left(t\right)} d\mu\left(t\right), \ p,q \in \mathcal{P};$$

(5.8)
$$D_J(p,q) := \int_{\Omega} \left[p(t) - q(t) \right] \ln \left[\frac{p(t)}{q(t)} \right] d\mu(t), \quad p,q \in \mathcal{P};$$

(5.9)
$$D_{\Delta}(p,q) := \int_{\Omega} \frac{\left[p\left(t\right) - q\left(t\right)\right]^2}{p\left(t\right) + q\left(t\right)} d\mu\left(t\right), \ p,q \in \mathcal{P}.$$

For other divergence measures, see the paper [21] by Kapur or the book online [24] by Taneja.

Csiszár f-divergence is defined as follows [4]

(5.10)
$$I_{f}(p,q) \coloneqq \int_{\Omega} p(t) f\left[\frac{q(t)}{p(t)}\right] d\mu(t), \quad p,q \in \mathcal{P},$$

where f is convex on $(0, \infty)$. It is assumed that f(u) is zero and strictly convex at u = 1. By appropriately defining this convex function, various divergences are derived. Most of the above distances (5.1)-(5.9) are particular instances of Csiszár f-divergence. There are also many others which are not in this class (see for example [24]).

The following result holds:

Proposition 2. Let $f : (0, \infty) \to \mathbb{R}$ be a convex function with the property that f(1) = 0. Assume that $p, q \in \mathcal{P}$ and there exist constants $0 < r < 1 < R < \infty$ such that

(5.11)
$$r \leq \frac{q(t)}{p(t)} \leq R \text{ for } \mu\text{-a.e. } t \in \Omega.$$

If $x \in [r, R]$, then we have the inequalities

(5.12)
$$|I_{f}(p,q) - f(x)| \leq ||f'||_{[r,R],\infty} D_{v,x}(p,q) \\ \leq ||f'||_{[r,R],\infty} \left[D_{\chi^{2}}(p,q) + (x-1)^{2} \right]^{1/2},$$

where

$$D_{v,x}(p,q) := \int_{\Omega} |p(t) - xq(t)| \, d\mu(t), \ p,q \in \mathcal{P}.$$

In particular, we have

(5.13)
$$\left| I_{f}(p,q) - f\left(\frac{r+R}{2}\right) \right| \leq \left\| f' \right\|_{[r,R],\infty} D_{v,\frac{r+R}{2}}(p,q) \\ \leq \left\| f' \right\|_{[r,R],\infty} \left[D_{\chi^{2}}(p,q) + \left(\frac{r+R}{2} - 1\right)^{2} \right]^{1/2}$$

and

(5.14)
$$0 \le I_f(p,q) \le \|f'\|_{[r,R],\infty} D_v(p,q) \le \|f'\|_{[r,R],\infty} [D_{\chi^2}(p,q)]^{1/2}.$$

Proof. Utilising the inequality (3.16) for the convex function f, we have

$$\begin{split} \left| \int_{\Omega} p\left(t\right) f\left[\frac{q\left(t\right)}{p\left(t\right)}\right] d\mu\left(t\right) - f\left(x\right) \right| \\ &\leq \left\|f'\right\|_{[r,R],\infty} \int_{\Omega} \left|\frac{q\left(t\right)}{p\left(t\right)} - x\right| p\left(t\right) d\mu\left(t\right) \\ &\leq \left\|f'\right\|_{[r,R],\infty} \left[\int_{\Omega} \left(\frac{q\left(t\right)}{p\left(t\right)}\right)^{2} p\left(t\right) d\mu\left(t\right) - \left(\int_{\Omega} \frac{q\left(t\right)}{p\left(t\right)} p\left(t\right) d\mu\left(t\right)\right)^{2} \\ &+ \left(\int_{\Omega} \frac{q\left(t\right)}{p\left(t\right)} p\left(t\right) d\mu\left(t\right) - x\right)^{2} \right]^{1/2}, \end{split}$$

which is equivalent to (5.12).

We also have

Proposition 3. With the assumptions of Proposition 2 we have

(5.15)
$$\begin{aligned} \left| I_{f}(p,q) - f(x) - \frac{f'_{+}(r) + f'_{-}(R)}{2} (1-x) \right| \\ &\leq \frac{1}{2} \left[f'_{-}(R) - f'_{+}(r) \right] D_{v,x}(p,q) \end{aligned}$$

for any $x \in [r, R]$.

In particular, we have

(5.16)
$$\left| I_{f}(p,q) - f\left(\frac{r+R}{2}\right) - \frac{f'_{+}(r) + f'_{-}(R)}{2}\left(1 - \frac{r+R}{2}\right) \right| \\ \leq \frac{1}{2} \left[f'_{-}(R) - f'_{+}(r) \right] D_{v,\frac{r+R}{2}}(p,q)$$

and

(5.17)
$$0 \le I_f(p,q) \le \frac{1}{2} \left[f'_-(R) - f'_+(r) \right] D_v(p,q)$$

Proof. Utilising the inequality (4.12), we have

$$\begin{aligned} \left| \int_{\Omega} p(t) f\left[\frac{q(t)}{p(t)}\right] d\mu(t) - f(x) \\ &- \frac{f'_{+}(r) + f'_{-}(R)}{2} \left(\int_{\Omega} \frac{q(t)}{p(t)} p(t) d\mu(t) - x \right) \right| \\ &\leq \frac{1}{2} \left[f'_{-}(R) - f'_{+}(r) \right] \int_{\Omega} \left| \frac{q(t)}{p(t)} - x \right| p(t) d\mu(t) \end{aligned}$$

for any $x \in [a, b]$, which is equivalent to (5.15).

If we consider the convex function $f:(0,\infty)\to\mathbb{R}, f(t)=t\ln t$, then

$$I_{f}(p,q) := \int_{\Omega} p(t) \frac{q(t)}{p(t)} \ln\left[\frac{q(t)}{p(t)}\right] d\mu(t) = \int_{\Omega} q(t) \ln\left[\frac{q(t)}{p(t)}\right] d\mu(t)$$
$$= D_{KL}(q,p).$$

We have $f'(t) = \ln t + 1$ and by (5.17) we get

(5.18)
$$0 \le D_{KL}(q,p) \le \ln \sqrt{\frac{R}{r}} D_v(p,q),$$

provided that

$$r \leq \frac{q(t)}{p(t)} \leq R$$
 for μ -a.e. $t \in \Omega$.

If we consider the convex function $f:(0,\infty)\to\mathbb{R}, f(t)=-\ln t$, then

$$I_{f}(p,q) := -\int_{\Omega} p(t) \ln\left[\frac{q(t)}{p(t)}\right] d\mu(t) = \int_{\Omega} p(t) \ln\left[\frac{p(t)}{q(t)}\right] d\mu(t)$$
$$= D_{KL}(p,q).$$

We have $f'(t) = -\frac{1}{t}$ and by (5.17) we get

(5.19)
$$0 \le D_{KL}(p,q) \le \frac{1}{2} \frac{R-r}{rR} D_v(p,q)$$

provided that

$$r \leq \frac{q(t)}{p(t)} \leq R$$
 for μ -a.e. $t \in \Omega$.

References

- Bhattacharyya, A., On a measure of divergence between two statistical populations defined by their probability distributions, Bull. Calcutta Math. Soc. 35 (1943), 99–109.
- [2] Cerone, P., Dragomir, S. S., Midpoint-type rules from an inequalities point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics, Anastassiou, G. A., (Ed.), CRC Press, New York, 2000, 135–200.
- [3] Cerone, P., Dragomir, S. S., Roumeliotis, J., Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math. 32 (2) (1999), 697–712.
- [4] Csiszár, I. I., Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica 2 (1967), 299–318.
- [5] Dragomir, S. S., Ostrowski's inequality for monotonous mappings and applications, J. KSIAM 3 (1) (1999), 127–135.
- [6] Dragomir, S. S., The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl. 38 (1999), 33–37.
- [7] Dragomir, S. S., The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc. 60 (1) (1999), 495–508.
- [8] Dragomir, S. S., A converse result for Jensen's discrete inequality via Gruss' inequality and applications in information theory, An. Univ. Oradea Fasc. Mat. 7 (1999/2000), 178–189.
- [9] Dragomir, S. S., On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl. 4 (1) (2001), 59–66.
- [10] Dragomir, S. S., On a reverse of Jessen's inequality for isotonic linear functionals, J. Ineq. Pure Appl. Math. 2, No. 3, (2001), Art. 36.
- [11] Dragomir, S. S., An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense 16 (2) (2003), 373–382.
- [12] Dragomir, S. S., Reverses of the Jensen inequality in terms of the first derivative and applications, Acta Math. Vietnam. 38, no. 3 (2013), 429–446. Preprint RGMIA Res. Rep. Coll. 14 (2011), Art. 71. [Online http://rgmia.org/papers/v14/v14a71.pdf].
- [13] Dragomir, S. S., Operator Inequalities of Ostrowski and Trapezoidal Type, Springer, New York, 2012.
- [14] Dragomir, S. S., Perturbed companions of Ostrowski's inequality for absolutely continuous functions (I), An. Univ. Vest Timiş. Ser. Mat.-Inform. 54, no. 1 (2016), 119-138. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art 7, 15 pp. [Online http://rgmia.org/papers/v17/v17a07.pdf].
- [15] Dragomir, S. S., General Lebesgue integral inequalities of Jensen and Ostrowski type for differentiable functions whose derivatives in absolute value are h-convex and applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 69, no. 2 (2015), 17–45.
- [16] Dragomir, S. S., Cerone, P., Roumeliotis, J., Wang, S., A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie 42(90) (4) (1999), 301–314.

- [17] Dragomir, S. S., Ionescu, N. M., Some converse of Jensen's inequality and applications, Rev. Anal. Numér. Théor. Approx. 23, No. 1 (1994), 71–78.
- [18] Dragomir, S. S., Rassias, Th. M. (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht-Boston-London, 2002.
- [19] Hellinger, E., Neue Bergrüirdung du Theorie quadratisher Formerus von uneudlichvieleu Veränderlicher, J. Reine Angew. Math. 36 (1909), 210–271.
- [20] Jeffreys, H., An invariant form for the prior probability in estimating problems, Proc. Roy. Soc. London A Math. Phys. Sci. 186 (1946), 453–461.
- [21] Kapur, J. N., A comparative assessment of various measures of directed divergence, Advances in Management Studies 3 (1984), 1–16.
- [22] Kullback, S., Leibler, R. A., On information and sufficiency, Annals Math. Statist. 22 (1951), 79–86.
- [23] Ostrowski, A., Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Helv. 10 (1938), 226–227.
- [24] Taneja, I. J., Generalised Information Measures and Their Applications [Online http://www.mtm.ufsc.br/~taneja/bhtml/bhtml.html].
- [25] Topsoe, F., Some inequalities for information divergence and related measures of discrimination, Preprint RGMIA Res. Rep. Coll. 2 (1) (1999), 85–98.

S. S. Dragomir Mathematics, College of Engineering & Science Victoria University, PO Box 14428 Melbourne City, MC 8001 Australia

DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences School of Computational & Applied Mathematics University of the Witwatersrand Private Bag 3, Johannesburg 2050 South Africa e-mail: sever.dragomir@vu.edu.au urladdr: http://rgmia.org/dragomir

Received March 22, 2016