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Jensen and Ostrowski type inequalities
for general Lebesgue integral with applications

ABSTRACT. Some inequalities related to Jensen and Ostrowski inequalities
for general Lebesgue integral are obtained. Applications for f-divergence
measure are provided as well.

1. Introduction. Let (2, A, 1) be a measurable space consisting of a set €2,
a o-algebra A of subsets of {2 and a countably additive and positive measure
v on A with values in R U {co}. Assume, for simplicity, that [, du (t) = 1.
Consider the Lebesgue space

L(Q,u) = {f :Q — R | f is p-measurable and /Q|f(t)|d,u (t) < oo}.

For simplicity of notation we write everywhere in the sequel fQ wdp instead

Ofo N()

The followmg reverse of the Jensen’s inequality holds [12]:

Theorem 1. Let ® : I — R be a continuous convex functzon on the interval
of real numbers I and m, M € R, m < M with [m, M) C I, where I is the
interior of I. If f : Q0 — R is u-measurable, satisfies the bounds

—oco<m< f(t) <M < oo for p-a.e. t €82
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and such that f, ®o f € L(Q,u), then

Og/Q@ofdu—CI)(/Qfd,u>

o ) ()

< 3 (M —m) [2 (M) — @/, (m)],

where ®'_ is the left and @', is the right derivative of the convex function ®.

For other reverse of Jensen’s inequality and applications to divergence
measures see [12] and [15].

In 1938, A. Ostrowski [23] proved the following inequality concerning
the distance between the integral mean ;- f; ® (t) dt and the value @ (z),
x € [a,b].

Theorem 2. Let ® : [a,b] — R be continuous on [a,b] and differentiable
on (a,b) such that ® : (a,b) — R is bounded on (a,b), i.e., |®| :=
SUDte(a,p) | P (t)| < 00. Then

1 b 1 x — “tb ?
(1.2) ]@(z)—b_a/f<t>dt\< 4+< b_j) 19']] o 0 = a),

for all x € [a,b] and the constant } is the best possible.

For various results related to Ostrowski’s inequality see for instance [2],
[3], [5]-[18] and the references therein.

Motivated by the above results, in this paper we investigate the magni-
tude of the quantity

/Q<I>ogdu—<1)($)—)\</ggdp—m>, x € [a,b],

for various assumptions on the absolutely continuous function ®, which in
the particular case of z = fQ gdp provides some results connected with
Jensen’s inequality while in the case A = 0 provides some generalizations of
Ostrowski’s inequality. Applications for divergence measures are provided
as well.

2. Some identities. The following result holds:

Lemma 1. Let ® : I — C be an absolutely continuous function on [a,b] C IO,
the interior of I. If g : Q — [a, b] is Lebesgue p-measurable on Q and such
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that ® o g, g € L (Q, p), then we have the equality

/Q<I>ogdy—<1>(:c)—)\</ggdu—1:>

:/Q[(g_m)/ol((I)/((l—s)x+sg)—)\)ds] du

for any A € C and x € [a, ).
In particular, we have

(2.2) /QCI)ogdu—@(x):/Q[(g—m)/()l@/((l—s)x+sg)ds] du,

for any x € [a,b].

(2.1)

Proof. Since ® is absolutely continuous on [a, b], then for any u, v € [a, b]
we have

1
(2.3) D (u) —P(v) =(u— v)/o ®' ((1 —s)v+ su)ds.

This implies that

for any t € 2, or, equivalently

1
(2.4) @og—@(x):(g—x)/o ®' ((1—s)z + sg)ds.

Since @ : I — C is an absolutely continuous functions on [a, b], the Lebesgue
integral over p in the right side of (2.1) exists for any A € C and z € [a, b].

Integrating (2.4) over the measure p on € and since fQ dp =1, then we
have

(2.5) /beogdu—@(:v):/g[(g—x)/()l@’((l—s)x—l—sg)ds] .

Now, observe that for A € C we have

/Q[(g—x)/ol (q)’((l—s)x—i-sg)—)\)ds] du

:/Q (9 —=)

(2.6) . <1
:/Q_(g—x)/o <I>’((1—s)x+sg)d8}du—A/Q(g—w)du

:/Q'

1@’((1—s)x+sg)ds—)\>} dp

1
(g—:z:)/ <I>’((1—s):z:+sg)ds} dp — A (/ gd,u—:n) :
L 0 Q
Making use of (2.5) and (2.6), we deduce the desired result (2.1). O
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Remark 1. With the assumptions of Lemma 1 we have

A@ogdu—@(a;b>
g R

Corollary 1. With the assumptions of Lemma 1 we have

/Q@ogd,u—<1></ﬂgdul>
Lo o) [ (00 for )]

Proof. We observe that since g : Q — [a,b] and [, dp = 1, then [, gdu €
[a,b] and by taking x = [, gdp in (2.2), we get (2.8). O

(2.7)

(2.8)

Corollary 2. With the assumptions of Lemma 1 we have

/beogdub_la/:wx)dxA(/diu“;b)
_/Q{bia/ab [(g_@/ol (‘I’/((l—S)ersg)—)\)ds} dﬂ?}du-

Proof. Follows by integrating the identity (2.1) over z € [a, b], dividing by
b — a > 0 and using Fubini’s theorem. ([l

(2.9)

Corollary 3. Let ® : I — C be an absolutely continuous function on |a,b] C
I, the interior of I. If g,h : Q — [a,b] are Lebesgue p-measurable on Q and
such that ®og, ®oh, g, h € L(Q, ), then we have the equality

/<I>ogd,u /@ohdlu A(/gd,u /hdu>
(2.10) //[ >/0 (<I>’<<1—s>h<7>+sg<t>>—A)ds]

X dp (t) dp (1)

for any A € C and z € [a,b].
In particular, we have

/@ogd,u /Q‘I’Ohdﬂ
(2.11) //[ )/()1q>’((1—s)h(r)+sg(t))ds

x dp(t) dp (1),
for any = € [a,b].
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Proof. From (2.1) we have for any 7 € Q that

A@ogdﬂ—cp(h(f))—A(/din—wh(f)))

-/ [<g ~e () | @ (1) B (h () + 59) — A) ds] s

0

for any A € C and = € [a, b)].
Integrating on €2 over du (7) and using Fubini’s theorem, we get the de-
sired result (2.10). O

Remark 2. The above equality (2.10) can be extended for two measures
as follows

/ <I>ogd,u1 / @Ohdug—)\</ gdul—/ hd/m)
951 Qo

(2.12) /Ql /92[ ))/01 (® (1= s)h(r)+sg(t)) — \) ds}

X dpy (t) dpa (1),

for any A € C and = € [a,b] and provided that ® o g, g € L (1, 1) while
doh,he L(QQ,/JQ).

Remark 3. If w > 0 p-almost everywhere (p-a.e.) on Q with [, wdyu > 0,

then by replacing dy with f“’Z)’;u in (2.1), we have the weighted equality
Q

1

W/gw((bog)du—@(x)—)\<fﬂllwu/gwgdu—m>
! /w-[<g—x>/l(@'((1—s>m+sg>—A)ds]du

- fQU)d,U Q 0

(2.13)

for any A € C and z € [a, b], provided ® o g, g € L, (2, 1), where

Ly (Q,p) == {g /Qw g dp < OO}-

The other equalities have similar weighted versions. However, the details
are omitted.

If we use the discrete measure, then for a function ® : I — C which is
absolutely continuous on [a,b] C I, the interior of I, z; € [a,b] and p; > 0
with >°%_, pj = 1, we can state the following identity
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> pi®(z) =@ () = A D pjz—a

j=1 j=1

= ipj [(x] — ) /1 (@' ((1—s)z+ szj) — A) ds]
j=1 0

for any A\ € C and z € [a, b].
In particular, we have

n n 1
215) S p® ()~ () =y [(xj—m / <I>'<<1—s>x+sxj>ds}
s =1

(2.14)

0

for any z € [a,b] and

]zi:lqu’(xj) -o (a ; b)

(2.16) N Wb\ otb
:;pj [(xj_ 5 >/0 P’ ((1—3) 5 +s:nj> ds]
and
iqu) (xj) — @ (ipkﬂck)
217) 7 =

n n 1 n
= ij [(J?] — me) /0 P’ ((1 —5) Zpkxk + S.Tj) ds] )
j=1

k=1 k=1

Ifzj € [a,b] and p; >0, j € {1,...,n} with 3°7_, p; = 1 and if yx, € [a, D]
and ¢ > 0, k € {1,...,m} with > ;" g = 1, then we can state the
following identity as well:

Zpﬂ’ qu@ Uk) me Z%yk
1
_jzlpj ZQk |: i — Yk /0 (@'((l—s)yk+sxj)—)\) ds:| .

In particular, we have

ZP;“I’ (25) — Zqu’ (Yk)
1
—;pggq/f[ — Uk /0 @’((1—8)yk+smj)ds].

(2.18)

(2.19)
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3. Bounds in terms of p-norms. We use the notations

1/p
(fk(t)]pdu(t)> <oo, p>1, ke L,(Qp);
Kllgp =9 ¢

esssupyeq [k (D] < 00, p=o0, k€ Lo (Qp);

and

1/p
(fo | (s |pds) <oo, p>1, ®€L,(0,1);
1®lj0,11,0 =
ess sup,epo1] [P (s)] < oo, p=o00, ® € L (0,1).

If we consider the identity function ¢ : [0, 1] — [0, 1], £(s) = s we have

/ ’<I>’ s)x+ sg(t )\‘p 5—H<I>' (1—0)x+Lg(t )\H[Ol],p
and
esssup [ (1 —s)z+sg(t)) — Al = ||®" (1 —0)z+Lg (¢ )\H
s€[0,1]
for t € €.

Theorem 3. Let & : I — C be an absolutely continuous function on [a,b] C
I, the interior of I. If g : Q — [a,b] is Lebesque p-measurable on Q and
such that ®og, g € L(Q,p), then

‘/ngdp,—@(x)—A(/ﬂgdﬂ—x)’

gxgg—ﬂu@«1—0x+@»—Mm%ﬂw

(3.1) I = ol |12 (1= 2+ ) = Nl
ol 19101510,

p>1,5+* 1;

IN

lg = allg [l (= O+ tg) — Mg |,

for any A € C and x € [a,b]. In particular, we have
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‘/Qéogdu_wx)

glgg—ﬂuaal—@x+%wmmmdu

lg = @l |12 (1 = )2+ £9)

(3.2) : HHQ .

|@—ﬂmpW@<1—mx+@HmuJ
p>1, f—&—f 1;

IN

la = zllo, |19 (1 = O + 9l 1],

for any x € [a,b].

Proof. Taking the modulus in the equality (2.1), we have
’/ ‘I’Ogdﬂ—q’(fr)—A(/ gdu—nc)
Q Q
1
S/ (g—x)/ (@' ((1—s)z+sg) — ) ds
Q 0
1
S/ ‘9—$|/ |’ (1 —s)z+ sg) — A| dsdp
Q 0

-1Lm—xw@«1—@x+@w—Mmmww

dp

(3.3)

for any A € C and x € [a, b)].
Utilising Holder’s inequality for the y-measurable functions F, G : 2 — C,

Lp 1/a 11
/FGdu‘§</|F|pdu> </|G|qdu> ,p>1, —4+-=1
Q Q Q p q

/FGdu’ Sesssup|F(t)/ |G| dp
Q teQ) Q

and

we get from (3.3) the desired result (3.1). O

Remark 4. If we take z = %2 in (3.1), then we get

(3.4) ‘/S)(pogdu_q)(a;—b)_)\(/gdﬂ_a—Fb)‘

2
S/ g_a—i—b <I>’<(1—€ a—H) >
Q

0,1],1
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o= g 19 (= 0582 +-00) = Ay,

o= 258, [0 (=025 + 6) =Ml [,
p>1, 5‘}‘6_1

IN

Hg - a+bHQ 1 HH@, ((1 — 1) aTH) +£g) o >‘||[0,1]=1HQ,00;

for any A € C and, in particular, for A = 0 we have

/Q@ogdﬂ—@<“;rb>'

< g—a+b ‘D'(l—ﬁ)a—i_b—i-ﬁg) du
[0,1],1
. o= 25 o 19 (0 = 0252 + £0) 1],
< w—ﬁmwwﬁm—@%4@wmﬂgq

p>1, f-l-f 1;

o= 25 19 0= 0252+ )l

If we take x = [, gdp in (3.1), then we get

/Q<I>ogd,u—<1></ﬂgdu>‘

S/ g—/gdu @’<(1—€)/gdu+€g)—A dp

Q QO Q [0,1],1

sy [ o= Jasdnllo . [l9 (00 foadn+tg) =Xy .,
) llo- kmww\ (=0 Jogdi+19) = Mgy,
Tl p>1, 7+*

lg = Jo gd“HQ,l H 197 ((1 = ) Joy 9t + £g) — /\H[OJ]JHQ,OO ’

for any A € C and, in particular, for A = 0 we have
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woon(fom)

§/ g—/gdu ' <(1—€)/9du+€9> dp
Q 0 Q [0,1],1
57) lo = Jo sl 19" (1= 0) fo 9+ 9) ],
) o= Jagdulg, |19 (=0 fo gt 0)ll ],
]l p>1, %—F % =1;
lo = fo.gaulo, |19 (=0 fogdi+£6) g |,

Corollary 4. Let ® : I — C be an absolutely continuous function on [a,b] C
1, the interior of I. If g : Q — [a,b] is Lebesque p-measurable on Q and
such that ®og, g € L (Q, ), then

(3.8) ‘/@ogd,u B (2

<19 [ Lo =

for any x € [a,b].
In particular, we have

a+b ’ atb
/Q@ogd,u—q)< ; >‘§H<1>||[a,b},oo/9‘g_ 2 ‘d”
and

(3.10) ’/Q%gdu—cp(/ gd,u)‘ H(I)H[ab /‘ gdu’

Proof. We have from (3.1) that

/beogdp ® (z /\g—x|(/01|<I>'((1—8)J:+39)’d5>du

for any = € [a, b].
However, for any ¢ € © and almost every s € [0, 1] we have

|‘I’/((1 —8)x + sg (t))‘ < esssup|<§’ (u)‘ = H(I)’
u€la,b]

a,

(3.9)

(3.11)

H [a,b],00

for any x € [a, b)].
Making use of (3.11), we get (3.8). O

Remark 5. We remark that the quantity from Corollary 4

Z/Ig—xldu
Q

cannot be computed in general.
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However, in the case when Q = [a,b], ¢ : [a,b] — [a,b], g(t) = t and

1 (t) = 7-dt, we have

5, (9, 7) ::b_la/abhf—x\dt:b_la[/j(w—t)dt+/:(t—:v)dt]
1

= [(m—a)2+(b—x)2]

2
1 x — otb
- 4+< b—j) (b-a),

where z € [a, b].
Utilising the inequality (3.8), we get Ostrowski’s inequality

‘bia/abi)(t)dt—@(x)

(3.12) 1 o atb\?
< o, +( 2) -

a7b] 7m Z

for any z € [a, b].
From the inequalities (3.9) and (3.10) we get the midpoint inequality

(3.13) ‘bia/abfb(t)dt—Q(a;b)

Remark 6. If we consider the dispersion or the standard variation

o= (f o [ )= (o ([o))

then by (3.10) we have the inequalities

/@ogdu—@(/ gdu>’ < (12|10 41,00 O (g,/gdu>
Q Q o Q

< H(I),H[a,b],oo Ip (g) )

In general, we have by Cauchy—Bunyakovsky—Schwarz’s inequality that

(3.15) 3 (g, ) ZZ/ng—fﬂldué (/Q (g—x)2du>1/2-

Since
/Q(g—x)Qdu—/Q<g—/diu+/diu—x>2dﬂ
= [ (o= frame) a2 [ (o ) ( [n—)

1 /
= Z Hq) H[a,b},oo (b o CL) ’

(3.14)
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(e
o~ o) e ([ -2

for any z € [a,b], then by (3.8) and (3.15) we get the inequalities

’/QCI)ogdu—Q)(x)

< (197,00 9 (9. @)

(3.16) 911/2
< 9 0+ ([ ) |

for any z € [a, b].
If we use the discrete measure, then from (3.16) we have

n

> 9 (z;) — @ (2)

J=1

3.17) <100 D pilz; —al
j=1

97 1/2

n n 2 n
< zpsz—(zpjxj) +(zpjxj—m) |
j=1 j=1 j=1

for any z € [a,b], where z; € [a,] and p; > 0 with 37, p; = 1.
In particular, we have

n

+b n a-+b
p-<1><m>—<1><“ ) <200 2P |5 - \
(3.18) ; o 2 ot ]2:‘1 2
1
< 5 (b - a) H(I),H[a,b],oo
and
S (a) (zpkxk) <y 5 |15 - Y
j=1 k=1 Jj=1 k=1
(3.19) ks

IN

n n
9 | D02 (Zm%)
j=1 j=1

IN

1
o) |
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4. Inequalities for bounded derivatives. Now, for v, I' € C and [a, ]
an interval of real numbers, define the sets of complex-valued functions

Ulay) (7, 1)
:{fﬂmm—mqm{w—f@»(ﬂﬂ—wﬂZOﬁnaatemﬂ}

and

A[(z,b] (77 F)
:{fﬂmmacyf@—vgr

The following representation result may be stated.

'S %\F—fﬂ for a.e. t € [a,b]}.

Proposition 1. For any v, I' € C, v # T', we have that UW)] (v,T) and
A[mb] (v,T) are nonempty, conver and closed sets and

(41) U[a,b} (73 F) = A[a,,b] ('Y, F) :
Proof. We observe that for any z € C we have the equivalence
v+T 1
_ Tl < 2=
- ’ <5 =7

if and only if
Re[(I'—2) (z=9)] = 0.
This follows by the equality
1 +I? o
10 = | = T = Relw - 2) -

that holds for any z € C.
The equality (3.1) is thus a simple consequence of this fact. ]

On making use of the complex numbers field properties, we can also state
that:

Corollary 5. For any v,I' € C, v # I, we have
U[a,b} (77 F)
(42)  ={f:[a,t] > C | (ReT —Ref (1)) (Re f (t) - Re~)
+(ImT —Im f (¢)) (Im f (¢t) — Im~y) >0 for a.e. t € [a,b]}.
Now, if we assume that Re (I') > Re(y) and Im (I') > Im (), then we

can define the following set of functions as well:

(4.3)  Spay (0,T) :={f :[a,0] = C| Re(T') = Re f (t) = Re ()

and Im (I') > Im f (¢) > Im (v) for a.e. t € [a,b]}.

One can easily observe that Sf[ab] (7,T) is closed, convex and

(44) 0 7é S’[a,b] (77 F) - U[a,b} ('77 F) :
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The following result holds:

Theorem 4. Let ® : I — C be an absolutely continuous function on
[a,b] C I, the interior of I. For some v, ' € C, v # T, assume that
NS U[a,b] (,T) = A[a,b] (v,T). If g : Q — [a,b] is Lebesgue p-measurable
on Q and such that ® o g, g € L (Q, ), then we have the inequality

I
/@ogdﬂ—@(x)—w_(/gdu—x)
Q 2 Q
1
<5t =1l [ lo=alau

for any x € [a,b].
In particular, we have

b r b
foenn o (50) 3 (1Y)
0 2 2 0 2

(4.5)

(46) 1 +0b 1
a
<l - - <-(b-a)|l -
<50l [ o= "3 aus o-ar-a
and
/<I>ogduf1></gdﬂ>‘ ST = v\/‘ gdu‘
Q Q
. o\ 1/2
(4.7) <5 =l (/ gPdp — </ gdu) )
Q Q

1
<, 0-a)r -1,

Proof. By the equality (2.1) for A = % we have

/Q@ogdu—<b(x)—7+2r</ggdu—x>
_/Q [(g—x)/ol <q>'(<1_s)x+sg)—'y"gr> ds] d.

Since ®' € A,y (v,T), we have

(4.8)

y+T 1
I l< 2T =
5| S5 Il

for a.e. s € [0,1] and for any z € [a,b] and any t € (.
Integrating (4.9) over s on [0, 1], we get

(4.10) /0 1

for any = € [a,b] and any t € Q.

(4.9) P ((1—s)z+sg(t) —

y+T

O ((1—s)z+sg(t)) — ds <

)
2\ ol
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Taking the modulus in (4.8), we get via (4.10) that

[wout— o5 (o)
< [ |o-a /0 <<1>’<<1s>x+sg>”+f)dsudﬂ

(4.11) .
/ y+T
< [ Nig=al [ |@ 1 =s)o+sgt) - 52| ds| du
Q 0 2
1
< 50—l [ lg—aldu
Q
and the proof of (4.5) is completed. O

Corollary 6. Let ® : I — R be a convex function on [a,b] C I, the interior
of I. If g : Q — [a,b] is Lebesgue p-measurable on Q and such that ® o g,
g € L(Q,u), then we have the inequality

/Q@ogdu—mx)—@/*(a);@/‘(b) (/diu—x>‘

<50 0=, @) [ lo—alau

(4.12)

for any x € [a,b].
In particular, we have

/Qq)ogdu—CI)(a;b)_(I’:r(a);q’,—(b) (/diu_a;b)’

(4.13) S1[<I>'_(b)—<l>’+(a)]/9‘g—a+b‘d,u

5 2
< 3 (b= a) [# () — @, (a)
and
0< [ Pogdu—® gdp
(4.14) /“ </Q )

< % [ (b) — @y (a)]/Q’g—/diﬂ‘du-

The discrete case is as follows:

Remark 7. Let ® : I — C be an absolutely continuous function on [a, b] C
I, the interior of I. For some ~,T" € C, v # T, assume that &' € A[a,b] (7,T).
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If z; € [a,b] and p; > 0 with Z;L:lpj = 1 then we have the inequality
(4.15) 7=t

for any z € [a, b].
In particular, we have

- a+b 4T [« a+b
ij(l)(xj)_(b< 5 >— 5 (Zpkx’f_ 2 )

(4.16) =1

and

2
1 - - 1
< SI0=l| D_paf - (me) < (b—a)T =l
k=1

j=1

If ®: 1 — Ris a convex function on [a,b], then we have

ijq) (zj) — @ (z) - <I>’+ (a) ;_ L0 (kZpkxk - 33)
j=1 =1

< % (@7 (b) — ¥/, (a)] ij |z — |

for any z € [a, b].
In particular, we have

- a+b ', (a) + 0 (b) [ a+b
;pj‘p(wj)—q’< B >— + 5 (Zpkwk— 5 >

k=1

L[ (0) @] Yoy
j=1

IN

.,”Uj—

a+b
2

IN

10— a)[2(0) ~ ()]
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5. Applications for f-divergence. Assume that a set (2 and the o-finite
measure y are given. Consider the set of all probability densities on p to be

= {p p: Q=R p(t) >0, [p(t)du(t) = 1} The Kullback-Leibler
divergence [22] is well known among the mformatlon divergences. It is
defined as:

(5.1) Dir (p,q) = /

p()n [p(ﬂ du(t), pracP,
Q

q(t)

where In is to base e.

In Information Theory and Statistics, various divergences are applied in
addition to the Kullback—Leibler divergence. These are the: wvariation dis-
tance D,, Hellinger distance Dy [19], x2-divergence D, 2, a-divergence D,
Bhattacharyya distance Dp [1], harmonic distance Dp,, Jeffrey’s distance
D [20], triangular discrimination Da [25], etc. They are defined as follows:

(5.2) Dy (p,q) = /Q () —q W du(t), p.geP;

(5.3) Dy (pq /‘F F‘du , Pq €P;
(5.4) D,2 (p,q) ¢=/Qp(t) [(Zg)?—ll du(t), p,q€P;

65 Dalpt) =1z 1= [ BOIFLOIF du)]. pacP

(5.6) Do () = [ Vo@a@idn (), p.aeP

(5.7) Do ()= [ 200 0 0), pg e P
(5.38) 0= [ O -0 |20 a0, pacP
(5.9) Dx (p,q) ::/deu(t), p,q € P.

For other divergence measures, see the paper [21] by Kapur or the book
online [24] by Taneja.
Csiszéar f-divergence is defined as follows [4]

(5.10) I (p.q) == /Qp(t)f BZH du(t), p,qeP,
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where f is convex on (0,00). It is assumed that f (u) is zero and strictly
convex at © = 1. By appropriately defining this convex function, various
divergences are derived. Most of the above distances (5.1)—(5.9) are partic-
ular instances of Csiszar f-divergence. There are also many others which
are not in this class (see for example [24]).

The following result holds:

Proposition 2. Let f: (0,00) = R be a convex function with the property
that f (1) = 0. Assume that p, ¢ € P and there exist constants 0 <r <1 <
R < 00 such that

(5.11) r < q(g <R for p-a.e. t €.
p

If x € [r, R], then we have the inequalities
11y (p.a) = £ @) < [[F']l;. 5y oo Do (P20)

(5.12)
< Hf/H[r,R],oo [Dx2 (p,q) + (z —1)

2} 1/2

where
Dy (psq /Ip —zq(t)|dp(t), p.geP.
In particular, we have

’If (prq) — f <+R>’ 111,70 Do, 2 (22 0)

(5.13) 971/2
+R
1l | P+ (25 -1) ]
and
519 017 (5.0) < | sy Do () < 17y (D2 .00

Proof. Utilising the inequality (3.16) for the convex function f, we have

p(t)f [q“)] du (1) - f (2)
Q

< e [ [25F = a|p 010 0

p(t)
<17 e [ [(Z9Y v - ([ 20 ane)

()]

which is equivalent to (5.12). O
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We also have

Proposition 3. With the assumptions of Proposition 2 we have

T
(5.15) . |
<3 [f2(R) = f4 (r)] Do (p,q)

for any x € [r, R].
In particular, we have

If(p,q)—f<r+2R> A+ L (R) <1_T+R>‘

(5.16) 1 2 2
<5 LR =1L ()] D, ren (9, q)
and
(5.17) 0< Iy (p.0) < 5 [F2 (R) ~ 4 ()] Do (o).
Proof. Utilising the inequality (4.12), we have
JRCHEE IO
RACEY AR
g (/()<mm> :)
1 (t)
<pUnm ‘p ‘ e
for any x € [a, b], which is equivalent to (5.1 O

If we consider the convex function f : (0, ) — R, f(t) =tlnt, then

5= [ p0 %0 | 20 auw = [aom| 20 a0

p(t)  Lp() p(t)
= Dk (¢,p)-
We have f/(t) =1Int+ 1 and by (5.17) we get
/R
provided that
q(t)
r < —= < R for p-a.e. t €.
p(t)

=

unction f: (0,00) = R, f(t) = —Int, then

1) = [ pom| D3 au = [ pom| 2D auw

= Dkr, (p,q).

If we consider the convex
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We have f’ (t) = —1 and by (5.17) we get

1R—r
1 < D < - Dv 9
(5.19) 0<Drr(pa) < 5= 5 Dopa)
provided that
T‘Sngforu—a.e. t e
p(t)
REFERENCES

(1
2l

[10]
(11]

(12]

(13]

(14]

(15]

(16]

Bhattacharyya, A., On a measure of divergence between two statistical populations
defined by their probability distributions, Bull. Calcutta Math. Soc. 35 (1943), 99-109.
Cerone, P., Dragomir, S. S., Midpoint-type rules from an inequalities point of view, in
Handbook of Analytic-Computational Methods in Applied Mathematics, Anastassiou,
G. A,, (Ed.), CRC Press, New York, 2000, 135-200.

Cerone, P., Dragomir, S. S., Roumeliotis, J., Some Ostrowski type inequalities for
n-time differentiable mappings and applications, Demonstratio Math. 32 (2) (1999),
697-712.

Csiszar, 1. 1., Information-type measures of difference of probability distributions and
indirect observations, Studia Math. Hungarica 2 (1967), 299-318.

Dragomir, S. S., Ostrowski’s inequality for monotonous mappings and applications,
J. KSIAM 3 (1) (1999), 127-135.

Dragomir, S. S., The Ostrowski’s integral inequality for Lipschitzian mappings and
applications, Comp. Math. Appl. 38 (1999), 33-37.

Dragomir, S. S., The Ostrowski integral inequality for mappings of bounded variation,
Bull. Austral. Math. Soc. 60 (1) (1999), 495-508.

Dragomir, S. S., A converse result for Jensen’s discrete inequality via Gruss’ in-
equality and applications in information theory, An. Univ. Oradea Fasc. Mat. 7
(1999/2000), 178-189.

Dragomir, S. S., On the Ostrowski’s integral inequality for mappings with bounded
variation and applications, Math. Inequal. Appl. 4 (1) (2001), 59-66.

Dragomir, S. S., On a reverse of Jessen’s inequality for isotonic linear functionals, J.
Ineq. Pure Appl. Math. 2, No. 3, (2001), Art. 36.

Dragomir, S. S., An Ostrowski like inequality for convex functions and applications,
Revista Math. Complutense 16 (2) (2003), 373-382.

Dragomir, S. S., Reverses of the Jensen inequality in terms of the first derivative and
applications, Acta Math. Vietnam. 38, no. 3 (2013), 429-446. Preprint RGMIA Res.
Rep. Coll. 14 (2011), Art. 71. [Online http://rgmia.org/papers/vi14/vi4a71.pdf].
Dragomir, S. S., Operator Inequalities of Ostrowski and Trapezoidal Type, Springer,
New York, 2012.

Dragomir, S. S., Perturbed companions of Ostrowski’s inequality for absolutely con-
tinuous functions (I), An. Univ. Vest Timis. Ser. Mat.-Inform. 54, no. 1 (2016),
119-138. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art 7, 15 pp. [Online
http://rgmia.org/papers/v17/v17a07.pdf].

Dragomir, S. S., General Lebesgue integral inequalities of Jensen and Ostrowski type
for differentiable functions whose derivatives in absolute value are h-convexr and ap-
plications, Ann. Univ. Mariae Curie-Sklodowska Sect. A 69, no. 2 (2015), 17-45.
Dragomir, S. S., Cerone, P., Roumeliotis, J., Wang, S., A weighted version of Os-
trowski inequality for mappings of Hélder type and applications in numerical analysis,
Bull. Math. Soc. Sci. Math. Romanie 42(90) (4) (1999), 301-314.



Jensen and Ostrowski type inequalities... 49

(17]

18]

(19]
20]
(21]
(22]
23]
24]

[25]

Dragomir, S. S., Ionescu, N. M., Some converse of Jensen’s inequality and applica-
tions, Rev. Anal. Numér. Théor. Approx. 23, No. 1 (1994), 71-78.

Dragomir, S. S., Rassias, Th. M. (Eds.), Ostrowski Type Inequalities and Applications
in Numerical Integration, Kluwer Academic Publishers, Dordrecht—Boston—London,
2002.

Hellinger, E., Neue Bergriirdung du Theorie quadratisher Formerus von
uneudlichvieleu Verdnderlicher, J. Reine Angew. Math. 36 (1909), 210-271.
Jeffreys, H., An invariant form for the prior probability in estimating problems, Proc.
Roy. Soc. London A Math. Phys. Sci. 186 (1946), 453—461.

Kapur, J. N., A comparative assessment of various measures of directed divergence,
Advances in Management Studies 3 (1984), 1-16.

Kullback, S., Leibler, R. A., On information and sufficiency, Annals Math. Statist.
22 (1951), 79-86.

Ostrowski, A., Uber die Absolutabweichung einer differentienbaren Funktionen von
ihren Integralmittelwert, Comment. Math. Helv. 10 (1938), 226-227.

Taneja, 1. J., Generalised Information Measures and Their Applications [Online
http://www.mtm.ufsc.br/ taneja/bhtml/bhtml.html].

Topsoe, F., Some inequalities for information divergence and related measures of
discrimination, Preprint RGMIA Res. Rep. Coll. 2 (1) (1999), 85-98.

S. S. Dragomir

Mathematics, College of Engineering & Science
Victoria University, PO Box 14428

Melbourne City, MC 8001

Australia

DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences
School of Computational & Applied Mathematics

University of the Witwatersrand

Private Bag 3, Johannesburg 2050

South Africa

e-mail: sever.dragomir@vu.edu.au

urladdr: http://rgmia.org/dragomir

Received March 22, 2016



