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Asymmetric truncated Toeplitz operators
equal to the zero operator

ABSTRACT. Asymmetric truncated Toeplitz operators are compressions of
multiplication operators acting between two model spaces. These operators
are natural generalizations of truncated Toeplitz operators. In this paper we
describe symbols of asymmetric truncated Toeplitz operators equal to the zero
operator.

1. Introduction. Let H? denote the Hardy space of the unit disk D =
{z:]z| < 1}, that is, the space of functions analytic in D with square sum-
mable Maclaurin coefficients.

Using the boundary values, one can identify H? with a closed subspace of
L?(0D), the subspace of functions whose Fourier coefficients with negative
indices vanish. The orthogonal projection P from L?(0D) onto H?, called
the Szego projection, is given by

1 2m f(eit)dt
Prz) = 21 Jo 1 —e iz’
Note that if f € L'(0D), then the above integral still defines a function P f
analytic in D.

The classical Toeplitz operator T, with symbol ¢ € L?(0D) is defined on

H? by

f e L?(0D).

wa = P(of).
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It is known that T, is bounded if and only if ¢ € L>°(9D). The operator
S = T, is called the unilateral shift and its adjoint S* = 7% is called the
backward shift. We have Sf(z) = zf(z) and

(5 = 110

Let H* be the algebra of bounded analytic functions on D and let a €
H® be an arbitrary inner function, that is, |a| =1 a.e. on 9D.

By the theorem of A. Beurling (see, for example, [7, Thm. 8.1.1]), every
nontrivial, closed S-invariant subspace of H? can be expressed as aH? for
some inner function a. Consequently, every nontrivial, closed S*-invariant
subspace of H? is of the form

K, = H?>5 aH?

with a inner. The space K, is called the model space corresponding to a.
The kernel function

(1.1) ko(z) = 1= alw)olz) 1 Ewu),j(Z)’ w,z €D,
is a reproducing kernel for the model space K, i.e., for each f € K, and
w € D,
f(w) = (f, kg)

((-, -) being the usual integral inner product). Observe that kg is a bounded
function for every w € D. It follows that the subspace K3° = K, N H* is
dense in K,. If a(w) = 0, then k£ = k,,, where k,, is the Szegd kernel given
by kw(z) = (1 —wz)~ L.

Let P, denote the orthogonal projection from L?(9D) onto K,. Then

Pof(z) = (f,k2), feL*dD), z€D.

Just like with the Szeg6 projection, P, f is a function analytic in D for all
f e LY (oD).

A truncated Toeplitz operator with a symbol ¢ € L?(0D) is the operator
AZ defined on the model space K, by

AGf = Pa(ef).
Densely defined on bounded functions, the operator AZ can be seen as a
compression to K, of the classical Toeplitz operator T, on H 2,

The study of truncated Toeplitz operators as a class began in 2007 with
D. Sarason’s paper [13]. In spite of similar definitions, there are many dif-
ferences between truncated Toeplitz operators and the classical ones. One
of the first results from [13] states that, unlike in the classical case, a trun-
cated Toeplitz operator is not uniquely determined by its symbol. More
precisely, A} = 0 if and only if ¢ € aH? + aH? ([13, Thm. 3.1]). As a
consequence, unbounded symbols can produce bounded truncated Toeplitz
operators. Moreover, there exist bounded truncated Toeplitz operators for



Asymmetric truncated Toeplitz operators... 53

which no bounded symbols exist (see [3]). For more interesting results see
6, 9, 10, 11, 12].

Recently, the authors in [4] and [5] introduced a generalization of trun-
cated Toeplitz operators, the so-called asymmetric truncated Toeplitz oper-
ators. Let , B be two inner functions and let ¢ € L?(0D). An asymmetric

truncated Toeplitz operator Ag’ﬁ is the operator from K, into Kz given by
Agao”Bf:P,B((pf)a fEKa-

The operator Ag’ﬁ is densely defined. Clearly, Ay = A,
We denote

T (o, B) = {A%" : o € L*(9D) and A% is bounded}
and 7 (a) = 7 (a, @).

The purpose of this paper is to describe when an operator from 7 («, (3)
is equal to the zero operator. The description is given in terms of the symbol
of the operator. This was done in [4] and [5] for the case when  divides
a, that is, when a//f is an inner function. It was proved in [4] and [5] that
Ag’ﬁ = 0 if and only if ¢ € aH? 4+ BH?. Here we show that this is true
for all inner functions « and 8. We also give some examples of rank-one
asymmetric truncated Toeplitz operators.

2. Main result. In this section we prove the following.

Theorem 2.1. Let a, 8 be two nonconstant inner functions and let Ag”g :
K, — Kpg be a bounded asymmetric truncated Toeplitz operator with ¢ €

L?(0D). Then Ag”g =0 if and only if p € aH? + BH?.
We start with a simple technical lemma.

Lemma 2.2. Let «, 8 be two arbitrary inner functions. If
(2.1) K, C BH?,

then both o and B have no zeros in D, or at least one of the functions a or
B is a constant function.

Proof. Assume that (2.1) holds. If 5(29) = 0 for some zy € D, then f(z) =
0 for every f € K,. For f = kg we get

1 — |a(z0)” _ 0,

1—z0f?
which implies that |a(zp)| = 1. By the maximum modulus principle, « is a
constant function. Hence, the inclusion (2.1) implies that § has no zeros in
D, or « is a constant function. But (2.1) is equivalent to
Kj C aH?,

and, by the same reasoning, (2.1) also implies that « has no zeros in D, or
0 is a constant function. This completes the proof. O

kS, (z0) = [|k%, |1* =
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Lemma 2.2 can be rephrased as follows. If «, § are two nonconstant
inner functions and at least one of them has a zero in D, then the inclusion
K, C BH? does not hold. This allows us to prove the following version of
Theorem 2.1.

Proposition 2.3. Let a, 8 be two nonconstant inner functions such that
each of them has a zero in D and let Ag’ﬁ : Ko — Kpg be a bounded asym-
metric truncated Toeplitz operator with o € L*(OD). Then Ag’ﬁ =0 if and
only if ¢ € aH? + SH?.

Proof. The fact that ¢ € aH? + SH? implies Ag’ﬁ = 0 was proved in
[4, Thm. 4.3]. For the convenience of the reader we repeat the reasoning
from [4].

Assume that ¢ = ahy + Bhy with hy, he € H2. Then, for every f € K°,

AP f = Pg(ahyf + Bhaf) = Pg(ahy f).

Since f L aH?, we see that ahyf L H? and Ps (alf) = (0. The density
of Kg° implies that A%’B = 0. Note that this part of the proof does not
depend on the existence of zeros of o and £.

Let us now assume that Ag”g = 0. By the first part of the proof, we can

also assume that ¢ = X+ for some x € K,, 1 € Kg. Let zo € D be a zero
of a. Then kg = k,, and

because the quotient (x(z) — x(20))/(z — z0) belongs to K, (see [13, Sub-
section 2.6]).
Hence,

— 7/8 — 76
0= AZTRS, = ATy RS,

= XCoJkS, + AG°KS, = Py (o) + )k |
which means that
(x(20) + ¥)ks, € BH?
and, consequently,
(2.2) x(20) + ¢ € BH?.
On the other hand ([4, Lem. 3.2]),

af \* _
(AYW) —0,

ADe
h+x
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and a similar reasoning can be used to show that if S(wg) = 0, wy € D, then
(2.3) X + (wg) € aH?.
By (2.2), (2.3) and the first part of the proof we get

a,f _
Ai+¢(wo)+x(zO)+w 7
and
a’ﬁ - a’ﬁ —
A¢(w0)+x(zo) - AY“Z’ 0-
From this,

Py [(9(wo) +x(20))f] =0

for all f € K,.

If ¥ (wo) + x(20) # 0, then the above equality means that Pg(f) = 0 for
all f € K,, that is, K, C BH?. However, by Lemma 2.2, this cannot be
the case here. So

¥(wo) + x(20) =0
and
p=X+v=X+v(wo)+x(z0) + ¥ € al? + H. O
To give a proof of Theorem 2.1 we use the so-called Crofoot transform.

For any inner function o and w € D, the Crofoot transform JS is the
multiplication operator defined by

V1 —|w|?
24 JS = .
(24) 51() = Yot 1)
The Crofoot transform J; is a unitary operator from K, onto K, , where

(2.5) w(z) = 1‘”__1;(2)

(see, for example, [8, Thm. 10] and [13, pp. 521-523]). Moreover,
(o) f=(Ta) " f =i ]
V1= |w? 1 — W

- 1 — way, /= V1-— ]w|2f’

Lemma 2.4. Let a be an inner function and w € D. For every z € D we
have

(2.6) fow = el Cl —
(1 —wa(z))(1 —wa)
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Proof. Fix w,z € D. The reproducing kernel k3™ is given by
11— aw(z)aw()‘)

k‘?“’()\): Lo , AeD.
Since
B w—a(z) w—a(A)
1 — a(2)ayw(X) =1— 1 — wa(z) 1 - Ta())
(1= wP)(1 —ala()
(1 —wa(2)(1 —wa(N)
we have

It is known that the map
A JCAJND ™, Ae T(a),

carries .7 (a) onto 7 (ayy) (see [6]). An analogous result can be proved for
the asymmetric truncated Toeplitz operators.

Proposition 2.5. Let a, 8 be two inner functions. Let a,b € D and let the
functions aq, By and the operators J& @ Ko — K, Jbﬂ . Kg — Kpg, be
defined as in (2.5) and (2.4), respectively. If A is a bounded linear operator

from K, into Kg, then A belongs to 7 (o, ) if and only if JbﬁA(Jg‘)_1
belongs to T (a, By). Moreover, if A = Ag’ﬁ, then JfA (J(‘j‘)_1 = Ag“’ﬁb
with
~ (1—aa)(1-bB)
T VIR BE
Proof. Let A be a bounded linear operator from K, into K. Assume
first that A belongs to 7 («, 5), A = Ag’ﬁ for ¢ € L?(0D). We show that
JbﬂA (Joyt = Ag“’ﬁb with ¢ as in (2.7).

For every f € K37 and z € D we have

1—10)? 1—-a
ﬁ%ﬂﬁ)szfdég&<ljﬁﬁOw>
\/1—“)’2 1 —a«a Jé]

NS

(2.7) ¢

~1-DB(2)
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By (2.6),

_ VI—E / 1-aa 1-05(2)) (1 -0B)
R I o) = Y < Nt ( 1_|)b|2 k§b>

:< 1-b8 1-aa gof,k:fb>

VIR i TaP
(LB 7
= P, z
" (w SN |a129”f> "
= A3 f(2).

Thus A € 7 (a, §) implies that JfA(Jg)_l € T (a, Pp)-
To prove the other implication assume that JbBA (Joyt = Ag“’ﬁb €
T (g, Bp) for some ¢ € L?(OD). Then

A= (JI)B)—IAgmﬁbJ;v — JbﬁbAgaﬂb (Jga)fl‘
But (ag)q = a and (5y)p = B, and, by the first part of the proof,
A= JfbAszb (cha)—l — Agﬁ
with
1 —aa,)(1—bB,
L (w1 tF)
V1= laly/1— b2

Hence, A € 7 (a, B). An easy computation shows that ¢ satisfies (2.7). O

Proof of Theorem 2.1. The fact that ¢ € aH2 + SH? implies Ag”g =0
was established in the proof of Proposition 2.3. Assume now that ¢ €
L2(0D) and A%" =0 .

If a(0) = B(0) = 0, then ¢ € aH?2 + BH? by Proposition 2.3. If a(0) # 0
or 3(0) # 0, put a = «(0), b = §(0). By Proposition 2.5,

0=J A%P (Jo)™! = Age,
where B
1—aa)(l-053
po (@)1 —5)
V1—laly/1— b2
Since a4 (0) = £p(0) = 0, by Proposition 2.3,
¢ € aaHQ + ﬁbH2-
Therefore, there exist hi, ho € H? such that
(1-aa)(1-b8)  a—a
VI—al/T=pE" 1 aa

>
=
+
>
»
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and

a—a1—[a?V1-pP-  b—B 1—[a?\/1— b
Y= — — —=—h1 + = — — ho.
1—aa (1—aa)(1—b3) 155 (1—aa)(l—bB)

Since || =1 and |B] =1 on the unit circle 0D, we have

a—ioz = —a and L@:—B.
1 —-a« 1-008
Consequently,
v =1ag1 + fg2
with
1—la|?y/1 — |b]2 1 —la|?2y/1 — |b|?
B e 7V e i e VA e
(1 —aa)(1—0bB) (1 —aa)(1 —5b8)
Since g1, g2 € H?, the proof is complete. O

Corollary 2.6. If ¢ is in L*(0D), then there is a pair of functions x € K,

¢ € Kg, such that Ag’ﬂ = A%fd). If x, ¢ is one such pair, then the most

general such pair is of the form x — ¢k, ¥ + ckg, with ¢ a scalar.

Proof. The proof is analogous to the proofs given in [13] and [4].
The function ¢ € L?(0D) can be written as ¢ = ¢4 + p_ with o, %_ €

H2% If x = Py(p_) and ¢ = Ps(p4), then ¢ —X — ¢ € aH? + 3H?. By

a?IB — a7/3
Theorem 2.1, A" = AY—H&‘

Note that for f € K,,
A3 f = Py (1= BO)BS) = Paf = AY°).
Since af L H? for f € K,, we get
AZLf = P3(f — a(0)af) = Paf = AT,
Therefore, if Ag”g = A%fw with x € K4,1 € Kz as above and x1 = x —¢k{,
Y1 =Y+ ckg for some constant ¢ € C, then

AZA = AYP — AT + AGP + AP = ADP

Moreover, if Af;’ﬁ = A%fzp = A;ﬁwl for any other x1 € Ko, 91 € Kg, then,
by Theorem 2.1, there exist hq, ho € H? such that

X+ v —X1 — 1 = ahy + Bha.

Hence
¥ — 11 = Bha + ahy + x1 — X
and
% — 1 = Pg(tp —h1) = Ps(ahi + x1 — x) = c1Psl = c1ky
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for some constant ¢;. Similarly,

X — X1 = ahy + Bhy + 1 — 9
and
X —x1 = Palx — x1) = Pa(Bhe + 1 — ) = cokfy
for some constant cs.
From this,

J— a7ﬁ —_ a?/B a?/B
0= A v = C2AE§; T clAkg

= (EQ =+ Cl)A?’ﬁ = (62 + Cl)P,B|Ka'

By Lemma 2.2, ¢2 + ¢; = 0. Putting ¢ = —c¢; = ¢2 we have ¢ = ¢ + ckg
and x1 = x — ckg. ([l

3. Rank-one operators in 7 (a, 3). Recall that the model space K,
is equipped with a natural conjugation (antilinear, isometric involution)
Cu: Ko — K, defined in terms of the boundary values by

Caf(2) = a(2)2f(2), [zl =1
(see [13, Subsection 2.3], for more details). A short calculation shows that
the conjugate kernel £ = Cky, is given by

ko (2) =

The function « is said to have a nontangential limit at n € 0D if there
exists a(n) such that a(z) tends to a(n) as z € D tends to n nontangentially
(with |z —n| < C(1 — |z|) for some fixed C' > 0). We say that o has an
angular derivative in the sense of Carathéodory (an ADC) at n € 9D if both
a and o/ have nontangential limits at 7 and |«(n)| = 1 (for more details see
[9, pp. 33-37]). P. R. Ahern and D. N. Clark proved in [1, 2], that a has
an ADC at n € 9D if and only if every f € K, has a nontangential limit
f(n) at n. If a has an ADC at n and w tends to 1 nontangentially, then
the reproducing kernels £y, tend in norm to the function kj € K, given by
(1.1) with 7 in place of w. Moreover, f(n) = (f, ky) for all f € K, and

a(2) — aw)

= a(z) — a(n) _
k’?(z) = ﬁ = 04(77)77]?7?(2)-
We can now give some examples of rank-one asymmetric truncated Toep-
litz operators (compare with [13, Thm. 5.1]).

Proposition 3.1. Let o, 8 be two nonconstant inner functions.
(a) For w € D, the operators ko ® kS and kb ® k2 belong to T (v, B),

ky@ky =AY and Kk} @ky =A%




60 J. Jurasik and B. Lanucha

(b) If both  and 3 have an ADC at the point n of 0D, then the operator

kﬁ ® kyy belongs to T (a, B),
8 o a,p
k, ® ky Akﬁ+k e

f(zi:{l}(w) € K, ([13, Subsec-

Proof. (a) Let w € D and f € K,. Since

tion 2.6]), we have (for |z| = 1)

at s = (25

(s LS g ) g )

= f(w)P; <W> + f(w)B(w)Ps (1 _sz)

= f(w)ky, = (f.k§)kG = ki, @ k5 (f)-

Similarly,
«, 77 7004
! ) p (L) - (-219)
Ca
= ( of (), Zf%?) = Caf(w)Ps(ku)
= Caf()k] = (Caf, ka>kﬂ = (f. RSk = ki @ ki (f)
(b) Let w € D. Then
(3.1) A = AL S and A = A%7.
Indeed,
AP f = P (1= B)B)kaf ) = Py (kuf) = ACS,
for every f € K. From this, by Lemma 3.2 in [4],
A= (k) = (k) =4
Since for w # 0 and |z| =1,
5) _ BE) - Bw)  pw)
Z—w Z—w z—w
— R+ P R+ 2 ) - ),
we have, by part (a) and (3.1),
a,B

7.8 af _ qof
kly @ ki = AB(Z Akﬁ B(w)( —1)_AE5+M(Eg—k§>'

zZ—w
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If o and 8 have an ADC' at n € JD, then kY and kD converge in norm to ky

and k:g , respectively, as w tends to 1 nontangentially. Hence kS ® kS tends
to /{:5 ® ky in the operator norm. On the other hand,

7w, BWw) (zo g 76, BM) (za 5\ o
B+ (kw ko)—>kn+ g (kn ko) in L2(OD),
which implies that

A% o f— A% f in H?
R+ 20 (k5 —k() R+ (k5 —k{) ’

for every f € K°. Therefore,

Wokr=A4%" .
K K k,ﬁ,-i—@ (kn _kg>

Since

we get

B _ N 378 _n a,B
kn®k,‘;_—kn®kz‘——A

B(n) Bln) " 22 (k7 +ky k]
a7/3 — a7/3
ki +kp—ky Akﬁ%ﬁ—r

0

It was proved in [13, Thm. 5.1] that the only rank-one operators in .7 («)
are the nonzero scalar multiples of the operators Efé ® ko, kS ® Eg and
ky @ ky. It is still an open question whether the scalar multiples of the
operators from Proposition 3.1 are the only rank-one operators in 7 («, f3)
for arbitrary inner functions « and S3.
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