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The degree of approximation by Hausdorff means
of a conjugate Fourier series

ABSTRACT. The purpose of this paper is to analyze the degree of approxi-
mation of a function f that is a conjugate of a function f belonging to the
Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.

1. Introduction. The sequence of partial sums s, (z) for a conjugate series
of the Fourier series of function f converges at the point x to the number

fo %dt if the function f at the point x satisfies the
L1psch1tz condltlon |f(zxt)— f(x)| < Ct* for a € (0, 1]. The main focus of
our analysis relates to the speed with which the mentioned instance occurs.
If we assume the degree of approximation sup,cp |sn(z) — f(z)], then the
following question arises: does the sequence (n + 1)*sup,cp |sn(z) — f(2)]
continue to be a bounded sequence? Our analysis is conducted using certain
regular methods.

Several studies have been conducted on the degree of approximation of
a function by different summability means of its Fourier series. For the
first time in 1981, Qureshi [9] discussed the degree of approximation of the
conjugate of a function belonging to a Lipschitz class by Norlund means of
conjugate Fourier series. He proved the following;:
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Theorem 1.1. Let f be a 2w-periodic function and Lebesgue integrable and
let

oo
f(z) = Z(bn COSNT — ap sinnx).

n=1
Let { P, } be a sequence of positive constants such that P,, = po+. . .+p, — 00
if n — 00 and ty(x) = (ppso(x) + pn—151(x) + ... + posn(x))/Pn. If {Py}
satisfies the conditions n|py| < |Py| and > p_; k|pr — pr—1| < C|Pyl, then
the degree of approzimation of the function f(z) is given by |f(x) —t,(z)| =
O(P% > k=1 ii=), where f € Lipa for a € (0,1] and {s,(x)} is the sequence
of partial sums of a conjugate series of the Fourier series of f.

The problem of the degree of approximation of a function belonging to
Lip o was the subject of many studies, including the recently published
works of Lal and Mishra [6], [7].

In the first part of this paper, we formulate and prove the variant of the
theorem discussed by Lal [6]. The obtained results (Theorem 2.1) will be
applied in the analysis of the degree of approximation for certain Hausdorff
methods. To the best of our knowledge, no one has investigated the speed of
convergence of the Hélder summation method. Theorem 2.7 of the Holder
method is the first remarkable result of our work based on Theorem 2.1.

In the second part of this paper, we prove that the generalization of the
obtained results, with respect to the entire class of Hausdorff methods of
a conjugate Fourier series, is impossible. This result, as the second instru-
mental finding of our research, is interesting because the generalization with
respect to the entire class of Hausdorff methods of a Fourier series is possi-
ble (cf. [10]). A counterexample formulated as Theorem 2.8 proves that the
hypothesis presented in the work by Lal and Mishra [7] is false when the
parameter of « is limited to the range (0, 3].

An infinite matrix C' = [¢ny], m,n = 0,1,... is called a regular ma-
trix (method) if it transforms any convergent sequence into a convergent
sequence with the same limit.

In 1911, Toeplitz presented the following equivalent conditions for regu-
larity [11].

Theorem 1.2. The matriz C = [cpy] is regular if and only if
T1) Vn>0 lim ¢p, =0;
m—r0o0

m—ro0

o
T2)  lm Y cmn =1;
n=0

[o¢]
T3) M >0Ym >0 |emn| < M.

n=0

In 1921, Hausdorff [2] proved the following:
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Theorem 1.3. Given the sequence (1,)5;, define

APpy, = EP: (I;) (1) pnyi-

=0

Then the matriz A with elements

<m> A" "y forn < m,
)\mn - n

(1.1)

0 forn>m

is reqular if and only if u, is the moment sequence

1
(1.2) unzfo z"dx(z),

where x is a real, bounded variation function defined on the interval [0, 1]
satisfying the conditions

(1.3) x(0+) =x(0) =0 and x(1)=1.

A sequence p, that satisfies the conditions (1.2) is known as a moment
sequence, while a sequence that satisfies both conditions (1.2) and (1.3)
is known as a Hausdorff moment sequence. The matrix A in (1.1) that
satisfies both (1.2) and (1.3) is known as a Hausdorff matrix (method). A
real sequence s, is considered to be summable by the Hausdorff matrix
(method) if there exists a function y that satisfies the conditions (1.2) and
(1.3) so that the sequence

(1.4) VU = i AmnSn
n=0

with Ay, defined as in (1.1) is convergent. For the proof of the above
theorems, see the work by Hardy [1].

Since 1921, the Hausdorff theorem has been subject to numerous studies
and generalizations. In 1933, the theorem was proved within the framework
of three-index matrices by Hildebrandt and Schoenberg [3]. Keska [5] proved
the theorem for multi-index Hausdorff matrices. Jakimovski [4] presented
a variant of the Hausdorff theorem that extended to the space of sequences
of functions.

Let f be a 2w-periodic function and Lebesgue integrable on [—7, 7]. The
Fourier series of f at a point z is defined by

(1.5) f(z) ~ 20 4 Z(an cosnx + by, sinnx),
2 n=0

where a, = 1 ["_ f(u) cosnudu and b, = L [T f(u) sin nudu.
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The conjugate series of a Fourier series (1.5) of f is given by

oo

(1.6) Z(an sinnz — by, cosnx),

n=0
with n-th partial sums s, (z).
The degree of approximation of a function f : R — R by a trigonometric
polynomial p,(z) of order n is defined by

(1.7) 1pn = flloo = sup [pn(z) — f(2)].
TER

In 2004, Lal [6] proved the following theorem:

Theorem 1.4. Let T = (ani) be a lower triangular matrix with finite norms
and

(18) zn:/caikl :O<ni1>'

k=0

If f: R — R is a 27 periodic function, Lebesgue integrable on [—m, 7| and
almost Lip o (there is a constant My > 0 and Vx € R there is a subset A, C
[0,7/2] of measure zero such thatt € [0,7/2] — A, implies |f(x+2t) — f(x—
2t)| = Mt®), then the degree of approzimation of its conjugate function f
by matriz Cesaro product means v, = > ;_ ank0k of the conjugate series
(1.6) satisfies, for n=10,1,2,...,

O(ﬁ) fora <1

(1.9) o= TFllw = 300
(0] (1 gé;{”) fora=1,
where
k
1 - ™/2 cos(2r + 1)tdt
= — ry r — - 1 . ’
= s -T=m [

Fx) = (=1/7) [T W(t) cot tdt and W(t) = f(x +2t) — f(z —2t).

2. The degree of approximation by Hausdorff means of a conju-
gate Fourier series. We first formulate a variant of Theorem 1.4.

Theorem 2.1. Let f be a 2w-periodic function and Lebesgue integrable on
[—7, ], which satisfies the Lipschitz condition for 0 < a < 1
(2.1) |f(z+t) — f(z)| = O@t¥) Vt € [0, 7],z € R.

Let U, (t) = f(x+t)— f(x—t), A = [chi] be a reqular matriz, which satisfies
the condition

lcnk| 1
(2.2) = (k+1) 0 ((n + 1)&) '
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Let C' denote the Cesaro method of order 1. Let s,(z) denote the n-th
partial sum of conjugate series of the Fourier series of f. Then for 0 < a <
1 we obtain

23) 14C 60 = Tl =0 (s )
where
(2.4) Fo) =5 [ )

Proof. By virtue of results of [8] and based on the assertion in (2.1) we
may conclude that

(2.5) |an(2)| = |C* (sn(2)) — f(2)] <
Let
bn(z) = A(Cl(sn(m))) fla) = (Cl(sn( )~ f(z)) = Zcmnan(x)
n=0

where A = [¢pp). Then (m + 1)%by,(z) = (m + 1) X" ) ¢mnan(z) and

[(m +1)%bm(@)] < (m+1)* Y [emnllan(@)]
(2.6) =0
(m —|— 1
< GZ ycmny Gy.
This is a consequence of (2.2). O

Definition 2.2. A moment sequence p, is known as a right-shifting se-
quence of moments if there exists pf € R such that the sequence (g, pj =
H0s- -+ 5 Myq = Mk, ---) is @ moment sequence (1.2).

Corollary 2.3. A matriz A = [A\ui], where Ay, = (Z) Ak forn > k>
0 and O for others, gemerated on the basis of a right-shifting sequence of
moments i, fulfils the condition (2.2).

Proof. We have

n

Ank 1 - n+1
1)~ | = k41 AnF
(n+1) kzz (k + 1) (n+1)1—az( T <k+ >’ pl
=0 k=0
We know that the sequence (i1, i = pos- -, fj1q = Hk,---) is a moment

sequence. Applying Theorem 204 [1], we obtain
(2.7) pi = p " — ", whereVi,p > 0 APy £ > 0.
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Then,
« % )‘Tbk 1 & 11—« n+1 n—=k, *
(n+1) k+1)o| (nr1)i-o > (k+1) <17<:+1>|A Hi|
k=0 k=0
1 - n 4+
< 1 11—« A~ k *Jr
~ (nt 1)t ;<k+ ) <k+ > Hh1

n

1 l—a n+1 n— k *—
) Z(k_'_l) <k+1>A k+1

(
n+1 n+1

n+1\ ., X n+ n o
Z< )A-Hl ++Z< l >A+1l,u

=1

| /\

—_

n+1

n+1\ i et (ol S WA T
l0< l )A +Z L )8 g

— AL AL

3

After considering

+
—"_1 * *
Z( >An+l bk e

0

(see p. 252 [1]) and A™+1ys% > 0 (which follows from (2.7)), we obtain
(n+1)*3 ko ‘ < H. =

(k—i—l)o‘

Example 1. The Hausdorff moment sequence u,, = which generates

1
(g+1)m7
the Euler method (F,q), is a right-shifting sequence of moments because
A g = (14 q)A™ g > 0 for pg = (1 +q).

Example 2. The Hausdorff moment sequence pu,, = which generates

1
(n+1)°
the Cesaro method C', is not a right-shifting sequence of moments.

Proof. If p, is a right-shifting sequence of moments, then there exists
such a uf that makes the sequence (ug, ] = fo, -+ Mjpy = Hiy---) @
sequence of moments. It is important to observe that the sequences A" ) i
must be positive and decreasing with n, which follows from the relatmnshlp

AmHLsE L A2 = AP S and (2.7). Moreover,

(2.8) —;(—1)i<’;>1/¢ =31/,

i=1
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which follows from (”J.rl) ="+ (") and (,"))% = (”jl)n%rl After

(2 K3
considering (2.8), we can calculate

n

Aty = (=1)’ ( )ul _M0+Z < >uz '

=0
= b+ Z(—l)l(i) 1/i = pé — Z 1/i.
i=1 i=1
Thus, the sequence A"y cannot be convergent, which is a contradiction.
O
Remark 2.4. However, the Cesaro method C? satisfies condition (2.2).
Proof.
(n+1)* & 1/(n+1)*
i S LM ) = i
1/(1 2
= lim 1/(n+ )1_ = lim /A +n) 5
n—)ool_(n/(n_|_1)) @ n—00 (l—a)(n/(n—l—l))—al/(n—i—l)
1
S l-a
O

Remark 2.5. The Cesaro method C?® for s € N fulfils equation (2.2).

Proof. C? is a matrix method generated by the Hausdorff moment sequence

s _ s!
P = D 2)—(nts)" Recall that

s! (0 (—1>j
(2:9) (n+1)(n+2)---(n+s) sz:;) (n+1+7)

We prove (2.2). Let A3, be the Cesaro method C*. Applying (2.9), we
obtain
s—1 (S 1)( 1)]
n
s Anfk s _ A k
ok <k> o <k:) Z k+1+)
> (5 ) ()
j k+1+7
§— n—
=X (e ()

0
For j = 0, the matrix C; = [¢/, ], where ¢/, = (M)A Fpp . is the Cesaro C'!
method that satisfies (2.2), which follows from Remark 2.4. For j > 0, the

CIJM

J

<.
Il
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method C} is the matrix generated on the basis of the right-shifting sequence
of moments e Therefore, C; satisfies the condition (2.2) for j > 0, which
A%l

follows from Corollary 2.3. Thus, >, _, s = O (m) H

Remark 2.6. Let A be a Holder method H? for s € N, where H® is the
Hausdorff matrix, which is generated by the Hausdorff moment sequence
pk® = ﬁ Therefore, A satisfies the condition (2.3) in Theorem 2.1.

Proof. Every Hausdorff matrix A may be formulated as a product of ma-
trices dud, where 0,5 = (—1)*(}) forn > k > 0 and 0 for n < k. The matrix
@ is a diagonal matrix with elements of the main diagonal pf” = m in

the case of Holder’s s-th order method. Because 6! = §, the Hausdorff
matrix for the H® method may be formulated as follows:

A =55 = s B s =5t s st s = AL AET

Because Holder’s first order method is identical to Cesaro’s first order
method, and in view of Remark 2.4 and the inequalities in (2.5) and (2.6),
we obtain (2.3). O

In view of Theorem 2.1 and Remark 2.6, we obtain the following:

Theorem 2.7. Let f be a 2w periodic function and Lebesgue integrable on
[—m, 7|, which satisfies Lipschitz condition (2.1). If 0 < a <1 and r € N,
then
- -1 1
176 = Tl =0 (o )

Based on Corollary 2.3, we conclude that the product of the Cesaro C*
method and Hausdorff matrix A, generated on the basis of a right-shifting
sequence of moments, fulfils the condition (2.3). As a result, a question
arises: can the Cesaro C'' method be extended to any of the Hausdorff B
matrices so that condition (2.3) is still fulfilled? Based on the case of o €
(0,1/2], we prove that such a generalization is not possible. For the purpose
of this proof, A is the Euler method (F,1) and B is the Hausdorff method
generated by the function y(z) = 2® for 0 < 8 < «, which satisfies the
assumptions in (1.3). The details are formulated in the following theorem:

Theorem 2.8. We define the function f, which is 27 periodic, Lebesgque in-
tegrable on [0, 27] and satisfies the Lipschitz condition (2.1) for a € (0,1/2]:

{ sin® % if © € [2kn, (2k + 1)7)

Csin =T o [(2k - Dm,2km) © 2

fz) =

Let s, (x) represent the n-th partial sum of a conjugate series of the Fourier
series of f at a point x and [ be defined by (2.4). Then, there erists a class
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of Hausdorff methods L = {A} such that

VA € L lim (n+ 1)®ess sup |A(sp(x) — f(2))] = +oo.

n—oo z€[0,27]

Note that Rhoades, Ozkoklu and Albayrak [10] proved the following the-
orem:

Theorem 2.9. Let f be a 2w-periodic function and Lebesgue integrable on
[—m, 7|, and let it belong to the Lipschitz class Lipa for 0 < a < 1. Let
sn(x) represent the n-th partial sum of series of the Fourier series of f at
a point x. Then,

M > 0Vn >0 (n+1)* sup |A(sy(z) — f(2))] < M.
z€0,27]

We return to Theorem 2.8.

Proof. For the purpose of the following proof, o € (0,1/2] is fixed. We
define A = AP x (E, 1), where (E,1) is the Euler method and A? is the
Hausdorff method generated by the function y(z) = 2” and satisfying the
assumption

(2.10) 0<B<a.

We know that the sequence

zn(w0) = sn(wo) — flxo) = ;/OW (1) Coséz;l_(ig))tdtdt

tends to zero with respect to n.

Note that
i (n) cos(k+1/2)t
= \k) 2 sin(t/2)
_Zn: (n) (cost+i sint)*+— (cost —i sint ) ¥ — (cost +i sint)*+ (cost —i sint ) ¥
- . 2

= \k 8isin(t/2)
_ (cost—1+isint)(cost+1+isint)”—(cost+1—isint)"(cost—1—isint)
B 8isin?(t/2)

2™ cos™(t/2

= M[(— sin(t/2) + i cos(t/2))(cos(t/2) + i sin(t/2))"

+ (sin(t/2) + i cos(t/2))(cos(t/2) — isin(t/2))"]
_ 2"~ 1 cos™(t/2) cos @
sin(t/2)
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Denoting the Euler (E,1) matrix summability transform of z,,(xg) by wy, (),
we obtain

—~ (n T cos” cos (1)

2
k=0

Assume that

1

(2.11) 7 € (0, <85(1 +§)7T(n+ 1)2>1°‘> , >3, a€c(0,1/2].

A direct calculation provides

sin® ot — gin® Lot if t € [0, zo]
Wy (t) = ¢ sin® ZoE 4 gin 20—t if t € (xo, ™ — 20)
—sin x0+§_2” +sin 2t if ¢ € [ — 20, 7]
for t € [0, ).
Let
zo n n+l
1 oo+t ., xo—t) cos™(t/2)cos Tt
_ _ dt
w,, (o) /0 <sm 5 sin® — Sin(t/2) ,
T t —t\ cos™(t/2) cos MLt
w2 (z9) = / <sina o+ +sin 20 > ( / ) 2 __dt,
. 2 2 sin(t/2)
i t—2 —t\ cos™(t/2) cos “tLt
w3 () = / < sin Tottoem +sin 20 > ( / ) 2 _dt.
o 2 2 sin(t/2)
It is clear that
(2.12) wj (o) > 0,
(2.13) w3 (xg) >0 forn =0, n=4r —1, n=4r, r € N.

Note that if 0 <y < x < 1 and b = [1/a], then

(z—y) <$1/a_1 4 yxl/a—Q + y2$1/a_3 TR yb—lxl/a—b + ybxl/a—(b—&-l))

:(gm_ymg_<¢H¢M%wn_¢m»

where yb-i-lml/a—(b-i-l) _ yl/a <0.
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Let z = sin®(%%t) and y = sin®(2%-) for ¢ € (0,z0),n > 1,5 > 3. Then

2
st (5§1) — s (5 sin(5) —sin( )
Sin(t/Q) - sin(t/2) Z?i% (Sina(mOT-}-t))l/oc—j(Sina(moT—t))j—l
B 2 cos(xo/2)
S (st (B - (i (54
< 2 cos(zg/2) S 2 cos(zp/2)
b+ 1)sint T (25E) T (1 + /o) sipratna e
2 8s(14a)(n+1)2
> 19200s(:1c0/2).
™

This follows from (2.11).
Therefore,

192 *o 1
Vn > 1 wh(zg) > — COS”+1(:L‘0/2)/ Cos <n i t> dt
n 0

2
n—+1

384 .
(214) = m COSn+1(ﬂfo/2) Sin < I0>
384 n+1
> n+1 3 .
Z ottt D cos™ " (x/2) sin < 1 x())

If n=4r —1orn=4r — 2, then

w3 (o) = /: 2008(t/2)sin(@0/2) n 4 19) cos (n;lt> dt

—z0 sin(t/2)
(2.15) > 203 ﬂ.;ro:_'if(xo/m e — 2 [Sin <n + 17r>
sin “5+ 2 n+l1 2
1 — 16 1
—sin (n+ );ﬂ— xO):| > S COSn+1(l’0/2) sin W)
Therefore,
(2.16) Vn > 0w} (x0) 4+ w3 (x0) > 0.

This follows from (2.11), (2.12), (2.13), (2.14) and (2.15).
A direct calculation provides

(2.17) 3¢’ > 0 w3 (xg) > ¢ for 0 <n < 3.
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If n =1, then
T—20 qin® ( £0 13 n o _ ¢ t
Wi an) / sin ( 7 + 2)' +ts ( 2 2) cos§COStdt
. SlIl§
9 . t in(% _ t
_ /W/ slna(% + 5)' +t51n(9”2° 2) coS t cos tdt
0 Sll’li 2
T—20 qin® (%o 2 in(%2 — L t
N s (2 + 2).+t81n( 2 2) cos = costdt = Cy + Co,
7r/2 S1n 2 2

where

2t 2
Cy > /7r/2 cos 5 (2cos” 5 — 1) dt—/ﬂ/ cos © <1 — 2¢in? t) dt > 2.69—0.32
=/, sin'/2(4) o2 ’

0

and

/
If n =2, then
T—20 Qin® (X0 t i Zo _ 1 t 3t
w3 (xg) = sin® (5 + 3) +sin(% — 3) cos® = cos = dt
2(Zo 0 sin% 2 2
/3 gin® (%o 4t in(% — 1L L
_ / Sin ( p) + 2) +t81n( 2 2) C052 §COS Edt
- sin
T—2T0 oin®(Zo t i Zo _ L 3 3t
+/ sin (2 +2)‘+t31n(2 2) COSchosfdt:Cﬁ*‘C?a
7r/3 Sln§ 2 2
where
/3 ¢ " /3 t 3t
Cr > / % cos® = cos idt - / cos® — cos —dt >2— 0.7
z  Sin YL 22 o S
and T t 3t
Co > 2/ cos® = cos = > —0.8.
w/3 2 2
If n = 3, then
20 gin® (%0 4 L) 4 gin(L — L t
o= [
x0o 2
/4 t in(Z _ t
_ / (3 4 5) +s(E = 5) o L oogorar
20 SiH§ 2
3m/4 gine(To 4 t in(% — 1L t
+/ sin® (5 + 2)‘ +ts1n( 2 3) cos® = cos 2tdt
71'/4 Sln§ 2

[ (=)
3

t
— cos® = cos 2tdt =C + Cy + Cs,
/4 sin 5 2
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where

CciL > / cos’ — cos 2tdt — / cos” — cos 2tdt > 1.9 — 0.5,
zo sin 2 2

sin/2(£) 20
/4 sin® (% + § t 37/4 cos3 L cos 2t
Cy > / # cos® = cos 2tdt > / 27ﬂd > —0.97
w/4 S 5 2 /4 sin g
and C3 > 0.
Now we consider n > 4.

We define

R | S L(LFL) s a t4xg

m(n+1) ()T m sin® =5 1)t
(218) I, = [ B +/ o - ]2 cos”(t/2) cos (nt+1) dt,

e Y o ) sin(t/2) 2

where 1 <m <s—1,

«@ t—i—xo
s(n n 1 t
(2.19) I = [ / SR / e ] sin cosn@/z)cos(";ut,

(14252 s1n(t/2)
w(p+i+1) w(3p—1) <o ttxo
Sp(nt1) (D) | sin® LT (n+ 1)t
2.2 = 2 cos™(t/2
(2:20) J] [/rr(p+l) w<3pl1>] sin(t/2) cos"(£/2) cos 2 at
2p(n+1) 2p(n+1)
forp>2and 0 <[ <p-—2.
Note that
. w(2m—1)
n 2 ( 1) n sin® (% + 2m(n+1))
I 27 O amin 1) w@m1)
Sl 2m(n+1)

. 7r(2m 1) o
SN 3 sin ( + Tt 1) )

T T
. -1 <sin—sin> )
SIN 5 tnr 1) n+1 smo‘< 722(372& ) 2m 2(m +1)

This follows from (2.18).
We can prove that

Sin(% - 2m(z+1))

sin(% + 5

(2.21)

is non-increasing with respect to zg € (0,7/2).
After considering cot W > (2m — 1) cot % we can prove that

sin w(2m—1)
(2.22) _ 2m(ntl)
Sin 2m(2+1)

is non-decreasing with respect to n for m € {1,...,s}.
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Furthermore,
2.2 sin (% + Steer))
( : 3) . w(2m—1)
SN 5 tnt 1)

is non-increasing with respect to m. In view of (2.21), (2.22) and (2.23),
the following inequality is satisfied:

7(2s—1)
n m(2s —1)\" sin ( 2 + 23(n+1))
I, > | cos —
2s(n+1) sin 72r(23 D).

(2.24) (n+1)

sin m(m—1)\ 17 2 T T
X ,71%" —1 (sin—sin).
sin 15— n+1 2m 2(m+1)

We define

1—
(2.25)  HZ = sin W(Zlgl_l) ) 1| (sin = — i T
' "o sin g~ om T 2(m+1)/)°

We estimate

cafz m(2s—1)
" 2 (25 —1)\" S (70 * %@
I} > cos
n+1 2s(n+1) m(25—1)
2s(n+1)

<in m(2s—1) \ 1—@ -
X ,71”05 (sm — —sin —) (1 + sin —) ,
sin {55 2s 40s 2s

which follows from (2.11), (2.19), (2.21) and (2.22).
The mapping (2.20) can be estimated in similar ways, namely

)
m@Bp—l-f. 7wlp+i+l) . 7w+
dp(n+1) 4p 4p

m(pHi+1)
Ap(n+1)

l1—a . mw(3p—I1—1
(n+ 1) (sin Tty 7 | \sin 70

sin

(2.26)

JP > co

a—1

(2.27)

9 sin

X —1

forp>2and{=0,1,...,p— 2.
Note that
TBp—1—-1) .

2.28 cos” ——————~ is increasing with respect to n.
(2.28) dp(n + 1) & P
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In view of (2.27) and (2.28), we obtain

2 I+1 l
Jt > sin mpHiHl) sin mp+0)
n+1 4p 4p
7(3p—1— 4 P -«
(2.29) (Cos (3p20; 1)) sin w(&;;a;—l) 1
o (3p—l—1)\ 1@ s m(pHi+1)
<sm 7(320; 1)> sin - p20p

for [ =0,1,...,p—2.
We fix p =5 and s = 18. We investigate the inequality (2.26) and let

. m(2:18—1)
in 2 m(2-18 —1)\" Sma<% - 2-18(n+1))
= —— | cos
B 41 2-18(n+1) gin T218-1)
(2.30) 2-18(n+1)
' . ow(2:18-1) \ -
X el 1B R (sin T — sin T )—sin T
sin 1575 2-18 40 - 18 2-18
Then
sin 55 — sin ——
(2.31) 218~ 4018 - (.949.
S1n 518

After considering that cos™ ;&2;;3 is increasing with respect to n, we obtain

) 9 045 9
932) fn>_°_ [\/32.85 -0.0828 — 0.0873} >~ .0.23.
(2.32) B = n+10573 n+1

This follows from (2.22), (2.30) and (2.31).
The remaining part of the inequality (2.26) shall be denoted as

oz (2181 \\*
(2.33) o 2 m(2-18 —1)\" (sm(?‘) + 2.18(n+1)>>
. B 1 €08 2-18(n+1) m(2-18—1) :
2-18(n+1)

sin

In view of inequality (2.29), we obtain

(6+1) (5.4 1) (cos 0i0)’
[sin T in il ]

— 20 20 . w(14—1)
(2.34) =0 VS 100
w(14—1)
100
— 0.1064.
ECU
Hence,
> 2
2.35 n JP > ———0.3364.
(2.35) 18+Z 1> 1

=0
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This is true as a result of (2.32).
We can calculate that
17
(2.36) > HS > 1.02 for a <

m=2

N

We estimate

o s (R

17
(2.37) Z Iy 2 cos™  a(218—1
— n+1 2-18(n+1) Smw

This follows from (2.24), (2.25) and (2.36). After considering that the map-
ping

oo T+t
sin® #ett
2 n
—= _cos"'(t/2
sin(t/2) (t/2)
. .. . . . w(2p—1) w(2p+1)
is positive and increasing with respect to t € {2p(n+1)’ Sp(ntT) |+ We can
estimate
37 . o t+zo ™ 3
nt1 sin® =50 n+ 1)t s(n+1) ntl
/ ﬁcos”(t/Q) cos (z)dt / e
v SI(t/2) oo
s—1 ™ m(2m+1) p—2 m(p+i41) m(3p—1)
m(n+1) (m+1)(n+1) 2p(n+1) 2p(n+1)
I 7(2m—1) 7 (p+l) Tr(dp 1-1)
m=2 (m+1)(n+1) m(n+1) =0 2p(n+1) 2p(n+1)
_m 7"(?1’+1§ s—1 -2
n+1 2p(n+1
I?’L n
+</ﬁ<2p_1>+ﬂ ) +Zm+ g
2p(n+1) n+1 1=0

Therefore,

ye:;

Vn >4 Vo € (0,1/2] Vag € (0’ (8 18(1 + @) (n + 1)2>““)

= <in® t+xo 1)t
(2.38) / & sin® 7y cos"(t/2) cos (n—;)dt
T

, sin(t/2)

2 7(2-18—1) ., w(2-18—1)
> 0.3364 4 0.02 cos” 2 ° 7 ) a1 TE 20 T )
_n+1[ L PE T s R B T gy

for p =5 and s = 18. This follows from (2.33), (2.35) and (2.37).
We estimate the following integral for n > 4:

3 . xg—t
n+l sin 1)t
/ ! —2_cos"(t/2) cos mdt
w  sin(t/2) 2

(2.39)

2 = (n+ 1)t
> - "(t/2 ———dt.
> n—|—1+/11 (t/2)cos(/)cos 5
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. . Sn(a(n+1)27nb7:1> . . .
After considering that the sequence b is decreasing with re-
in 279

spect to n for @ € N and b € [1, 3], we divide the interval [ n%rl] so
that

3m . go—t

ntl Sin (n+ 1)t 2
2.40 2 cos™(t/2) cos dt > 0.752.

In view of (2.39) and (2.40), the following condition is satisfied:

¥n > 4 Va € (0,1/2] Vo € <0’ (8 181 +7T2)(n + 1>2> M)

(2.41)
AT sin 2ot (n+1)t 2
/ ——2_cos"™(t/2) cos ~——2-dt > —0.248 .
z  Sin(t/2) 2 n+1
Note that
1
T 1-a
Vn >4V 0,1/2] v 0
nzdvae(0,1/2] Voo € ( ’(8.18(1+a)(n+1)2> )
B 1) i zo—t
(2.42) /Ml — 2 s 7 cos”(t/2) cos (nt 1t 1)tdt
o sin(t/2)

004 . w(2-18—1) ., 7(2-18—1)
> cos"t ———~=sin _
n+1  2-18(n+1) 2-18(n + 1)

which follows from (2.38) and (2.41).
If n > 4, then the function

sin® IOT‘H + sin x(’T—t
sin(t/2)
is positive and decreasing with respect to ¢ € | n?’fl , ™ — xg]. Therefore,
T—20 gin® Lot | gip Lot n+ 1)t
(2.43) / 2 2 cos"(t/2) cos udt > 0.
2 sin(t/2)

In view of (2.42) and (2.43), we obtain

¥n > 4 Va € (0,1/2] Vo € (0’ (8 181 +a;r)(n + 1)2> M)

T—T0 i@ To+t i xo—t 1t
(2.44) / - : Ton Ty cos"™(t/2) cos mdt
0 sin(t/2) 2
0.04 2-18—-1 2-18—-1
cos™ 7T( ) Sina_l 7T( )

n+1 2-18(n+1) 2-18(n+1)
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In view of (2.16), (2.17) and (2.44), we obtain

1

an—— e
Jg>0Vn >0 Va e (0,1/2] Vo € | 0, %

(2.45) 8- 18(n + 1)2

(n+ 1wy (x0) > q.

Let A? be a Hausdorff matrix with elements )\gm = (7:) Am*”,ug, where

= fol x"dz? for B € (0,a). Because the function z” increases with
respect to x € [0, 1], the following inequality is fulfilled:

1
(2.46) A8 = / 2"(1 — z)™ "dz® > 0.
0

Denoting the A® matrix transform of w,(zo) by vh (z), we obtain

m am e
Ufn(xo) = nzzg))\gmwn(a:o),where xo € |0, (818(m1+—7—1)2>

et 1>A (n+ 1wy (x0)
-n, B
n+1> Hn

sl \T-=a
for zp € <0, (m> ), this follows from (2.45) and (2.46). There-

o

TEO |

n=

o

We fix a real number u[i - Then
1 m
B _
Um(‘ro) = m+ 1 Z
m

| \/
(=)

818(m+1)2
fore,
Vm > 0 ess sup [As,(z) — f(2)|
z€0,27]

> ess sup 102 (z0)]

el \Toa
(2.47) xoe<o,(&lg(1m) )

q o /m4+1
> AN B'
_m—|—1n§::)<n—|—1> Hn
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Note that for m > 0, the following condition is fulfilled:

S (L)
=\n+1 "

248) 4 [ amr1 g ami1 B N~ (MDY fen g
S\ AT eata “—1+nz_;) n1)B
q 1.8 B
_ 1 _Am+ .
m—+1 ( poy Mfl)
For the purpose of the following proof we show that
(2.49) Yae (0 1 ! > (m+2)7,
’ 2] (m+2)le — (m+1)l-e
and
(2.50) —ATH2YP | (AT ) = AT > 0,
Note that
Jr
(2.51) ATHLE H
This follows from (2.46). We estimate
1
(252)  (m+1)%ess sup ol (@) > LOE U Camirs sy
z€[0,27] m+1
This follows from (2.48).
We calculate
_Am+L,B _AMm+2,,P + Al B
lim 2 A lim e H

m—oo (m+ 1)1=%  m—oo (m+2)1- — (m 4 1)1«

a Am—+1 B8
> lim Am+1u€(m+2)o‘ = lim eln[(m+2) A “0]

m—ro0 m—0o0
(253) — lim e[ln(m+2) +1n]_[m+1 11/]/55]
m—0oQ
S In o7
= 1 o | 2=t BT/
= nlgnoo exp [In(m + 2) In(m + 2)° +1
This is a consequence of (2.49), (2.50) and (2.51).
Furthermore,
Zm:-f—l In ]/6 In _(m+2)/8
(2.54) lim 2=t IRy, DT B

= In(m+2)  m— +3\¢ o
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This follows from (2.10). In view of (2.53) and (2.54), we obtain

1

: — m+1,8 —
(2.55) W}gnoo M ie A" = +o0.
In view of (2.47), (2.52) and (2.55), our proof is complete. O
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