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On compactness and connectedness
of the paratingent

ABSTRACT. In this note we shall prove that for a continuous function ¢ : A —
R™, where A C R, the paratingent of ¢ at a € A is a non-empty and compact
set in R™ if and only if ¢ satisfies Lipschitz condition in a neighbourhood of
a. Moreover, in this case the paratingent is a connected set.

1. Notations and definitions. Let R denote a real line, A C R an inter-
val and R™ the Fuclidean n-dimensional space with usual norm

n 1/2
|mn=<§jﬁ) ,

i=1
where © = (21,22, ...,2,). The symbol
(4) = sup {Jlz] : 2 € A)
is defined for any A C R", A # (). The differential quotient M, where

@ : A — R" is a continuous function, ¢,s € A and t < s, i; cienoted by
Dq (t,s). Let u® = (1 — a)t + a7 and v* = (1 —a)s + ao for t,s,7,0 € A,
t<s,7<oand a€[0,1]. Evidently, u® < v®.

The set of all points x € R™ for which there exist two sequences {t}, {si}

C A such that t; < sg, both sequences converge to a and

x = lim Dq (tk‘a Sk)7
k—o0
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is called the paratingent of ¢ at a and is denoted by (Py)(a).
We shall say that a function ¢ : A — R"™ satisfies Lipschitz condition in
a neighbourhood of a point a € A, if

Jr>035>0 vt,sEA, [t—al<d, [s—al<d ||<)0(t) - 90(8)” <L |t - 5|'
The distance of a point = from set A is denoted by
5z, A) =inf {||lz —y| :y € A}.
2. Theorems.
Theorem 2.1. The paratingent (Py)(a) is a closed set in R™.
Proof. Let 2™ € (Py)(a), m =1,2,..., and lim,, o 2™ = x. So we have
™ = lim Dgq (&}, si'),
k—o0
where ], 57" € A, 7" < 57, limg_ o0 8 = limg oo 81 =aand m = 1,2,....
Then there exists k,, for any m such that ]ti’:ﬂ —al < %, \sznm —al < %,
and HDq (tz”m,s’,;"m) — mmH < % Hence
x = lim Dq (t}g’:,L’ SZ:"/) ?

m—r00

where limy o0 ! = limy o0 5] = a. Thus x € (Pyp)(a), so (Py)(a) is
closed. O

Theorem 2.2. The paratingent (Py)(a) is a non-empty and compact set if
and only if the function ¢ satisfies Lipschitz condition in a neighbourhood

of a.

Proof. («)

Let ¢ satisfy Lipschitz condition, hence there exist L > 0 and § > 0 such
that [|Dq(t,s)|| < L for any t,s € A, |t —a] < 0 and |s — a| < 4. Hence
the paratingent (Py)(a) is bounded. Thus, by Theorem 2.1, (Py)(a) is
compact.

Let now ¢, s, — a with ¢;, < s;. The sequence {Dq (tr, Sk) } is bounded,
so it contains a convergent subsequence, i.e. lim,, oo Dgq (tk, , Sk, ) = « €
(Py)(a), hence (Py)(a) is non-empty.

(=)

Let (Py)(a) be non-empty and compact, and assume that ¢ does not
satisfy Lipschitz condition in any neighbourhood of a.

Firstly, let # € (Py)(a). There exists M such that {((Py)(a))) < M. As
x belongs to (Py)(a), we have x = limg_,o, Dq (tx, sk) for some sequences
{te}, {sk} C A, tx < s and tg,sr — a. Hence there exists ko such that
| Dq (tx, sk) || < 2M for k > k.

On the other hand, as ¢ does not satisfy Lipschitz condition, there exist
sequences {7y}, {ox} C A, 7, < o}, and |7, — al,|ox — a|] < ¢ such that
|Dq (1i,0%) || > 4M for k=1,2,....
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Let now gx(a) = ||Dgq (uf,vy) ||, where a € [0, 1] and u®, v® were defined
in the first section. Function gy : [0,1] — R is continuous and such that
0k(0) < 2M and k(1) > 4M for any k = 1,2,.... Thus there exists a
sequence ay, € [0, 1] such that gy(ax) = ||Dg (ug’“,vz"“)H =3M.

Of course uy*, vp* — a as k tends to infinity. The sequence of quotients
Dq (ug*, vp*) is bounded, hence it contains a subsequence Dg (qunm , UZ‘Z’")
convergent to a point y € (Py)(a). But we have ||y|| = 3M, which con-
tradicts the assumption ||y|| < M as (Py)(a) is bounded by the constant
M. Therefore ¢ must satisfy Lipschitz condition in some neighbourhood
of a. g

Theorem 2.3. If ¢ : A — R"™ satisfies Lipschitz condition in a neighbour-
hood of a € A, then the paratingent (Py)(a) is a continuum, i.e. it is a
non-empty compact and connected set.

Proof. By Theorem 2.2 it is enough to show that (Py)(a) is connected.

Assume “a contrario” that (Py)(a) is not connected, i.e. (Py)(a) = EgU
Ey, where sets ) # FE;,i = 0,1 are compact and Ey N E; = (). Then
d=inf{|lz —y|:z € Ey,y € E1} > 0.

Let g : R™ — R be a function given by the formula g(z) = é(x, Ey) —
d(z, E1). Function g is continuous. Moreover, if x € FEy, then g(z) < —d,
and if x € Ey, then g(x) > d. Hence g(z) # 0 for all € (Py)(a).

Let us now fix ' € Ey and 2! € E;. So we have 2° = limy_,o, Dq (t1, s1)
and z! = limy_, o Dq (73, o)) for some sequences {t}, {sk}, {7}, {on} C A,
tr < S, T < 03 and

lim ¢t = lim s = lim 7, = lim o} = a.
k—o00 k—o00 k—o00 k—o0

There exists kg such that g(Dq (tk,sk)) < —% and g(Dq (Tk,O’k)) > % for
k > ko.

Let us now consider a family of functions hy, : [0,1] — R, for & > ko, given
by the formula hy(a) = g(Dg (uf,vg) ). We have hy(0) = g(Dq (tk, sx) ) <
—% < 0 and hi(1) = g(Dq (Tk,O'k)) > g > 0. There exists a sequence
oy € [0,1] such that hy(oy) = 0 for k > ko. The sequence Dg (ug*, vp*) is
bounded, so it contains a subsequence Dgq (ug::" , v,?:lm) convergent to point
y € (Pp)(a) = Ey U Ey. Hence g(y) # 0, which contradicts the fact that

9(y) = 9( Jim Dy (up i) ) = lim g(Dq (ur, o))

m—ro0 m—0o0

= lim hy,, (o,,) =0.
m—0o0

Therefore, the set (Py)(a) is connected, which completes the proof. O
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3. Remarks. The definition of paratingent used in this note is an analytic
modification by A. Bielecki [2] of the original definition given by G. Bouli-
gand [3]. The Bouligand definition has a geometrical character and it ap-
plies to every general set £ C R™. Let us recall this definition (cf. [4, Def.
VIL.1.1]):

Definition. In the Euclidean space R™ the direction of a half-line (or in
other words a ray zy ™) with origin at a point = and passing through a
point y is identified in the well-known way with a point of the unit sphere
in R™. This identification gives us the topological structure in the set of all
directions (i.e. rays).

Paratingent of the set £ C R™ at point « € E is the set (Pg)(x) of all
limits of the directions of sequences of half-lines y;2; ", where yy, 21, € E and
Yky Rk — T.

If a point z is an accumulation point of the set F, then the paratingent
(PE)(z) is always compact and non-empty set (cf. [4, Proposition VII.1.2]).
So let ¢ : A — R™ be a given continuous function. Then the paratin-
gent in the Bouligand sense of the function ¢ at point @ € A is the set
(Parp)((a, (a))), where Gro = {(t,¢(t)) : t € A} C R is the graph of
the function ¢. Of course the set (Pary)((a, ¢(a))) is always non-empty and
compact in R,

Instead, the paratingent presented in this note (i.e. in Bielecki sense) of
a function ¢ at a point a, i.e. the set (Py)(a) C R™, can be empty, bounded
or unbounded.

Examples: Let ¢ : R — R.
(1) ¢(t) = t'/%, then (Pyp)(0) = 0, but

(PGrcp)(O’ SO(O)) = {(07 _1)7 (07 1)} C RQ;
(2) o(t) = [¢], then (P2)(0) = [~1,1] C R, but

T 3

(Pcry) (0, 0(0)) = {(cost,sint) te [_ T 4] U [47T7 iw]} C R2;

(3) (1) = /I, then (Pg)(0) = R, but
(Paee) (0, 0(0)) = {(cost,sint) : t € [0,27]} C R?.

In the literature (cf. [1, 5, 6]) the paratingent was considered only as a
set-valued function acting from R into a family of non-empty subsets of R".
Instead in this note we characterize the set (Py)(a) by the properties of .
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