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Entire functions of exponential type not vanishing
in the half-plane =z > k, where k > 0

Abstract. Let P (z) be a polynomial of degree n having no zeros in
|z| < k, k ≤ 1, and let Q(z) := znP (1/z). It was shown by Govil that if
max|z|=1 |P ′(z)| and max|z|=1 |Q′(z)| are attained at the same point of the
unit circle |z| = 1, then

max
|z|=1

|P ′(z)| ≤ n

1 + kn
max
|z|=1

|P (z)|.

The main result of the present article is a generalization of Govil’s polynomial
inequality to a class of entire functions of exponential type.

1. Introduction and statement of results.

1.1. Bernstein’s inequality for trigonometric polynomials. Let Pm
denote the class of all polynomials of degree at most m and let Q(z) :=

zmP (1/z̄)). It is well known that if P ∈ Pn and |P (z)| ≤ M for |z| = 1,
then (see [9, p. 524])∣∣Q′(z)∣∣+

∣∣P ′(z)∣∣ ≤Mn (|z| = 1).

This result includes Bernstein’s inequality for polynomials

(1.1)
∣∣P ′(z)∣∣ ≤Mn (|z| = 1),
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and yields to∣∣∣∣ d

dθ
P (eiθ)

∣∣∣∣+

∣∣∣∣−inP (eiθ) +
d

dθ
P (eiθ)

∣∣∣∣ ≤Mn (θ ∈ R) .

If t(θ) :=
∑n

ν=−n aνeiνθ is a trigonometric polynomial and |t(θ)| ≤ M for
all real θ ∈ R, then einθt(θ) = P (eiθ), where P ∈ P2n and |P (z)| ≤ M for
|z| = 1. Applying the preceding inequality with 2n instead of n, we obtain

(1.2) |int(θ) + t′(θ)|+ | − int(θ) + t′(θ)| ≤ 2Mn (θ ∈ R) .

In particular, we have

|2t′(θ)| ≤ |int(θ) + t′(θ)|+ | − int(θ) + t′(θ)| ≤ 2Mn (θ ∈ R) ,

that is,

(1.3) |t′(θ)| ≤Mn (θ ∈ R) .

This is the famous inequality of S. Bernstein for trigonometric polynomials.
It is sharp and in (1.2), equality can hold at any point θ ∈ R.

From (1.2) it follows that if t(θ) is real for all real θ, then

(1.4) n2t2(θ) +
(
t′(θ)

)2 ≤M2n2 (θ ∈ R) .

Remark. Bernstein had proved (1.3) for cosine polynomials and also for
sine polynomials. M. Riesz [10] seems to have been the first to prove it in
its full generality. Inequality (1.4) is a result of J. G. van der Corput and
G. Shaake [5].

2. Functions of exponential and Bernstein’s inequality.

Basic properties of functions of exponential type. A trigonometric
polynomial t(θ) :=

∑n
ν=−n aνeiνθ is well defined for any θ in the complex

plane C and not only when θ is restricted to the real line. Replacing θ by
z, we obtain t(z) :=

∑n
ν=−n aνeiνz, which is holomorphic throughout the

complex plane. Thus, a trigonometric polynomial t(θ) can be seen as the
restriction of an entire function to the real axis. Unless all the coefficients
aν except a0 are zero, t(z) is an entire function of order 1 and of type T ≤ n.
Clearly, there exists a constant C such that |t(z)| < C en|z| for all z ∈ C. In
other words, t(z) is an entire function of exponential type n. Let us recall
that a function f(z) holomorphic in an unbounded domain D ⊆ C is said
to be of exponential type τ in D if for any ε > 0, there exists a constant
K(ε) such that |f(z)| < K(ε) e(τ+ε)|z| for all z ∈ D. In the present context,
an interesting example of an unbounded domain is the sector

A(α, β) := {z = reiθ : 0 < r <∞ , α ≤ θ ≤ β} ,
where β ∈ (α , α + 2π), and half-planes have special significance. Some of
the important results about functions of exponential type are to be found
in what follows.
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We know that trigonometric polynomials are 2π-periodic, but an entire
function of exponential type may not be periodic at all; (sin τz)/z is such a
function. As another example, we wish to mention

(2.1) f(z) :=
n∑
ν=0

aνeiλνz , λ0 < · · · < λn ,

which is an entire function of exponential type τ := max{|λ0| , |λn|} but is
generally not periodic.

It is known (see [2, Theorem 6.10.1]) that if f(z) is an entire function of
exponential type τ which is periodic on the real axis with period ∆, then it
must be of the form f(z) =

∑n
ν=−n aν e2πiνz/∆ with n ≤

⌊
∆τ/(2π)

⌋
.

To characterize the dependence of the growth of a function f of exponen-
tial type τ in a sector A(α, β) on the direction in which z tends to infinity,
Phragmén and Lindelöf introduced the function

hf (θ) := lim sup
r→∞

log |f(r eiθ)|
r

(α ≤ θ ≤ β) ,

called the indicator function of f . It is known that unless hf (θ) ≡ −∞,
hf (θ) is continuous in α < θ < β and that if α ≤ θ < θ + π ≤ β, then

(2.2) hf (θ) + hf (θ + π) ≥ 0 .

If f is an entire function of order 1 whose type is τ, then, hf (θ) ≤ τ for all
θ and so, by (2.2), hf (θ) ≥ −τ . See [2, Chapter 5] for these and many other
properties of the indicator function.

Bernstein’s inequality for entire functions of exponential type.
Bernstein himself was the first to extend inequality (1.1) to entire functions
of exponential type. The extended version may be stated as follows.

Theorem A (S. Bernstein [9, p. 513]). Let f(z) be an entire function of
exponential type τ such that |f(x)| ≤M on the real axis. Then

(2.3) |f ′(x)| ≤Mτ (x ∈ R) .

In (2.3) equality holds if and only if f(z) is of the form a e−iτz + b eiτz,
where |a|+ |b| = M .

If P (z) is a polynomial of degree at most n, then f(z) := P (eiz) is an
entire function of exponential type n. Besides, |f(x)| ≤M on the real axis
if |P (z)| ≤M on the unit circle. Hence, inequality (1.1) is covered by (2.3).

A basic lemma. The following lemma [2, Theorem 6.2.4] serves as a basic
tool in the study of functions of exponential type. In [8] the reader will find
a proof of this result, which contains a thorough discussion of the case of
equality.
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Lemma A. Let f be a function of exponential type in the open upper half-
plane such that hf (π/2) ≤ c. Furthermore, let f be continuous in the closed
upper half-plane and suppose that |f(x)| ≤M on the real axis. Then

(2.4) |f(x+ iy)| < M ecy (−∞ < x <∞, y > 0)

unless f(z) ≡M eiγ e−icz for some real γ.

3. Entire functions of exponential type satisfying f(z) 6= 0 in
=z > k, k > 0. Now, we shall formulate and prove an extension of
a theorem of N. K. Govil to entire functions of exponential type. Govil’s
theorem [6, p. 52] may be stated as follows.

Theorem B. Let P (z) be a polynomial of degree n having no zeros in the
open disk |z| < k, k ≤ 1, and let Q(z) := znP (1/z). If max|z|=1 |P ′(z)| and
max|z|=1 |Q′(z)| are attained at the same point of the unit circle |z| = 1,
then

(3.1) max
|z|=1

|P ′(z)| ≤ n

1 + kn
max
|z|=1

|P (z)| .

The bound is attained for the polynomial P (z) := c (zn + kn), c ∈ C.

Our result may be stated as follows.

Theorem 1. Let f(z) be an entire function of order 1 and type τ having no
zeros in the half-plane =z > k for some k > 0. In addition, let hf (π/2) = 0

and |f(x)| ≤ M on the real axis. Define ωf (z) := eiτz f(z) and suppose
that

sup
−∞<x<∞

|f ′(x)| and sup
−∞<x<∞

|ω′f (x)|

are both attained at the same point of the real axis. Then

(3.2) |f ′(x)| ≤ Mτ

1 + e−τk
(−∞ < x <∞) .

The following special case of Theorem 1 deserves to be mentioned explic-
itly. For basic facts about uniformly almost periodic functions, we refer the
reader to [1] or [4].

Corollary 1. Let f(z) be a uniformly almost periodic entire function of
exponential type τ having no zeros in the half-plane =z > k for some k > 0
and let hf (π/2) = 0. In addition, let |f(x)| ≤ M on the real axis and
suppose that the Fourier coefficients of f are all non-negative. Then (3.2)
holds.

4. Some more auxiliary results. The proof of Theorem 1 requires some
preparation which consists in recalling certain notions and additional results
about entire functions of exponential type.
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Definition 1. An entire function f of exponential type is said to belong to
the class P if it has no zeros in the open lower half-plane and hf (−π/2) ≥
hf (π/2).

Note. From (2.2) it follows that if f 6≡ 0 is an entire function of ex-
ponential type 0, then hf (θ) = 0 for all θ. Hence, any entire function of
exponential type 0 having all its zeros in the closed upper half-plane belongs
to the class P.

It is known (see [7] or [2, Theorem 7.8.3]) that the Hadamard factorization
of a function f belonging to the class P has the form

(4.1) f(z) = Azm ecz
∞∏
k=1

{(
1− z

zk

)
ez<(1/zk)

}
,

where zk 6= 0, =zk ≥ 0 and 2=c = hf (−π/2)− hf (π/2) ≥ 0.
It is also known [2, p. 129, Theorem 7.8.1] that if f belongs to P, then

(4.2) |f(z)| ≥ |f(z)| (=z < 0) .

From (4.2) it follows that if f belongs to P, then hf (−α) ≥ hf (α) for all
α ∈ (0 , π).

The following result (see [7, p. 59, Lemma 3] or [2, p. 130, Theorem 7.8.6])
is of fundamental importance. Its significance in the present context cannot
be over-emphasized.

Lemma B. Let f be an entire function of order 1 and type τ belonging
to the class P. Furthermore, let g be an entire function of exponential type
σ ≤ τ such that

(4.3) |g(x)| ≤ |f(x)| for all x ∈ R .
Then φλ(z) := g(z)− λf(z) belongs to P for any λ ∈ C , |λ| > 1.

Definition 2. An additive homogeneous operator B[f(z)] which carries
entire functions of exponential type into entire functions of exponential type
and leaves the class P invariant is called (see [7, p. 60] or [2, p. 225, Definition
11.7.1]) a B-operator.

It may be added that an operator B is additive if B[f + g] = B[f ] +B[g]
and homogeneous if B[cf ] = cB[f ].

Using the representation (4.1), it can be easily shown that differentiation
is also a B-operator (see [2, p. 226]).

Let f(z) be an entire function of order 1 and type τ . Suppose that
|f(x)| ≤ M on the real axis and that hf (π/2) ≤ 0. Then by Lemma A,
|f(z)| < M in the open upper half-plane. Hence, φ(z) := f(z) −Me−iα,
α ∈ R, is an entire function of order 1 and type τ which has no zeros in the
open upper half-plane. Consequently, the function

ωφ(z) := eiτz φ(z) = ωf (z)−Meiα eiτz
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belongs to the class P and |φ(x)| = |ωφ(x)| for all real x. By Lemma B,
the function φ(z) − λωφ(z) belongs to the class P for any λ ∈ C with
|λ| > 1. Since differentiation is a B-operator, the function φ′(z) − λω′φ(z)

also belongs to the class P for any λ ∈ C with |λ| > 1. In particular,
φ′(z) − λω′φ(z) 6= 0 in the lower half-plane for any λ ∈ C with |λ| > 1. In
other words,

(4.4) f ′(z)− λ
(
ω′f (z)−M iτ eiαeiτz

)
6= 0

for any z with =z < 0, for any α ∈ R and for any λ ∈ C with |λ| > 1.
Now, note that f is not a constant and so ωf (z) cannot be of the form
M eiγ eiτz, γ ∈ R. Hence, by Theorem A and Lemma A, ω′f (z)−M iτ eiαeiτz

is different from zero at every point of the open lower half-plane. Hence (4.4)
can hold for any z with =z < 0, any α ∈ R and any λ ∈ C with |λ| > 1 only
if

|f ′(z)| ≤Mτe−τ=z − |ω′f (z)| .

Hence, the following result holds. Thus, we have proved that if f is an
entire function of order 1 and type τ such that |f(x)| ≤M on the real axis
and hf (π/2) ≤ 0, then

|f ′(z)|+ |ω′f (z)| ≤M τ e−τ=z (=z < 0) .

By continuity, the same must be true for z belonging to the real axis. In
other words, the following result holds.

Lemma B. Let f be an entire function of order 1 and type τ . Suppose, in
addition, that |f(x)| ≤M on the real axis and that hf (π/2) ≤ 0. Then

(4.5) |f ′(z)|+ |ω′f (z)| ≤M τ e−τ=z (=z ≤ 0) .

5. Proof of Theorem 1. As the first step towards the proof of Theorem 1,
we prove the following proposition.

Proposition 1. Let F be an entire function of order 1 and type τ having
all its zeros in the half-plane {z ∈ C : =z ≥ −k} for some k > 0. Suppose
that |F (x)| is bounded on the real axis and that hF (π/2) ≤ 0. In addition,
let ωF (z) := eiτzF (z). Then

(5.1) sup
−∞<x<∞

|ω′F (x)| ≤ eτk sup
−∞<x<∞

|F ′(x)| .

Proof. Suppose that |F (x)| ≤ M on the real axis. The function defined
by g(z) := F (z − ik) is of order 1 and type τ . Besides, by Lemma A,
|g(x)| ≤ M eτk for all real x. We claim that g belongs to the class P
introduced in Definition 1. Clearly, g has no zeros in the open lower half-
plane. Hence, it is sufficient to check that hg(−π/2) ≥ hg(π/2).
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Since |g(x)| is bounded on the real axis and hg(π/2) = hF (π/2) ≤ 0, we
must necessarily have

hg

(
−π

2

)
= hF

(
−π

2

)
= τ ,

otherwise, by Lemma A, g and so F would not be of order 1 and type τ .
Note that τ must be positive because a function of order 1 that is bounded
on the real axis or on any line cannot be of type 0. Thus, hg(−π/2) > 0
whereas hg(π/2) ≤ 0. Hence in fact, hg(−π/2) > hg(π/2) and so g belongs
to P.

Let ωg(z) := eiτzg(z). Then, |ωg(x)| = |g(x)| ≤ M eτk for all real x.
Besides, hωg(π/2) = −τ + hg(−π/2) = 0. Hence, by Lemma A, |ωg(z)| ≤
M eτk in the upper half-plane. Since

ωg(z) = eiτzF (z − ik)

= eτk eiτ(z+ik) F (z + ik) = eτkωF (z + ik)

we see that
hωg

(
−π

2

)
= τ + hg

(π
2

)
≤ τ

and so, by Lemma A, |ωg(z)| ≤ M eτ(k+|=z|) in the lower half-plane. In
particular, ωg(z) is an entire function of exponential type at most τ .

We have a function g of order 1 and type τ which belongs to the class P.
Besides, we have a function ωg(z) of exponential type τ such that
|ωg(x)| = |g(x)| for all real x. So, Lemma B may be applied with g in
place of f and ωg in place of g to conclude that for any λ such that |λ| > 1,
the function ωg(z)− λ g(z) belongs to the class P. Since differentiation is a
B-operator, the function ω′g(z)− λ g′(z) also belongs to the class P for any
λ ∈ C such that |λ| > 1. In particular, ω′g(z)−λ g′(z) 6= 0 if =z < 0 for any
λ ∈ C such that |λ| > 1. This is possible only if |ω′g(z)| ≤ |g′(z)| for any z
in the open lower half-plane. By continuity, the same must be true for any
real z also. Thus, |ω′g(z)| ≤ |g′(z)| for =z ≤ 0, which means that

eτk |ω′F (z + ik)| ≤ |F ′(z − ik)| (=z ≤ 0) .

Taking z = x− ik, in this inequality, we obtain

(5.2) eτk |ω′F (x)| ≤ |F ′(x− 2ik)| (−∞ < x <∞) .

Since F is an entire function of order 1 and type τ , the same can be said
about the function F ′. Hence, by Lemma A, applied to the function F ′(z̄),
we obtain

|F ′(x− 2ik)| ≤ e2τk sup
−∞<x<∞

|F ′(x)|

for any real x. Combining this with (5.2), we find that

|ω′F (x)| ≤ eτk sup
−∞<x<∞

|F ′(x)|
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for any real x, which is equivalent to (5.1). �

Proposition 2. Let f be an entire function of order 1 and type τ having
no zeros in the half-plane =z > k where k > 0. Besides, let hf (π/2) = 0
and suppose that |f(x)| is bounded on the real axis. In addition, let ωf (z) :=

eiτzf(z). Then

(5.3) e−τk sup
−∞<x<∞

|f ′(x)| ≤ sup
−∞<x<∞

|ω′f (x)| .

Proof. Lemma A can be used to see that hf (−π/2) = τ . Hence, ωf (z) :=

eiτzf(z) is an entire function of order 1 and type τ having all its zeros in
the half-plane =z > −k. Besides, hωf (π/2) = 0 and |ωf (x)| is bounded on
the real axis. Hence, ωf satisfies all the conditions of Proposition 1. So, let
us apply Proposition 1 taking F = ωf . Clearly, then ωF = ωωf = f and so
by (5.1), we have

sup
−∞<x<∞

|f ′(x)| ≤ eτk sup
−∞<x<∞

|ω′f (x)| ,

which proves (5.3). �

Proof of Theorem 1. Suppose that

sup
−∞<x<∞

|f ′(x)| and sup
−∞<x<∞

|ω′f (x)|

are both attained at the same point x0 of the real axis. Combining (4.5)
and (5.3), we obtain that

(1 + e−τk) sup
−∞<x<∞

|f ′(x)| ≤ sup
−∞<x<∞

|f ′(x)|+ sup
−∞<x<∞

|ω′f (x)|

≤ |f ′(x0)|+ |ω′f (x0)|
≤Mτ.

Then
sup

−∞<x<∞
|f ′(x)| ≤ τ

1 + e−τk
M,

which proves the theorem. �
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