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Invo-regular unital rings

Abstract. It was asked by Nicholson (Comm. Algebra, 1999) whether or
not unit-regular rings are themselves strongly clean. Although they are clean
as proved by Camillo–Khurana (Comm. Algebra, 2001), recently Nielsen and
Šter showed in Trans. Amer. Math. Soc., 2018 that there exists a unit-regular
ring which is not strongly clean. However, we define here a proper subclass of
rings of the class of unit-regular rings, called invo-regular rings, and establish
that they are strongly clean. Interestingly, without any concrete indications
a priori, these rings are manifestly even commutative invo-clean as defined by
the author in Commun. Korean Math. Soc., 2017.

1. Introduction and background. Everywhere in the text of the present
article, all rings are assumed to be associative, containing the identity ele-
ment 1 which, in general, differs from the zero element 0. Our terminology
and notations are mainly in agreement with those from [7] and [10]. For
instance, for such a ring R, the symbol U(R) stands for the group of units,
Inv(R) for the set of all involutions (= square roots of 1), Id(R) for the set
of all idempotents and Nil(R) for the set of all nilpotents.

In [6] there was introduced the following important notion.

Definition 1.1. A ring R is said to be unit-regular if, for each r ∈ R, there
is u ∈ U(R) such that r = rur.
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Since the equality r = rur is always tantamount to the condition that ur
is an idempotent, say e, it is apparent that r = u−1e, and conversely.

The following also appeared in [6].

Definition 1.2. A ring R is said to be strongly regular if, for each r ∈ R,
there is u ∈ U(R) such that r = r2u, i.e., r = rur with ur = ru.

It is well known that all strongly regular rings are unit-regular (see, for
instance, [6] or [7]), but the converse fails in general. In fact, all elements r
in strongly regular rings can be written also like this r = wf = fw for some
w ∈ U(R) and f ∈ Id(R).

On the other hand, in [12] was defined the following famous concept.

Definition 1.3. A ring R is called clean if, for every r ∈ R, there are
u ∈ U(R) and e ∈ Id(R) with r = u+ e. If, in addition, the commutativity
condition ue = eu is satisfied, the clean ring R is said to be strongly-clean.

There was shown in [1] the fundamental fact that unit-regular rings are
necessarily clean. Furthermore, Nicholson (cf. [13]) asked if a unit-regular
ring is even strongly clean. Recently, this was answered in [14] in the neg-
ative by constructing a very special unit-regular ring which is, in fact, not
strongly clean.

The aim of the current paper is to take into account the specific nature
of this example from [14] and to prove that there are quite natural proper
subclasses of unit-regular rings which are strongly clean. This will be done
in the subsequent section. We terminate the paper with some left-open
problems.

2. Main definition and result. We first begin with our key instruments.

Definition 2.1. ([3]) A ring R is called strongly invo-regular if, for each
r ∈ R, there exists v ∈ Inv(R) such that r = r2v, that is, r2 = rv.

It was obtained in [3, Theorem 2.2] that a ring R is strongly invo-regular
if, and only if, R ⊆

∏
λ Z2 ×

∏
µ Z3 for some ordinals λ, µ.

In order to get a worthwhile generalization of these rings, it is also of
some interest to consider those rings R for which either r2− rv ∈ Nil(R) or
r2− rv ∈ Id(R). However, we will proceed in another way, namely we shall
now slightly extend Definition 2.1 to the next one as follows:

Definition 2.2. A ring R is said to be invo-regular if, for every r ∈ R, there
exists v ∈ Inv(R) such that r = rvr, that is, r = ve, where e = vr ∈ Id(R).

It is straightforward to see that a ring R is invo-regular exactly when R
is unit-regular and U(R) = Inv(R).

Recall that, imitating [4], a ring R is called invo-clean if any r ∈ R can
be represented as r = v + e, where v ∈ Inv(R) and e ∈ Id(R).

Proposition 2.3. Invo-regular rings are invo-clean.
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Proof. Since invo-regular rings are unit-regular, we appeal to [1] to get
that they are clean. However, as already commented above, all units being
involutions imply that invo-regular rings have to be invo-clean, as claimed.

�

We now need some more technicalities.

Lemma 2.4. In any invo-regular ring 6 = 0.

Proof. Letting 2 ∈ R for some invo-regular ring R, it must be that 2 = ve
for some v ∈ Inv(R) and e ∈ Id(R). Thus 2v = e and squaring we have
4 = e = 2v. Again squaring, we obtain that 16 = 4, i.e., 12 = 0. Hence
62 = 3.12 = 0 and so 6 ∈ Nil(R). Since the Jacobson radical of unit-regular
rings is always zero (see, e.g., [7]), this enables us that 6 ∈ J(R) = {0}, as
expected. �

Proposition 2.5. A ring R is invo-regular if, and only if, R ∼= R1 × R2,
where R1 is an invo-regular ring of characteristic 2 and R2 is an invo-regular
ring of characteristic 3.

Proof. Since (2, 3) = 1 and by Lemma 2.4 we have 6 = 0, a standard trick
works to deduce that R = 2R ⊕ 3R. Hence R/2R ∼= 3R and R/3R ∼= 2R
which both imply that R ∼= R1 × R2, where R1 = R/2R and R2 = R/3R.
But it is not too hard to check that homomorphic images of an invo-regular
ring are again invo-regular rings, which gives our claim. �

We now arrive at the following central result as, surprisingly, the following
holds.

Theorem 2.6. The following three items are equivalent:
(i) R is invo-regular.
(ii) R is strongly invo-regular.
(iii) R is a subdirect product of copies of the fields Z2 and Z3.

Proof. The implication (ii)⇒ (i) is obvious. The equivalence (ii) ⇐⇒ (iii)
was proved in [3]. That is why we will deal now only with the implication
(i) ⇒ (iii). To that goal, with Proposition 2.5 at hand, one can write
R ∼= R1×R2, where both R1, R2 are invo-regular and char(R1) = 2 whereas
char(R2) = 3.

In the first case, because of the equality U(R1) = Inv(R1), it follows that
U(R1) = 1+Nil(R1) as (1+Inv(R1))

2 = 1+Inv2(R1) = 0. Thus R1 is a UU
ring (i.e. all units are unipotent units). However, it was proved in [2], and
independently in [5], that unit-regular UU rings are Boolean. Consequently,
R1 must be Boolean, as asserted.

In the second case, Proposition 2.3 tells us that R2 is an invo-clean ring
of characteristic 3, whence [4, Theorem 2.15] allows us to conclude that R2

can be embedded in a direct product of copies of the field Z3. �
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Remark 2.7. Paralleling a similar argumentation to that from [5], one can
say something more as follows: If point (iii) is true, then R is a commutative
regular ring and every unit of R is an involution, so that the implications
“(iii) ⇒ (ii) ⇒ (i)” follow immediately. As for the remaining one “(i) ⇒
(iii)”, we process thus: For any a ∈ R, write a = ev, e2 = e and v2 = 1.
Then a3 = a in case e is central. So, it suffices to prove that R is reduced
whence it will be necessarily abelian. In fact, if R has a non-zero, square-
zero element a, then by a well-known classical result in ring theory, mainly
attributed to Levitzki (see, e.g., [5]), R will contain a corner subring eRe
isomorphic to a full 2 by 2 matrix ring over a non-trivial ring. Thus, owing
to the specific nature of units in matrix rings, it is plainly checked that eRe
contains a unit u whose square is not e and, therefore, u+1− e is a unit of
R that is not an involution observing that (u+1−e)2 = u2+1−e (compare
with Proposition 2.16, too). This is, however, the wanted contradiction.

We continue with some uniqueness in the class of invo-regular rings, de-
fined like this:

Definition 2.8. A ring R is said to be uniquely invo-regular if, for every
0 6= r ∈ R, there is a unique v ∈ Inv(R) such that r = rvr.

Since as we have seen above r can be written as r = ve, where e = vr ∈
Id(R), a question which immediately arises is whether or not the uniqueness
of v is retained in this record as well. Specifically, the following simple but
useful assertion is true.

Proposition 2.9. The ring R is uniquely invo-regular if, and only if, for
each 0 6= r ∈ R, there is a unique v ∈ Inv(R) with r = ve for some
e ∈ Id(R).

Proof. “⇒”. Writing r = ve = wf for some v, w ∈ Inv(R) and e, f ∈
Id(R), it follows that vr = e and wr = f . So, vrvr = vr and wrwr = wr,
that is, rvr = r = rwr. This yields that v = w (whence e = f), as required.

“⇐”. Letting r = rvr = rwr for some v, w ∈ Inv(R), it follows that
r = ve = wf for e = vr ∈ Id(R) and f = wr ∈ Id(R). This implies that
v = w (and hence e = f), as needed. �

We are now ready to establish the following more comprehensive result,
by using a technique developed in [8].

Theorem 2.10. A ring R is uniquely invo-regular if, and only if, either
R ∼= B, where B is a Boolean ring, or R ∼= Z3.

Proof. The sufficiency being trivial, we concentrate on the necessity. We
claim that if R is uniquely invo-regular, then R is either a Boolean ring or
a division ring. First of all, we will detect that all elements of R are either
idempotents or involutions. And so, for an arbitrary a ∈ R we write ava = a
for some unique v with v2 = 1, and assume that a2 6= a (i.e., v 6= 1). We
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will show that a2 = 1. In fact, notice that all units in R are involutions as
well as we can represent the element a as follows:

a[v(1− a(1− av))]a = ava = a[(1− (1− va)a)v]a,

where (1−a(1−av))−1 = 1+a(1−av) and (1−(1−va)a)−1 = 1+(1−va)a
because a(1− va)a = a(1− av)a = 0. The uniqueness now yields that

v(1− a(1− av)) = v = (1− (1− va)a)v,

that is,
a(1− av) = 0 = (1− va)a.

The last equalities ensure that a2v = a = va2, i.e., av = a2 = va. This
means that a3 = a and hence a4 = a2. Therefore, one may verify that
(a+ 1− a2)2 = 1 and (1− a2)2 = 1− a2. But the relationships

a(a+ 1− a2)a = a = ava

lead us to v = a+ 1− a2 whence v(1− a2) = (a+ 1− a2)(1− a2) = 1− a2.
If now a2 6= 1, by what we have just shown above, we infer that

(1− a2)v(1− a2) = 1− a2 = (1− a2).1.(1− a2).

The uniqueness assures that v = 1, a contradiction. This substantiates that
a2 = 1, as promised.

Next, to argue the initial claim, suppose R is not Boolean. So, there is
b ∈ R with b2 6= b. By what we have already established, b2 = 1. Let
x ∈ R \ {0} and consider bx.
Case 1: (bx)2 = bx. Thus bxbx = bx gives xbx = x. But x2 6= x as
otherwise x = x.1.x and so the uniqueness forces b = 1 and hence b2 =
b, contrary to our assumption. Finally, in view of our conclusions above,
x2 = 1.
Case 2: (bx)2 6= bx. So (bx)2 = 1, which means that bxbx = 1, that
is, xbx = b. Therefore, since b is invertible with the inverse b being an
involution, it readily follows that x is invertible with the inverse bxb. This
finalizes our claim at the beginning of the proof that R is a division ring.

Furthermore, utilizing Theorem 2.6 alluded to above, let us assume that
R is not Boolean. Thus, it follows from the first part above that R is
a division ring and, resultantly, being indecomposable, R is a subdirect
product of the Z3’s. It is easily seen that each element y ∈ R now satisfies
the equation y3 = y. If y 6= 0, then y inverts and so y2 = 1, which amounts
to (y − 1)(y + 1) = 0. If y 6= 1, we have y = −1 as well as if y 6= −1, we
have y = 1. This guarantees that R ∼= Z3, as stated. �

Remark 2.11. Certainly, utilizing Theorem 2.6, the proof of the previous
theorem can be simplified like this: It is quickly observed that (1−av)av = 0
since ava = a, and hence we deduce (1−av)a = 0, implying that (1−va)a =
0 because R is a commutative ring being invo-regular.
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Moreover, a sketch of a parallel proof of the preceding theorem, by the
usage of another arguments, could be the following one: One only needs to
show the necessity. By part (iii) of Theorem 2.6, it follows that x3 = x for
every x ∈ R. So x2 is an idempotent for each x ∈ R. Since the case 2 = 0
obviously leads us to the obtaining of a Boolean ring, one can assume that
char(R) = 3 or, in other words, that R is a subdirect product of isomorphic
copies of the field Z3. Thus, to prove that R ∼= Z3, it suffices to establish that
R has no non-trivial idempotents. In doing that, let e 6= 0, 1 be an arbitrary
idempotent. Then one verifies that the equalities −e = e(1− 2e)e = e(−1)e
hold, where 1− 2e = 1+ e and −1 are distinct involutions as 3 = 0. This is
a contradiction, however.

Mimicking the same idea for proof as that from the preceding theorem, we
can find a necessary and sufficient condition when for the strongly regular
ring R the next additional condition is valid: For any r ∈ R there is a
unique v ∈ Inv(R) such that r = r2v. The expected result, which can be
proved in a way of similarity to that quoted above, will be again either the
Boolean ring or the three element field.

Another way to consider uniqueness is the following one:

Definition 2.12. A ring R is called pseudo uniquely invo-regular if, for each
r ∈ R, there is a unique e ∈ Id(R) with r = ve for some v ∈ Inv(R).

So, we have now at our disposal all the ingredients necessary to prove the
following rather surprising statement.

Theorem 2.13. A ring R is pseudo uniquely invo-regular if, and only if,
it is invo-regular.

Proof. One way being trivial, we concentrate on the other one. To this aim,
given R is an invo-regular ring. Appealing to Theorem 2.6, accomplishing
it with [9], we deduce that R is a commutative ring and all elements y
in R satisfy the equation y3 = y which amounts to y = ve, where v =
−y2 + y + 1 ∈ Inv(R) and e = y2 ∈ Id(R). Supposing y = ve = wf , for
some w ∈ Inv(R) and f ∈ Id(R), with the commutativity in mind we detect
that y2 = v2e2 = w2f2, i.e., y2 = e = f , as expected. �

The following note is helpful.

Remark 2.14. Notice that in the above decomposition y = ve = wf ,
although we concluded e = f , it could be that v 6= w as the next exam-
ple unambiguously illustrates: Let R = Z3 × Z3 and consider the element
(−1, 0). It can be twicer written as (−1, 0) = (−1, 1)(1, 0) = (−1,−1)(1, 0),
so that by substituting v = (−1, 1) 6= (−1,−1) = w and e = (1, 0) = f the
claim sustained.

We continue with certain element-wise properties of (strongly) invo-regular
elements. Imitating Definition 2.1 (see cf. [3]), an element a from a ring R is
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called strongly invo-regular if there is v ∈ Inv(R) such that a = a2v = va2.
A natural question, regarding this element a, is whether or not it can be
presented as a strongly invo-clean element (e.g., [4]), which is of the form
a = w+ f , where w ∈ Inv(R) and f ∈ Id(R) with wf = fw. The answer is
the positive “yes” and is subsumed by the following.

Proposition 2.15. Any strongly invo-regular element is strongly invo-clean.

Proof. It follows directly from the definition that a = a2v = va2 and
va = av = a2 for some v ∈ Inv(R). Writing a = ev = ve, where e = a2 = e2,
one observes that a = (ve+ e− 1) + (1− e). What remains to show is that
w = ve+ e− 1 is an involution, because f = 1− e is always an idempotent
which commutes with w. Indeed, squaring w2 = (ve)2+e+1+2ve2−2ve−2e
and taking into account that (ve)2 = v2e2 = e and e2 = e, we obtain the
wanted equality that w2 = 1. �

We will now examine how invo-regularity is situated in the corner rings.
It is well known that (see, e.g., [11]) that if R is a unit-regular ring, then
the corner subring eRe is also unit-regular for any e ∈ Id(R). We will now
prove the following similarity.

Proposition 2.16. If R is an invo-regular ring and e ∈ Id(R), then eRe
is an invo-regular ring, too.

Proof. By the comments above, eRe is unit-regular. But we shall show that
U(eRe) = Inv(eRe) which is enough to conclude that eRe is invo-regular.
To that purpose, letting u ∈ U(eRe), we obtain that u+1− e ∈ U(R) with
the inverse u′+1−e, where uu′ = u′u = e. However, u(1−e) = (1−e)u = 0
and so 1 = (u + 1 − e)2 = u2 + (1 − e)2 = u2 + 1 − e. This insures that
u2 = e, as required. �

We finish off our work with three queries of interest and importance.

Problem 2.17. If R is a ring and e ∈ Id(R) such that eRe ∼= (1− e)R(1−
e) ∼= Z2, is it true that R is unit-regular?

For some arbitrary but a fixed n ∈ N, we will say that a ring R is n-torsion
regular if, for any r, there exists w ∈ U(R) with wn = 1, such that r = rwr.
It is self-evident that n-torsion regular rings are of necessity unit-regular
with bounded by n unit groups.

Problem 2.18. Does it follow that n-torsion regular rings are strongly
clean?

It is worthwhile noticing that if R is a p-torsion regular ring of prime
char(R) = p, then R has to be Boolean. Indeed, for every u ∈ U(R) we
have up = 1 and so u = 1 + (u − 1) ∈ 1 + Nil(R) bearing in mind that
(u− 1)p = up − 1 = 0. This allows us to derive that R is a unit-regular UU
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ring and, as we already have seen above, the application of [2] or [5] enables
us that R is necessarily Boolean, as pursued.

And so, we close the queries with the following element-wise question.

Problem 2.19. Is an invo-regular element in an arbitrary ring a clean
element in this ring?

In fact, it can be written for such an element r in a ring R that r = ev =
vf for some e, f ∈ Id(R) and v ∈ Inv(R) with v(e + f) = (e + f)v. It is
worth noticing that this question has a negative resolution for unit-regular
elements (cf. [14]). So, for a possible counterexample to this query, one
could look at the ring R = M2(Z) which is manifestly not clean as the ring
of integers Z is not clean.

Now, for an arbitrary but fixed n ∈ N, we will say that a ring R is
strongly n-torsion regular if, for any r, there exists w ∈ U(R) with wn = 1,
such that r = r2w. It is elementarily seen that r = rn+1 and hence, owing
to the famous theorem of Jacobson, strongly n-torsion regular rings are of
necessity commutative. So, we come to

Problem 2.20. Characterize up to an isomorphism strongly n-torsion reg-
ular rings.

As a final challenging problem, we state:

Problem 2.21. Characterize those rings R for which, for each r ∈ R, there
exists e ∈ Id(R) ∩ [Inv(R)r] such that r − re = r(1− e) ∈ Nil(R).
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