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The density Turan problem
for 3-uniform linear hypertrees.
An efficient testing algorithm

ABSTRACT. Let T = (V,€) be a 3-uniform linear hypertree. We consider
a blow-up hypergraph B[T]. We are interested in the following problem.
We have to decide whether there exists a blow-up hypergraph B[T] of the
hypertree 7, with hyperedge densities satisfying some conditions, such that
the hypertree 7 does not appear in a blow-up hypergraph as a transversal.
We present an efficient algorithm to decide whether a given set of hyperedge
densities ensures the existence of a 3-uniform linear hypertree 7 in a blow-up

hypergraph B[T].

1. Introduction. Let H = (V,€) be a simple, connected and finite hy-
pergraph with the vertex set V' and hyperedge set £ (see [2]). Turén [12]
stated the first results in extremal graph theory. Then many authors ex-
tended this subject and formulated similar and new Turan density problems.
In [1, 5, 6, 8, 10, 11] and [13] interesting results for some families of graphs
are obtained.

In this paper we present an algorithm for testing whether a hypertree
with a given set of hyperedge densities is a factor (transversal) of a blow-up
hypergraph. Our algorithm has the time complexity at most O(n?), where
n is the number of hyperedges of the hypertree.
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Csikvari and Nagy [7] discovered some interesting algorithm for testing
whether a tree with a given set of edge densities is a factor of a blow-
up graph. We extend their algorithm to the family of 3-uniform linear
hypertrees.

Now we define some notions and notations. Other definitions one can
find in [2, 4] and [9]. A hypergraph # is called linear if any two hyperedges
intersect in at most one vertex. A hypergraph H is called r-uniform if
each hyperedge consists of r vertices. A subhypergraph P; of H is called
a linear hyperpath of length t if the hyperedges of P, can be labelled by
ei, 0 < i <t —1 such that the sequence (eq,e1,e2,...,6e_1) satisfies the
condition: |e; Ne;| =1 if and only if |i — j| =1 and e; Ne; = 0 if and only
if i — j| > 1, where e; € E(H) (see Figure 1(a)). A subhypergraph C; of
H, t > 3, is called a linear hypercycle of length t if the hyperedges of C; can
be labelled by e;,0 < i < t — 1 such that the sequence (eg,e1,e2,..,e1-1)
satisfies the condition: |e; Ne;| = 1 if and only if |[i — j| =1 or ¢ = 0 and
j=t—1land e,Ne; =0, ¢ # j, in the opposite case, where e¢; € E(H).
Differences of indices are taken mod(t — 1) (see Figure 2). An r-uniform
linear hypertree T is a connected linear r-uniform hypergraph without linear
hypercycles (see Figure 3).

@ P (v o (&) e (3] o (&) o e

Al Ay Ay Ay A5 Ag A7 Ay Ay

(b) BlP4]:

FIGURE 1. A 3-uniform linear hyperpath on 4 hyperedges
and a blow-up hypergraph B[P,] without a factor Py. Let
[ A1 = [Ao| = [A4] = |Ag] = |As] = [Ag] = 1 and
|As| = |As| = |A7| = 2. We obtain the following densities be-
tween the clusters in B[Py4]: d(A1, Ag, A3) = d(As, A4, A5) =
d(Az7, Ag, Ag) = %, d(As, Ag, A7) = % and 0 for others. If we
add the new hyperedge between clusters A7, Ag, Ag, we get
d(Az7, Ag, Ag) = 1 and Py as a factor.

A set S C V(H) is called an independent vertex set if the subhypergraph
of H induced by S has an empty set of hyperedges. The degree of a vertex
v in the hypergraph H is the number of hyperedges containing this vertex.
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FIGURE 3. A 3-uniform linear hypertree 7 = (V, ), where
|[V(T)| = 13 and |E(T)| = 6, with variables z. assigned to
hyperedges.

Each vertex of degree 1 in a hypergraph H is called a leaf. We say that the
hypergraph H is r-reqular if each vertex of H has degree r. A hyperedge
e € E(H) is called a pendant hyperedge if it contains exactly one vertex
of degree > 1. The set M C E(H) is called a matching (or independent
hyperedge set) in the hypergraph # if the subhypergraph of H induced by
M is 1-regular. Let H be a 3-uniform linear hypergraph. For each vertex
i € V(H) we associate a cluster A;, as a set of new, independent vertices.
For a hypergraph H we define a blow-up hypergraph B[H] of the hypergraph
H as follows. First we replace each vertex ¢ € V(H) by a cluster A; and next
we create some hyperedges between the clusters A;, A; and Ay, if {i, 7, k} is
a hyperedge in H, i,7,k € V(H). Equivalently each hyperedge in B[H] has
exactly one vertex from the clusters.

For any three clusters we define a density between them by the following
formula

e(Au A]7 Ak’)

(1) d(Al7A7Ak) = )
’ | Al Azl A
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where e(A;, Aj, A;) denotes the number of hyperedges with one element of
each of the clusters A;, A; and Ay.

The hypergraph H is a transversal of B[H] if H is a subhypergraph of
B[H] such that we have a homomorphism

¢ V(H) = V(B[H)])

for which ¢(i) € A; for all i € V(H). Other terminology: H is a factor of
B[H] (see Figure 1(b)).

A hyperedge e = {i,7,k} of the hypergraph H we denote shortly by
e=1jk.

The homogeneous density Turan problem for 3-uniform linear hyper-
graphs can be defined as follows. Let us determine the critical hyperedge
density, denoted by dit(#), which ensures the existence of the subhyper-
graph H of B[H] as a transversal. Precisely, assume that all hyperedges e =
{4, 7, k} in the hypergraph H satisfy the condition d(A;, Aj, Ax) > derit(H),
where i, j, k € V(H). Then, no matter how we construct the blow-up hyper-
graph B[H], it contains the hypergraph H as a transversal. In other words,
for any value d < dgrit(H) there exists a blow-up hypergraph B[#H] which
does not contain H as a transversal and such that d(A;, Aj, Ax) > d for all
hyperedges ijk € E(H).

Moreover, we define the inhomogeneous density Turan problem for 3-
uniform linear hypergraphs as follows. Let us assume that for every hyper-
edge e € £(H) a density . is given. Now our task is to decide if the
set of densities {’}/e}eeg(q.[) ensures the existence of the hypergraph H as
a transversal or we can construct a blow-up hypergraph B[] such that
d(As, Aj, A) > vijk, {4, 4,k} € E(H), but it does not induce the hypergraph
‘H as a transversal.

These two problems have been studied in [7, 11] for simple graphs which
are 2-uniform linear hypergraphs. We extend some of these results to
3-uniform linear hypertrees.

Let us recall the definition of the multivariate matching polynomial of the
hypergraph.

Let H be a hypergraph and let z. be the vector of variables z., for
e € £(H). We define the multivariate matching polynomial Fy(x.,t) of the
hypergraph H as follows

Fulaet) = 3 (H ) (o

MeM \eeM

where the summation goes over all matchings of the hypergraph H, including
the empty matching (see Example 1 below).
The polynomial is a useful tool for the proofs of our results.
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Example 1. Let us consider the 3-uniform linear hypertree 7 with 6 hy-
peredges as in Figure 3. Assume that variables x, are given for hyperedges

e € E(T) as follows
x1:2, .T2:17 x3:3, (E4:2, 375:3, a;(;:l.

Then the multivariate matching polynomial of the hypertree T is presented
below

Fr(ze,t) =1 —t(z1 + 22 + 23 + 24 + 75 + T6)
+ t2($1$4 + 21T5 + T1X6 + T2T3 + Toxg
+ 25 + TaTe + X375 + T3T6 + T5T6)
— 13 (@1 @526 + To3T5 + ToT3TE + ToT5T6 + TIT5TE)
+ trearzzsre = 1 — 12t + 3612 — 30> + 9t

2. The inhomogeneous density Turan problem for 3-uniform linear
hypertrees. In this section we study the inhomogeneous density Turan
problem for 3-uniform linear hypertrees 7, where a hyperedge density -,
is given for each hyperedge e € £(T). We extend some results presented
in [7], where the authors studied the inhomogeneous problem for trees and
proved the following theorem.

Theorem 1 (Csikvéri, Nagy [7]). Let T be a tree of order n and let v be a
leaf of T'. Assume that for each edge of T a density v = 1—r¢ is given. Let
T  be a tree obtained from T by deleting the leaf v and the edge uv, where
u s the unique neighbour of v. Let the edge densities fyé inT' be defined as
follows

, Ye=1—r¢, if e is not incident to u,
Ve = 1— Te
1 — 7y

, if e is incident to u.

Then the set of densities {7e}ecp(r) ensures the evistence of the factor T
if and only if all , € (0,1] and the set of densities {'y;}eeE(T/) ensures the

existence of the factor T' .

Theorem 1 provides the authors of [7] with an efficient algorithm to decide
whether a given set of edge densities in a tree ensures the existence of
a transversal or does not ensure. We show that their algorithm can be
extended for 3-uniform linear hypertrees. This extension is presented in
Algorithm 7.
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Algorithm 7 (for 3-uniform linear hypertrees)

Input: a 3-uniform linear hypertree 7 with the set of hyperedge densities
{vetece()-

Output: a boolean value

) TRUE, the densities 7. ensure the existence of a factor 7,
FALSE, the densities v, does not ensure the existence of a factor 7.

Consider a weighted hypertree (7,7.), where 7. =1 — 7.

Step 0. IF |V(T)| > 3 and there exists a hyperedge e € £(T) for which
re > 1
THEN D := FALSE: STOP:

Step 1. IF |V(T)| = 3 (means T is a hyperpath P;) and 0 <r. < 1
THEN D := TRUE: STOP:

Step 2. IF |V(T)| > 3
THEN pick two leaves u, v from a pendant hyperedge
[= {U,U,U/} S E(T)
Let T = (V(T) —{u,v},E(T) — {u,v,w}) and for each hyperedge
ec E(T) set

Te, ifenf=40,
e = Te .
—, ifenf={{w}
T f=Aw}
IF r, > 1 for some hyperedge e € £(T') THEN D := FALSE;,

STOP;
GO TO Step 1 with (T, 7e) := (T ,7%).

Proposition 1. Algorithm T stops in at most O(n?) steps, where n is the
number of hyperedges of the input hypertree.

The correctness of Algorithm 7 follows from the following theorem.

Theorem 2. Let T = (V, ) be a 3-uniform linear hypertree, where |E(T)| >
2. Letu,v be two leaves of T which lie in the hyperedge e = {u,v,w} € E(T)
for some w € V(T). Assume that for each hyperedge of T the density
Ye = 1 —re is given. Let T be a hypertree obtained from T by deleting
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leaves u and v with the hyperedge uwvw. Let the hyperedge densities ’y; inT
be defined as follows

, Ye=1—r¢, if e is not incident to w in T,
Ve = 1—T76, if e is incident to w in T .
1 —ruvw
Then the set of densities {Ye}cce(T) ensures the existence of a factor T if
and only if all v, € (0,1] and the set of densities {Vé}eGS(T’) ensures the

existence of a factor T .

Proof. Let T be a 3-uniform linear hypertree and let a density 7. =1 —r,
be given for each e € E(T), |E(T)| > 2.

(<) First we prove the following statement: if all 5, are indeed densities
and they ensure the existence of a factor T, then the original densities 7,
ensure the existence of a factor T.

Let B[T] be a blow-up hypergraph of the hypertree 7 such that the
density between clusters A;, A; and Ay, is at least 7,3, where A;, A;, Ay, are
clusters of the vertices and 4,5,k € V(7). We show that B[T] contains a
factor 7.

Let w,v,w € V(T) and {u,v,w} € E(T), where u,v are leaves. Define
Ry, v as a subset of A, in the following way (see Figure 4)

Ru,v,w = {$ € Ay | Elu/EAu/\v/eAv{u/,U/,l‘} € E(B[ﬂ)}

Ay = A
\ /
~ Aw

FIGURE 4. Clusters Ay, A, Ay, A, and Ay, (bold lines) with
some hyperedges (broken lines) and the set Ryyy-
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Note that by (1)
|Ru,v,w”AuHAv’ > G(Ru,v,wvAuyAv) = e(AuaAvaw) > ’Yuvw‘AuHAvHAw|

Hence |Ru,v,w| > 'Yuvw|Aw|-

Now we give the lower bound for the number of hyperedges incident to
Ryvw. Let k,z € V(T) be such that {k,z,w} € E(T). By the inclusion-
exclusion formula we count a lower bound for the number of hyperedges
between R, .., Ar and A, as follows

e(Ru,v,uuAlmAz) > 6<Aw7Ak:7Az) - (‘Aw‘ - ‘Ru,v,w‘) : ‘Ak‘ : |Az’
> |Ru,v,w| ' ‘Ak‘ ' ’AZ‘ + (’kaz - 1) ' |Aw| : ‘Ak’ : |Az’

('kaz - 1) : ’Ru,v,w‘ . ’Ak| : ‘AZ|

> |Rupwl - [Ak] - Az +

uvw

Twk
=(1——""— ) [Rupuwl - |Ak] - [A]
1 — rypw
= Yokz * [Rupwl - [Akl - [Az].

Now, by deleting the vertex set A,, A, and A, \Ry W from B[T], we
obtain a hypergraph which is a blow-up hypergraph of 7~ with hyperedge
densities ensuring the existence of the factor 7. Moreover, by the definition
of Ry v the factor T’ can be extended to a factor 7.

(=) Note that if 71/11]92' < 0, then Yyks + Yuvw < 1. So there exists a con-
struction which does not induce the linear hyperpath P, with the consec-
utive vertices u,v,w, k, z and hyperedges {u,v,w}, {w, k, z}, where i € A;
(i € {u,v,w,k,z}) in this case. Therefore, if some 'y;)kz < 0, then there
exists a construction for a blow-up hypergraph of the hypertree 7 without
a factor 7.

Next assume that all the 7; are proper densities, but there is a con-
struction of a blow-up hypergraph, say B'[T’], with hyperedge densities
at least 7., but which does not induce a factor 7. Thus we construct a
blow-up hypergraph B[T] of the hypertree 7 not inducing 7. Namely, set
Ay = {w*}UA,, A, = {u} and A, = {v}. We create hyperedges u, v, w for
all w € A;U but do not create u, v, w* without changing densities in B’ [7'/]
and with an appropriate density vyyw. O

Example 2. Let us consider the 3-uniform linear hypertree 7 with 5 hy-
peredges and 11 vertices presented in Figure 5(1) with two different sets of
parameters {re}e.ce(7) (in round brackets parameters 7. from the second set
of hyperedge densities are given). In Table 1, two different sets of densities
{’}/6}665(7’), Ye = 1 — re, and changes of parameters r. during the execution
of Algorithm 7T are presented. We are interested in whether these sets of
hyperedge densities ensure the existence of the hypertree 7 as a factor.
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1/5 (1/2) 2/5 (1/4)
o G O D
1/3 2/7)
o/ o)
1/6 (1/6) 1/4 (1/5)
1/5 (1/2) 8/15 (5/16)
o (o (3 (&) 5 (o) s 2)
1/3 (2/7)
o/
\:L
1/6 (1/6)
s 6/25 (3/5) 8/15 (5/16)
o s (&) 5 (Co) s )
1/3 (2/7)
6/25 (3/5)

e O

5/7 (32/77)

21/25 (77/45)

(5)
( $ B (o) — TRUE; STOP (FALSE; STOP)

FIGURE 5. Executing Algorithm 7 for the hypertree 7 with
two different sets of hyperedge densities.
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. TRUE FALSE

Ye [Dre [Qre [Qre [ @re [ Ore [ e [Dre [Qre [Bre | @ re [ BG)re
abc || 4/5] 1/5 | 15 | 6/25 | 6/25 | 21/25 || 1/2 | 1/2 | 1/2 | 3/5 | 3/5 | 77/45
cde || 2/3| 1/3 | 1/3 | 1/3 | 5/7 = '5/7 2/7 | 2/7 | 277 |32/77| -
efg || 3/5] 2/5 | 8/15 | 8/15 | - — |[3/4] 1/4 | 5/16 | 5/16 | - -
bhi || 5/6 | 1/6 | 1/6 | - - — |[5/6] 1/6 | 1/6 | - - -
fjk [ 3/4] 1/ | - - = = 45 ] 15 | - - - -

TABLE 1. Changing parameters r. for hyperedges e € £(T)
during the execution of Algorithm 7 for two different sets of
hyperedge densities ~, of the hypertree presented in Figure
5(1).

To solve this problem, we use Algorithm 7. For each hyperedge e a
parameter 7. = 1 —~, is assigned as in Figure 5(1). Let us run Algorithm 7.
All parameters satisfy the condition 0 < r. < 1, so we cut the hyperedge e
and modify parameters r. by proper formulas presented in the algorithm.
We repeat this procedure until we get a hypertree with a hyperedge e* for
which parameter r.- > 1 or one-hyperedge hyperpath (see Figure 5(2)—(5)).
Notice that we get two different values at the end. First set of densities
{7} ensures the existence of T as a factor and the second set {7.} does not
ensure.

We conclude with the following relation between roots of the multivariate
matching polynomial and the inhomogeneous density Turan problem for 3-
uniform linear hypertrees.

Theorem 3. Let T = (V, &) be a weighted 3-uniform linear hypertree. Let
Ye = 1 — tre be densities assigned to each hyperedge e € E(T), where e €
[0,1). Assume that after running Algorithm T, we get a one-hyperedge
hyperpath Py with hyperedge weight equal to 0. Then t is a root of the
multivariate matching polynomial Fr(re,s) of the hypertree T .

Proof. Let 7 = (V,€) be a weighted 3-uniform linear hypertree with n
hyperedges. To prove this theorem, we use induction on the number of
hyperedges of the hypertree 7. If this hypergraph consists of 3 vertices
(i.e., T is isomorphic to P1), then Fr(re,t) = 1 — tr. and the condition
Fr(re,t) = 0 means that ¢ is a root of this multivariate matching polynomial
of the hypertree T.

Assume that the statement is true for each hypertree on at most n — 1
hyperedges. Let T be a hypertree with n hyperedges and assume that we
execute Algorithm 7T for a hyperedge e = {u,v,w}, shortly uvw, in the
first step, where vertices u,v are two leaves in 7. Let T =7 - {u,v}
be a hypertee obtained from the hypertree 7 by deleting v and v and the
hyperedge {u,v,w}. Densities on hyperedges in hypertree T are modified
by formulas presented in Algorithm 7. By executing Algorithm 7T, we
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obtain a one-hyperedge hyperpath P; with Fp, (r,,t) = 0. By induction we
get that F (re ,t) = 0.

We can expand For according to whether a monomial contains x,
(where wkz € £(T')) or does not. Obviously, each monomial contains at

most one of the variables x,y,, where wkz € E(T).
Thus

F’T’(&7 S) = QO(E: 5) - Z Sajwszkz(Ea S),

{k,z,w}e&(T")

where Qo(z.,s) consists of these terms which do not contain x4, and
— 8Tz Qrz(Te, s) consists of these terms which contain . (i.e., these
terms correspond to the matchings containing the hyperedge wkz).

We observe that

FT(Ea 5) = (1 - quvw)QO(ﬁa 5) - Z waszkz(ﬁv 5)'

{k,z,w}e&(T")

Since
r
0=Fp(pt) =Qolret) — Y 17— Qure.),
- , — lryvw
{k,z,w}eE(T)

we have

0= (1 - truvw)FT’ (L/e’ t) = (1 - truvw)QO(&h t)

- Z trwszkz (E’ t) = F’T(E7 t)-
{k,zw}eE(T")

Hence t is a root of Frr(re, s). O

3. Conclusion. In this paper we showed some results for the inhomoge-
neous density Turan problem for 3-uniform linear hypertrees. We presented
Algorithm 7T for testing whether the 3-uniform linear hypertree 7 with the
given set of hyperedge densities {7e}cce(7) is a transversal of a blow-up
hypergraph B[T]. By this algorithm we have the answer whether the hy-
peredge densities ensure the existence of the transversal or do not ensure.
Moreover, we gave the theorem to prove the correctness of Algorithm 7.

We concluded with the theorem which shows the relation between the
roots of the multivariate matching polynomial and the inhomogeneous den-
sity Turén problem for 3-uniform linear hypertrees.

Open problem. In the future work we want to solve the inhomogeneous
density Turan problem for 3-uniform linear hypergraphs with one linear
hypercycle.
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