Exponential representations of injective continuous mappings in radial sets
Abstract
Keywords
Full Text:
PDFReferences
Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, New Jersey–Toronto–New York–London, 1966.
Ahlfors, L. V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd ed., McGraw-Hill, Inc., New York, 1979.
Duren, P., Harmonic Mappings in the Plane, Cambridge University Press, Cambridge,2004.
Eilenberg, S., Transformations continues en circonfernce et la topologie du plan, Fund. Math. 26 (1936), 61–112.
Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, 2002.
Kosniowski, C., A First Course in Algebraic Topology, Cambridge University Press, Cambridge, 1980.
Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 12 (1987), 19–24.
Kuratowski, K., Introduction to Set Theory and Topology, 2nd English ed., Pergamon Press, Oxford, 2014.
Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd ed., Springer, Berlin, 1973.
Mori, A., On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc. 84 (1957), 56–77.
Partyka, D., The generalized Neumann–Poincare operator and its spectrum, Dissertationes Math., vol. 366, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997.
Rudin, W., Real and Complex Analysis, third ed., McGraw-Hill International Editions, Mathematics Series, McGraw-Hill Book Company, Singapore, 1987.
DOI: http://dx.doi.org/10.17951/a.2021.75.1.37-51
Date of publication: 2021-07-24 12:07:00
Date of submission: 2021-07-21 21:24:37
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Magdalena Jastrzebska, Dariusz Partyka