Three algebraic number systems based on the q-addition with applications
Abstract
Keywords
Full Text:
PDFReferences
Appell, P. , Kampe de Feriet, J., Fonctions hypergeometriques et hyperspheriques, Gauthier-Villars, Paris, 1926 (French).
Burchnall, J. L., Chaundy, T. W., Expansions of Appell’s double hypergeometric functions II, Q. J. Math. 12 (1941), 112–128.
Erdelyi, A., Integraldarstellungen hypergeometrischer Funktionen, Q. J. Math. 8 (1937), 267–277 (German).
Ernst, T., A comprehensive treatment of q-calculus, Birkhauser, 2012.
Ernst, T., Convergence aspects for q-Lauricella functions I, Adv. Studies Contemp. Math. 22 (1) (2012), 35–50.
Ernst, T., Convergence aspects for q-Appell functions I, J. Indian Math. Soc., New Ser. 81 (1–2) (2014), 67–77.
Ernst, T., Multiplication formulas for q-Appell polynomials and the multiple q-power sums, Ann. Univ. Mariae Curie-Skłodowska Sect. A 70 (1) (2016), 1–18.
Ernst, T., Expansion formulas for Apostol type q-Appell polynomials, and their special cases, Le Matematiche 73 (1) (2018), 3–24.
Ernst, T., On Eulerian q-integrals for single and multiple q-hypergeometric series, Commun. Korean Math. Soc. 33 (1) (2018), 179–196.
Ernst, T., On the complex q-Appell polynomials, Ann. Univ. Mariae Curie-Skłodowska Sect. A 74 (1) (2020), 31–43.
Ernst, T., On the exponential and trigonometric (q,omega)-special functions, in: Algebraic Structures and Applications, Springer, Cham, 2020, 625–651.
Exton, H., Multiple Hypergeometric Functions and Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York–London–Sydney, 1976.
Exton, H., Handbook of Hypergeometric Integrals, Chichester; Halsted Press [John Wiley & Sons, Inc.], New York–London–Sydney, 1978.
Lauricella, G., Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo 7 (1893), 111–158 (Italian).
Nagell, T., Larobok i Algebra, Almqvist Wiksells, Uppsala 1949 (Swedish).
Rainville, E. D., Special Functions, Reprint of 1960 first edition. Chelsea Publishing Co., Bronx, N.Y., 1971.
Saran, S., Transformations of certain hypergeometric functions of three variables, Acta Math. 93 (1955), 293–312.
Winter, A., Uber die logarithmischen Grenzfalle der hypergeometrischen Differentialgleichungen mit zwei endlichen singul¨aren Punkten, Dissertation, Kiel, 1905 (German).
DOI: http://dx.doi.org/10.17951/a.2021.75.2.45-71
Date of publication: 2022-02-21 20:04:37
Date of submission: 2022-02-13 22:19:53
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Thomas Ernst