On intermediate q-Lauricella functions in the spirit of Karlsson, Chandel Singh and Gupta
Abstract
Keywords
Full Text:
PDFReferences
Chandel Singh, R. C., Gupta, A. K., Multiple hypergeometric functions related to Lauricella’s functions, Jnanabha 16 (1986), 195–209.
Ernst, T., A Comprehensive Treatment of q-Calculus, Birkhauser, Basel, 2012.
Ernst, T., Convergence aspects for q-Lauricella functions I, Adv. Stud. Contemp.Math. (Kyungshang) 22 (1) (2012), 35–50.
Ernst, T., Convergence aspects for q-Appell functions I, J. Indian Math. Soc., New Ser. 81 (1–2) (2014), 67–77.
Ernst, T., On the complex q-Appell polynomials, Ann. Univ. Mariae Curie-Skłodowska Sect. A 74 (1) (2020), 31–43.
Ernst, T., On confluent q-hypergeometric functions, Appl. Anal. Optim. 4 (3) (2020), 385–404.
Ernst, T., Further results on multiple q-Eulerian integrals for various q-hypergeometric functions, Publ. Inst. Math. (Beograd) (N.S.) 108 (122) (2020), 63–77.
Ernst, T., Three algebraic number systems based on the q-addition with applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 75 (2) (2021), 45–71.
Exton, H., On certain confluent hypergeometric functions of three variables, Ganita 21 (2) (1970), 79–92.
Exton, H., Certain hypergeometric functions of four variables, Bull. Soc. Math. Grece (N.S.) 13 (1–2) (1972), 104–113.
Karlsson, P., On intermediate Lauricella functions, Jnanabha 16 (1986), 211–222.
Qureshi, M.I, Quraishi,K.A., Khan,B. Arora, A. Transformations associated with quadruple hypergeometric functions of Exton and Srivastava, Asia Pac. J. Math. 4 (1) (2017), 38–48.
Srivastava, H.M., A formal extension of certain generating functions, Glasnik Mat. Ser. III 5 (25) (1970), 229–239.
Srivastava, H.M., A formal extension of certain generating functions II, Glasnik Mat. Ser. III 6 (26) (1971), 35–44.
DOI: http://dx.doi.org/10.17951/a.2023.77.1.13-23
Date of publication: 2023-09-30 21:35:45
Date of submission: 2023-09-26 19:43:20
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Thomas Ernst