Singular linear q-Hamiltonian systems
Abstract
Keywords
Full Text:
PDFReferences
Allahverdiev, B. P., Tuna, H., q-Hamiltonian systems, Turkish J. Math. 44 (2020), 2241–2258.
Allahverdiev, B. P., Tuna, H., Singular discontinuous Hamiltonian systems, J. Appl. Analys. Comput. 12(4) (2022), 1386–1402.
Allahverdiev, B. P., Tuna, H., Singular Hahn–Hamiltonian systems, Ufa Math. J. 14(4) (2022), 3–16.
Annaby, M. H., Mansour, Z. S., q-Fractional Calculus and Equations, Springer, Heidelberg, 2012.
Atkinson, F. V., Discrete and Continuous Boundary Problems, Acad. Press Inc., New York, 1964.
Bangerezako, G., q-Difference linear control systems, J. Difference Equat. Appl. 17(9) (2011), 1229–1249.
Behncke, H., Hinton, D., Two singular point linear Hamiltonian systems with an interface condition, Math. Nachr. 283(3) (2010), 365–378.
Ernst, T., The History of q-Calculus and a New Method, U. U. D. M. Report (2000): 16, ISSN1101-3591, Department of Mathematics, Uppsala University, 2000.
Hinton, D. B., Shaw, J. K., On Titchmarsh–Weyl M(λ)-functions for linear Hamiltonian systems, J. Differential Equations 40(3) (1981), 316–342.
Hinton, D. B., Shaw, J. K., Titchmarsh–Weyl theory for Hamiltonian systems, in: Spectral theory of differential operators (Birmingham, Ala. 1981), 219–231, North-Holland, Amsterdam–New York, 1981.
Hinton, D. B., Shaw, J. K., Parameterization of the M(λ) function for a Hamiltonian system of limit circle type, Proc. Roy. Soc. Edinburgh Sect. A 93 (1983), 349–360.
Hinton, D. B., Shaw, J. K., Hamiltonian systems of limit point or limit circle type with both endpoints singular, J. Differ. Equat. 50 (1983), 444–464.
Kac, V., Cheung, P., Quantum Calculus, Springer-Verlag, New York, 2002.
Krall, A. M., Hilbert Space, Boundary Value Problems and Orthogonal Polynomials, Birkhauser Verlag, Basel, 2002.
Krall, A. M., M(λ) theory for singular Hamiltonian systems with one singular point, SIAM J. Math. Anal. 20 (1989), 664–700.
Krall, A. M., M(λ) theory for singular Hamiltonian systems with two singular points, SIAM J. Math. Anal. 20 (1989), 701–715.
Yalcin, Y., Sumer, L. G., Kurtulan, S., Discrete-time modeling of Hamiltonian systems, Turkish J. Electric. Eng. Comput. Sci. 23 (2015), 149–170.
DOI: http://dx.doi.org/10.17951/a.2024.78.1.1-15
Date of publication: 2024-07-29 22:47:27
Date of submission: 2024-07-11 13:52:49
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Bilender Allahverdiev, Huseyin Tuna