The Turán number of the graph \(3P_4\)
Abstract
Let \(ex(n, G)\) denote the maximum number of edges in a graph on \(n\) vertices which does not contain \(G\) as a subgraph. Let \(P_i\) denote a path consisting of \(i\) vertices and let \(mP_i\) denote \(m\) disjoint copies of \(P_i\). In this paper we count \(ex(n, 3P_4)\).
Full Text:
PDFReferences
Bushaw, N., Kettle, N., Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011), 837-853.
Erdős, P., Gallai, T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.
Faudree, R. J., Schelp, R. H., Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150-160.
Gorgol, I., Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011), 661-667.
Harary, F., Graph Theory, Addison-Wesley, Mass.-Menlo Park, Calif.-London, 1969.
DOI: http://dx.doi.org/10.2478/umcsmath-2014-0003
Date of publication: 2015-05-23 16:29:35
Date of submission: 2015-05-04 21:21:53
Statistics
Total abstract view - 696
Downloads (from 2020-06-17) - PDF - 325
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica