On certain generalized q-Appell polynomial expansions
Abstract
Full Text:
PDFReferences
Apostol, T. M., On the Lerch zeta function, Pacific J. Math. 1 (1951), 161–167.
Dere, R., Simsek, Y., Srivastava, H. M., A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory 133, no. 10 (2013), 3245–3263.
Ernst, T., A comprehensive treatment of q-calculus, Birkhäuser, Basel, 2012.
Ernst, T., q-Pascal and q-Wronskian matrices with implications to q-Appell polynomials, J. Discrete Math. 2013.
Jordan, Ch., Calculus of finite differences, Third Edition, Chelsea Publishing Co., New York, 1950.
Kim M., Hu S., A note on the Apostol–Bernoulli and Apostol–Euler polynomials, Publ. Math. Debrecen 5587 (2013), 1–16.
Lee, D. W., On multiple Appell polynomials, Proc. Amer. Math. Soc. 139, no. 6 (2011), 2133–2141.
Luo, Q.-M., Srivastava, H. M., Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials, J. Math. Anal. Appl. 308, no. 1 (2005), 290–302.
Luo, Q.-M., Srivastava, H. M., Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl. 51, no. 3–4 (2006), 631–642.
Luo, Q.-M., Apostol–Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10, no. 4 (2006), 917–925.
Milne-Thomson, L. M., The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951.
Nørlund, N. E., Differenzenrechnung, Springer-Verlag, Berlin, 1924.
Pintér, Á, Srivastava, H. M., Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math. 85, no. 3 (2013), 483–495.
Sandor, J., Crstici, B., Handbook of number theory II, Kluwer Academic Publishers, Dordrecht, 2004.
Srivastava, H. M., Özarslan, M. A., Kaanoglu, C., Some generalized Lagrange-based Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials, Russ. J. Math. Phys. 20, no. 1 (2013), 110–120.
Wang, W., Wang, W., Some results on power sums and Apostol-type polynomials, Integral Transforms Spec. Funct. 21, no. 3–4 (2010), 307–318.
Ward, M., A calculus of sequences, Amer. J. Math. 58 (1936), 255–266.
DOI: http://dx.doi.org/10.17951/a.2014.68.2.27
Date of publication: 2015-05-23 16:29:44
Date of submission: 2015-05-09 13:25:12
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica