Deviation from weak Banach–Saks property for countable direct sums
Abstract
Full Text:
PDFReferences
Banach, S., Saks, S., Sur la convergence forte dans les champs Lp, Studia Math. 2 (1930), 51–57.
Beauzamy, B., Banach–Saks properties and spreading models, Math. Scand. 44 (1979), 357–384.
Brunel, A., Sucheston, L., On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294–299.
Erdös, P., Magidor, M., A note on regular methods of summability and the Banach– Saks property, Proc. Amer. Math. Soc. 59 (1976), 232–234.
Krassowska, D., Płuciennik, R., A note on property (H) in Köthe–Bochner sequence spaces, Math. Japon. 46 (1997), 407–412.
Krein, S. G., Petunin, Yu. I., Semenov, E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54. American Mathematical Society, Providence, R.I., 1982.
Kryczka, A., Alternate signs Banach–Saks property and real interpolation of operators, Proc. Amer. Math. Soc. 136 (2008), 3529–3537.
Kryczka, A., Mean separations in Banach spaces under abstract interpolation and extrapolation, J. Math. Anal. Appl. 407 (2013), 281–289.
Lin, P.-K., Köthe–Bochner function spaces, Birkhäuser Boston, Inc., Boston, MA, 2004.
Lindenstrauss, J., Tzafriri, L., Classical Banach spaces. II. Function spaces, Springer- Verlag, Berlin–New York, 1979.
Mastyło, M., Interpolation spaces not containing l1, J. Math. Pures Appl. 68 (1989), 153–162.
Partington, J. R., On the Banach–Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), 369–374.
Rosenthal, H. P., Weakly independent sequences and the Banach–Saks property, Bull. London Math. Soc. 8 (1976), 22–24.
Szlenk, W., Sur les suites faiblement convergentes dans l’espace L, Studia Math. 25 (1965), 337–341.
DOI: http://dx.doi.org/10.17951/a.2014.68.2.51
Date of publication: 2015-05-23 16:29:45
Date of submission: 2015-05-09 13:33:31
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica