On strong proximinality in normed linear spaces
Abstract
Keywords
Full Text:
PDFReferences
Bandyopadhyay, Pradipta, Li, Yongjin, Lin, Bor-Luh, Narayana, Darapaneni, Proximinality in Banach spaces, J. Math. Anal. Appl. 341 (2008), 309-317.
Cheney, E. W., Wulbert, D. E., The existence and uniqueness of best approximation, Math. Scand. 24 (1969), 113-140.
Dutta, S., Shunmugraj, P., Strong proximinality of closed convex sets, J. Approx. Theory 163 (2011), 547-553.
Effimov, N. V., Steckin, S. B., Approximative compactness and Chebyshev sets, Soviet Math. Dokl. 2 (1961), 1226-1228.
Finet, C., Quarta, L., Some remarks on M-ideals and strong proximinality, Bull. Korean Math. Soc. 40 (2003), 503-508.
Godefroy, G., Indumathi, V., Strong proximinality and polyhedral spaces, Rev. Mat. Complut. 14 (2001), 105-125.
Jayanarayanan, C. R., Paul, T., Strong proximinality and intersection properties of balls in Banach spaces, J. Math. Anal. Appl. 426 (2015), 1217-1231.
Narayana, D., Strong proximinality and renorming, Proc. Amer. Math. Soc. 134 (2005), 1167-1172.
Panda, B. B., Kapoor, O. P., A generalization of the local uniform rotundity of the norm, J. Math. Anal. Appl. 52 (1975), 300-308.
Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1967.
Vlasov, L. P., The concept of approximative compactness and its variants, Mat. Zametki 16 (1974), 337-348 (Russian), English transl. in Math. Notes 16, No. 2 (1974), 786-792.
Zhang, Z. H., Shi, Z. R., Convexities and approximative compactness and continuity of metric projection in Banach spaces, J. Approx. Theory 161 (2009), 802-812.
DOI: http://dx.doi.org/10.17951/a.2016.70.1.19
Date of publication: 2016-07-04 15:43:59
Date of submission: 2016-07-01 19:40:39
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Sahil Gupta, T. D. Narang