On Poncelet’s porism
Abstract
We consider circular annuli with Poncelet’s porism property. We prove two identities which imply Chapple’s, Steiner’s and other formulas. All porisms can be expressed in the form in which elliptic functions are not used.
Keywords
Porism; annulus; bicentric polygon
Full Text:
PDFReferences
Bos, H. J . M., Kers, C., Dort, F. and Raven, D. W., Poncelet’s closure theorem, Expo. Math. 5 (1987) 289-364.
Cieślak, W., Szczygielska, E., Circuminscribed polygons in a plane annulus, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 49-53.
Kerawala, S. M., Poncelet porism in two circles, Bull. Calcutta Math. Soc. 39 (1947), 85-105.
Weisstein, E. W., Poncelet’s Porism, From Math World - A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html
DOI: http://dx.doi.org/10.2478/v10062-010-0011-0
Date of publication: 2016-07-29 10:39:54
Date of submission: 2016-07-28 21:58:59
Statistics
Total abstract view - 655
Downloads (from 2020-06-17) - PDF - 338
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 Waldemar Cieślak, Elżbieta Szczygielska