Products of Toeplitz and Hankel operators on the Bergman space in the polydisk

Paweł Sobolewski

Abstract


In this paper we obtain a condition for analytic square integrable functions \(f,g\) which guarantees the boundedness of products of the Toeplitz operators \(T_fT_{\bar g}\) densely defined on the Bergman space in the polydisk. An analogous condition for the products of the Hankel operators \(H_fH^*_g\) is also given.

Keywords


Toeplitz operator; Bergman space

Full Text:

PDF

References


Gonessa, J., Sheba, B., Toeplitz products on the vector weighted Bergman spaces, Acta Sci. Math. (Szeged) 80 (3-4) (2014), 511-530.

Lu, Y., Liu, C., Toeplitz and Hankel products on Bergman spaces of the unit ball, Chin. Ann. Math. Ser. B 30 (3) (2009), 293-310.

Lu, Y., Shang, S., Bounded Hankel products on the Bergman space of the polydisk, Canad. J. Math. 61 (1) (2009), 190-204.

Miao, J., Bounded Toeplitz products on the weighted Bergman spaces of the unit ball, J. Math. Anal. Appl. 346 (1) (2008), 305-313.

Michalska, M., Sobolewski, P., Bounded Toeplitz and Hankel products on the weighted Bergman spaces of the unit ball, J. Aust. Math. Soc. 99 (2) (2015), 237-249.

Nazarov, F., A counter-example to Sarason’s conjecture, preprint. Available at http://www.math.msu.edu/~fedja/prepr.html.

Pott, S., Strouse, E., Products of Toeplitz operators on the Bergman spaces (A^2), Algebra i Analiz 18 (1) (2006), 144-161 (English transl. in St. Petersburg Math. J. 18 (1) (2007), 105-118).

Stroethoff, K., Zheng, D., Toeplitz and Hankel operators on Bergman spaces, Trans. Amer. Math. Soc. 329 (2) (1992), 773-794.

Stroethoff, K., Zheng, D., Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal. 169 (1) (1999), 289-313.

Stroethoff, K., Zheng, D., Invertible Toeplitz products, J. Funct. Anal. 195 (1) (2002), 48-70.

Stroethoff, K., Zheng, D., Bounded Toeplitz products on the Bergman space of the polydisk, J. Math. Anal. Appl. 278 (1) (2003), 125-135.

Stroethoff, K., Zheng, D., Bounded Toeplitz products on Bergman spaces of the unit ball, J. Math. Anal. Appl. 325 (1) (2007), 114-129.

Stroethoff, K., Zheng, D., Bounded Toeplitz products on weighted Bergman spaces, J. Operator Theory 59 (2) (2008), 277-308.

Hedenmalm, H., Korenblum, B., Zhu, K., Theory of Bergman Spaces, Springer-Verlag, New York, 2000.




DOI: http://dx.doi.org/10.17951/a.2018.72.2.57
Date of publication: 2018-12-22 22:03:14
Date of submission: 2018-12-21 23:07:31


Statistics


Total abstract view - 957
Downloads (from 2020-06-17) - PDF - 570

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Paweł Sobolewski