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ABSTRACT

In this paper we try to reconstruct the spatial distribution of stars in globular clusters
(GCs) from heuristic statistical ideas. Such 3D radial distributions are important for
understanding physical conditions across the clusters. Our method is based on converting
spherically symmetrical functions such as exp(-r"/s”), exp(-/s), 1/(1 + */s*) > and 1/(1 +
#/s*)", (s and m are parameters) to 2D star distributions in a GCs by the Monte Carlo
method. By comparing the obtained 2D profiles with observational ones we demonstrate
that Gaussian or exponential distribution functions yield too short extensions of periph-
eral parts of the GCs profiles. The best candidate for fitting GCs profiles has been found
to be the generalized Schuster density law: C/ (1 + */s*)", where C is the normalization
constant and s and m are adjustable parameters. These parameters display a nonlinear
correlation with s varying from 0.1 to 10 pc, whilst m is close to 2. Using this law the
radiation temperatures across M 13 and 47 Tucane were estimated.

Keywords: globular clusters, stars, density, radial distribution, 2D and 3D, Monte Carlo,
Schuster law, M 13, 47 Tucane
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1. INTRODUCTION

Since the classical investigations by Harlow Shapley (1885-1972), who iden-
tified Cepheids and calculated real distances to the globular clusters (GCs) [1],
these remarkable objects become the most intensively studied in the Milky Way
and in neighboring galaxies. With the launch of the Hubble Space Telescope
(HST) it was finally possible to resolve individual stars in their dense central
cores. In addition to stars whose presence is expected by the canonical stellar
evolution theory, several more exotic objects like blue struggle stars, X-ray bina-
ries, millisecond pulsars, etc., have been indentified in Galactic GCs so far, see
e.g. ref. [2].

The GCs play a key role in astrophysics, because they may be considered as
large assemblies of coeval stars with a common history, but differing only in
their initial masses, although growing evidence for some spread in star formation
ages is being collected, see e.g. Piotto, 2010 [3]. The spread of star ages is surely
much shorter than the age of the clusters. It is useful here that stars in a GC may
be treated statistically with high degree of confidence. Moreover, the number of
GCs in the Milky Way is quite large, close to 160. They differ in mass, lumi-
nosity, total number of stars, and their spatial densities as a function of distance
from the center.

The most fundamental characteristics of the GC such as the total number of
stars, N, and their radial distribution are still poorly known due to their extreme-
ly large central densities and slow gradual transition of their peripherals towards
the Galactic background. A better knowledge of these characteristics is neces-
sary for a proper estimation of the physical conditions in central parts of GCs. It
is particularly interesting to know to what extent their central temperatures dif-
fer from the present-day background radiation temperature (2.73K) and what is
the temperature gradient across a cluster.

GCs are the oldest objects in the Milky Way galaxy, of the order of 10"
years, i.e. large in comparison to a characteristic time-scale over which stars lose
memory of their initial orbital conditions. This is a so-called relaxation time, of
the order of 10" years according to Chandrasekhar [4]. Therefore, GCs are old
enough to attain a dynamic equilibrium and a stable symmetric radial distribu-
tion, provided that they were neither significantly disturbed during the last pass
through the Galactic disk, nor they collided with other GCs. While the GC-GC
collisions are actually rare, it wouldn't be so with the passage through the disk.

The radial distribution of stars is crucial in determining the dynamic proper-
ties of a GC, however, this topic is beyond the scope of this study. It is the pur-
pose of this paper to present step-by-step reconstruction of the 3-dimentional
radial distributions (3D) of stars in a GC, from the 2-dimentional distributions
recorded by telescopes. Our approach is based on the Monte Carlo method
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which is applied to various trial functions assumed to be symmetric 3D distribu-
tions. The Monte Carlo method allows a fast conversion of the 3D to 2D distri-
bution which is then compared to that observed in the sky.

2. THEORETICAL CONSIDERATIONS

We will start the calculations from the assumption of a 3D Gaussian as a tri-
al function for spatial distribution of stars in a GC, because the Gaussian distri-
bution may be considered as a standard radial-symmetric function to which other
distributions may be simply compared. The following physical analogy is rele-
vant to the Gaussian distribution function.

The diffusion phenomenon may convert the initial distribution of any parti-
cle system to the Gaussian one, generally with time-dependent standard devia-
tion parameter, o. For example, a droplet of ink immersed inside a large water
pool will diffuse continuously, and ink density will attain, due to the chaotic
motion of water molecules, a Gaussian distribution with standard deviation in-
creasing proportionally to the square root of time. However, when diffusing
particles attract each other, the dispersion parameter, o, can finally achieve a
constant value, just alike in the case of stars distribution in a massive GC. None-
theless, a low mass cluster will suffer a loss of stars becoming gradually con-
verted to an open cluster, as e.g. M 67 [18].

Deviations of a real distribution from the spatial Gaussian distribution will
be considered later on. It is expected, however, that such a deviation will be a
rather small correction only to the second and somewhat larger to the fourth
central statistical moment, because of rather high spherical symmetry of all the
clusters observed in the Milky Way (see McMaster University Catalog [7,8] for
eccentricity parameter). Therefore, in the first approximation, the third statistical
central moment is zero, and only significant moments remain the second (vari-
ance) and the fourth.

Consider a reference frame (x, y, z) with the origin located in the center of a
cluster and the z-axis oriented outwards a remote observer. The observed distri-
bution of stars in the (x, y) plane being a small section of the celestial sphere is
the projection of their radial 3D distribution. This projection can be obtained
from the assumed normal distributions along the three axes. These distributions
are defined by a common parameter ¢, due to GC symmetry. So, the probability
to find a star in the range between x and x + dx is given by the following expres-
sion:

xZ
Lo 202dx. (1)

dP, = o
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Similarly are defined dP, and dP., hence the probability to find a star in an
infinitesimal box of size dxdydz is:

1 \3 _x*+y%+2?
dP = dP,dP,dP, = (ﬁ) e 207 dxdydz. )

Now we can replace the Cartesian coordinates by the spherical ones nothing
that

x2+y2+ 2% =r?

dxdydz - dr -rd6 - rsin 0 dg.

In order to calculate the probability of a star position between spheres of ra-
dius » and » + dr, we have to integrate the transformed expression (2) over the
angular coordinates ¢ and 6

_dN, _ c2m T 1\
dp, =T = [ do [, sin6do (ma) e za2dr.
The number of stars, dN,, between spheres of radius » and » + dr is:

2 r?
dN, = N\/% rozre_ﬁ, (4)

As it is seen from the above formula dN, can be calculated from the total
numbers of stars, /N, in a considered cluster and its characteristic radius which is

defined by the standard deviation parameter o. Substituting s for V25, we can
easily convert equation (4) to the following equivalent form:

3)

dN, 4 r2qr T

2
iy i s (4a)

It should be noted at this point that for any spherically symmetric function
f(r/s), where s is a characteristic distance parameter, the fraction of stars of the

total number N dispersed between spheres of radius » and » + dr may by calcu-
lated in similar way:

dN, ridr r
=c= 7 ()
N s3 f s/’

)

where C = 1/[f 000 u? f (u)du] is the normalization constant, and u = 7/5.
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FIG. 1. The probability density functions f{x) = dP,/dx considered in this study.

In this paper we will consider other spherically symmetric functions as can-
didates for spatial star distribution around a GC center. Therefore, instead of
equation (1) for f(x) = dP/dx we will consider a double exponential function,

f (%) = exp(-[x|/s), and the next it will be a squared Cauchy distribution func-

tion, f (%) = 1/(1+x’/s”)’. The first function is also known as the Laplace distri-

bution, whereas the second belongs to the Pearson type VII family probability
density functions.

The rationale for using the double exponential function is that the physical
conditions in a GC with a massive black hole resemble the electron-proton inter-
action in the hydrogen atom. The quantum mechanics exactly describes the
probability distribution of an electron (radial density) in the lowest energy state
by the double exponential function. This function has 4 times larger variance, o°,
and much larger fourth statistical moment, yu,, than the Gaussian (see Table 1).
On the other hand, the squared Cauchy distribution function has a slightly larger
variance than the Gaussian, but the fourth statistical moment is infinite, therefore
it may be a better candidate for describing a broad star distribution in GCs. Ac-
tually the squared Cauchy function nicely resembles a Gaussian, except that it
has a larger overall dispersion. These normalized functions are shown in Fig. 1
and their statistical properties are collected in Table 1. All the functions listed in
Table 1 will be used below as trial functions for their converting to 2D radial
densities.
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TABLE 1. Statistical properties of the normalized distribution functions f(x) considered
in this study, o” is the variance and s, is the 4-th statistical moment, which are defined as

2f0°° x2f(x)dx] and 2f000 x*f (x)dx], respectively, where x = r/s.

: 2
Function Name

o Ha
1 = . ’ 3
e’ Normal or Gaussian z =5
s 2 2
1 M
2—e : Double-exponential 2s° 24s"
s
2 Y
—[1 + X—J Squared Cauchy s’ o0
s s?
i 1+x—Z h Pearson type VII s 00
4s s’ P 2
Clsm) -1+ x')"  Power law or general- <oo. for m>2 "
’ s’ ized Schuster law ’

The squared Cauchy distribution function is a slightly modified function
f (E) = 1/(1++%/s*)**, which is known from archival literature (Plummer 1911

and Dicke 1939) listed as refs [5, 6]. This function has been obtained as one of
elementary functions found within the solutions of the Emden’s polytropic gas
sphere equation

da (r?dp¥ 2.2 _

E(;?)+b pTr —O, (6)
where p is the gas density, » is radial distance, y is the ratio of specifics heats of the
gas, and b is a parameter. The above mentioned function 1/(1+7°/s°)>" is strictly
relevant for y = 1.2 only, whereas atomic and molecular hydrogen has y value 1.67
and 1.40, respectively. Hence the squared Cauchy function has rather statistical
rationale only, and it is not intimately related to the conditions of early gas nebula
from which the cluster was formed as it was proposed by Plummer.

Yet more general equation for radial distribution of stars in globular clusters
is alike double Cauchy distribution, but with power treated as an adjustable pa-
rameter. This type of radial distribution is known as the “power law” or general-
ized Schuster law and it was considered by Zivkov and Ninkovic [11] as a sim-
ple formula for replacement of the King’s radial distribution in spherical stellar
systems.
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3. NUMERICAL CALCULATIONS

In the next step we have to project the assumed 3D distributions onto the x, y
plane, in order to compare the obtained 2D distributions with that recorded by
telescopes.

For numerical conversion of any 3D radial distribution to 2D we will apply
the Monte Carlo method. The algorithm developed for this purpose initially di-
vides the space around the center of a GC into concentric spheres. The first
sphere has radius Ar, whilst the radii of the subsequent spheres are increased by
Ar. The number of stars 4N, between two neighboring spheres, indexed by n and
n+1, is calculated from equation (5) for » =r,+ %2 Ar. For each star of the sub-set
of AN,, the spherical coordinates » and ¢ are randomly drawn from the intervals
(7n 7yt Ar) and (0, 2m), respectively. The coordinate 8 was calculated from
arcsin(d) function, the values of which were randomly drawn from the interval
(-1, 1). The described procedure creates a uniform star distribution within the
each sphere.

In the last step of the numerical procedure the Cartesian coordinates (x, y, z)
of all the stars are calculated from the obtained (7,¢,0) coordinates. The projec-
tion of the stars onto the planar surface x,y is made by setting z = 0 for all the N
stars. From the obtained planar distribution of stars, a 2D radial density function
is calculated (i.e. GC profile) which is then compared to observations. We adjust
the parameters C, s and m in order to obtain the best agreement of the plotted
profile with that taken from ref. [9] using as a criterion the lowest value of root-
mean-square deviation. The sum of stars drawn in the simulation at optimum
distribution parameters is treated as the total number of stars, V.

Normalized radial distribution functions of stars in 3D space, which were
considered in this paper are listed in Table 2.

TABLE 2. Normalized radial distribution functions applied in this study.

Name Radial distribution function
4 =
Normal or Gaussian —_— r—}e “dr
TS
. 1 2 =
Double-exponential 5 —edr
.
4 7 Y
Squared Cauchy — —|1+—| dr
s s?

Pearson type VII 3 %
E
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4. RESULTS AND DISCUSSION

In Fig. 2a we show the 2D star distribution in the x,y plane generated for N =
7-10" stars distributed in 3D space according to the squared Cauchy radial func-
tion. This figure shows the simulated stars distribution in the M 13 (NGC 6205)
globular cluster, the photo of which is shown in Fig. 2b for comparison. A cer-
tain amount of eccentricity is seen in the photo of M 13. According to the cata-
log data in refs. [7,8] M 13 has an absolute magnitude - 8.55 ™, core radius 0.62
arc min, and half-light radius 1.69 arc min, the eccentricity 1- b/a = 0.1, where a
and b are axes of the ellipse overlapping the cluster core.

FIG. 2. a. The stars distribution in M13 cluster simulated by the Monte Carlo method,
while b is a photo of this GC for comparison, source: http://www.osservatoriomtm.it

N total = 50000, s = 50 arcsec

-=- Gaussian
2 ™ Exponential
= Squared Cauchy
-2.5 -+ M13 observed (Miocchi at al. 2013)

log(N(r)/(arcsec”2))

log(r/arcsec)

FIG. 3. The comparison of 2D distribution of stars in modeled M 13 cluster using 3
different trial functions for 3D radial distribution having identical characteristic size
parameter, s (the disagreement with the outermost 3 points of the M13 profile is due to
the nearly constant 2D density superimposed profile of the Galactic stellar background).
Each function was normalized for the total number of stars N = 50,000. The obtained
distributions are compared with the observed distribution by Miocchi et al. [9]. It is seen
that using the squared Cauchy function will lead to a better agreement for assumed larger
number of stars and size parameter.
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FIG. 4. The comparison of the converted 3D distribution, which is normalized squared
Cauchy function 1/(14+°/s%)* with the observed 2D profile [9] for assumed larger number
of stars and optimally adjusted s value. The obtained 2D distribution fully agrees with
the observed profile of M 13 cluster.

Fig. 3 shows the profiles of the projected distributions of stars into x,y plane for N
= 5-10" stars with the same size parameter, s, of the following 3D radial distributions:
(i) Gaussian, (ii) double exponential, and (iii) squared Cauchy. All these functions
were normalized by an appropriate multiplier C to obtain the same total number of
stars (N= 510" and all of them have identical dimensional parameter s = 50 arcsec.

2.4 -

2.2 ) ° -

2.0 e e [ ] -

1.8+ o o -

1.6 1 —

1.4 ) -

0 2 4 6 8 10
s (parsec)

FIG. 5. The empirical relationship between the size parameter s in parsecs of a GC and
the power factor m determining the slope of the observed profile. It is seen that the larger
the core with respect to the overall system size, the smaller the radial extent of the outer
"envelope" region and vice versa.
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Although the obtained plots resemble a real-world observed star distribution
in M 13, which is plotted as green line in Fig. 3 using data from recent study by
Miocchi et al. [9], neither of them fits well to the observed distribution. The best
fit is obtained with the squared Cauchy distribution, where by varying its s pa-
rameter we can finally achieve excellent agreement with the observed distribu-
tion, as shown in Fig. 4.

TABLE 3. Results of numerical simulation of 3D star distributions in GCs for those star
counting profiles were available (Miocchi et al. [9]). The distance was taken from [8]
whereas C, m, and s are parameters of formula (9) were found by the Monte Carlo meth-
od as optimal. The total number of stars, N, is calculated from the fitted 3D distribution
by counting the stars drawn in the simulation.

NGe P Ef:;:]ce c N m  sfarcsec] s [pc]

104 45 0.21 147100 1.5 30 0.65
1851 12.1 0.0025 4400 1.4 4 0.23
1904 12.9 0.019 6400 1.7 1 0.69
2419 82.6 0.16 11700 2 25 10.01
5024 17.9 0.07 17100 1.8 26 2.26
5139 52 0.26 104100 1.5 200 5.04
5272 10.2 0.17 20900 1.8 29 1.43
5466 16 0.1 4500 22 100 7.76
5824 32.1 0.012 1900 1.7 5 0.78
5904 7.5 0.28 35000 1.8 35 127
6121 22 0.04 13300 1.5 55 0.59
6205 7.1 1.75 89400 22 75 2.58
6229 305 0.054 3900 2 12 1.77
6254 4.4 0.12 8300 2 60 1.28
6266 6.8 1.4 156000 2.1 55 1.81
6341 8.3 0.025 7300 1.7 18 0.72
6626 5.5 0.01 5400 1.55 12 0.32
6309 54 0.18 13300 23 150 3.93
6364 209 0.021 6700 1.7 6 0.61

Although the proposed star distribution in GCs (i.e. squared Cauchy) is not
directly related to the dynamics of the system, it seems to be not far from those
based on mechanical principles [17]. Actually the squared Cauchy radial func-
tion was considered by us to be more appropriate than Cauchy distribution func-
tion which has infinite variance or standard deviation, whereas the squared Cau-
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chy function has a finite standard deviation. Through its larger dispersion in
comparison to Gaussian or exponential function it appears to be most appropri-
ate of 3D star distribution in M 13 (Figs 3 and 4).

However, often the best fit to the observed profiles leads to the “power law”
function or Schuster density law [10-12], where the power m varies from 1.4 to
2.3 as it is shown in Fig. 5. Studying a sample of Milky Way GCs for which star
counting profiles have been published recently [9], we have noticed an interest-
ing non-linear correlation between parameters s and m (Fig. 5).

In this way by using the Monte Carlo approach we have confirmed a great
significance of power-law distribution function. Though the power-law is con-
sidered in literature as ad hoc fitting function [13], in most cases it better fits to
the observation data than King and Wilson models [14]. The major weakness of
this function over the King model is that it is not dynamically self-consistent in
the sense that it produces a dynamical equilibrium. However, for the purposes of
this study the power-law radial distribution is fully sufficient , because we do not
consider star velocities, but their spatial distribution only.

5. RADIATION TEMPERATURE ACROSS GCS

We can now use the Monte Carlo approach to estimate the radiation temper-
ature across a GC.

Let us assume for this purpose that each star of a GC produces the same
amount of electromagnetic radiation flux of 1366 W/m? (solar constant) at the
distance of one astronomical unit. According to this simplified assumption the
radiation flux density from a star at distance 7; from a fixed point in the free
space of GC can be calculated, using formula:

o _ 1366 W/m’ o
" (r/1AU)

N
The total irradiation flux density @ at this point is Zgbi , Where N is total

number of stars in the considered GC. The total flux density @ of electromagnetic
radiation determines the temperature 7" of black body, which fully absorbs this
radiation. The relation between @ and 7 is described by the Stefan—Boltzmann law

@ = oT", (8)

where ¢ in formula (8) is the Stefan—Boltzmann constant. Using the above two
equations, we can calculate approximately the radiation temperature in the space
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inside a modeled GC (by the Monte Carlo method) as a function of distance from
its center. Two examples of such temperature profiles are shown in Fig. 6.
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FIG. 6. Radiation temperatures (above background of 2.7 K) as a function of distance
from the center of modeled M13 and 47 Tucane clusters (black lines). The spikes in
black lines are due to proximity to the nearest star, the distances of which are plotted as
gray lines.
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6. CONCLUSIONS

A critical discussion of the calculations presented above leads to a conclu-
sion that 3D radial density of stars is well described by two-parameters function
known as the power-law distribution or generalized Schuster density law:

f(r)=C(1+:—sz, ©)

where C is the normalization constant, s is the size parameter and m is related to
the observed slope of the star density profile.

With this function we have calculated present-day radial temperature distri-
bution in the free space inside two GCs: M 13 and 47 Tucane. The last one, be-
ing one of the largest Milky Way cluster, has the central radiation temperature of
~16 K above the present-day Universe background temperature (2.7 K). Though
temperatures across GCs are meaningless in the astrophysical modeling of stars
evolution, however we suppose that the temperature gradient plays a great role
of a “mop” which cleans the vacuum inside the GCs. Thanks to its action and
perhaps some gas accretion by white dwarfs, we have an ideal insight into the
interiors of GCs by the HST. Recent density determination of ionized gas (prob-
ably the dominant component of the intra-cluster medium) by radio-astronomical

observations of 15 pulsars in 47 Tucane yields 0.067+0.015 cm™ only [16]. This
is about 100 times the free electron density of the interstellar medium in the
vicinity of this GC. Such a low density is undetectable by other methods.
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