Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

oo, Annales UMCS

£ w%” “;c’; Annales UMCS Informatica Al 2 (2004) 47-56 Informatica

‘—%_? o Lublin-Polonia
“aum® Sectio Al

http://www.annales.umcs.lublin.pl/

Simulations of quantum systems evolution
with quantum-octave package

Piotr Gawron, Jarostaw A. Miszczak”

Institute of Theoretical and Applied Informatics of the Polish Academy of Sciences,
Battycka 5, 44-100 Gliwice, Poland

Abstract

Article presents package of functions for GNU Octave computer algebra system. Those
functions were designed to perform simple but not necessary efficient simulations of quantum
systems, especially quantum computers. The most important feature of this package is the ability
to perform calculations with mixed states.

We describe application of quantum-octave package for simulation of Grovers algorithm,
which is one of the most important quantum algorithms. We also list other possible calculations,
which can be performed with this package.

1. Introduction

The simulation of quantum computers is an important issue in quantum
informatics. No one expects that physical quantum computers will be built in
less than 20-30 years. That is why simulation of quantum systems is the only
way for testing existing quantum algorithms and observing quantum effects
which are connected with processing and transferring of quantum information.

In this article we present quantum-octave [1] package of functions for GNU
Octave [2,3] computer algebra system (CAS), which allows to observe unitary
evolution of quantum systems. This package was developed by authors as a tool
for simple calculations on pure and mixed quantum states. GNU Octave was
selected as a target CAS because of its flexibility and portability. Described
package allows performing many types of calculations. One of its usages is
calculation of entanglement measures for pure and mixed states. It can also be
used to observe quantum errors and application of quantum error correcting
codes.

* Corresponding author: e-mail address: miszczak@iitis.gliwice.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

48 Piotr Gawron, Jarostaw A. Miszczak

2. Description of package

In this section we briefly describe functions provided by quantum-octave
package and present its possibilities. For a more detailed description of function
please refer to on-line help distributed with source files [1]. We also present
implementation of Deutsch algorithm [4,5,6] as an example of available
commands. In the next section we present implementation of Grovers algorithm
[7-9] which allows to perform computation on mixed states.

Functions described here were present in version test3 of quantum-octave.
Most of them probably won’t be changed in near future, but it is possible that
some internals will be changed.

GNU Octave is computer algebra system (CAS) primary designed to perform
numerical rather then symbolical calculations. Basic data structure in Octave is
matrix, but it is also possible to operate on C-like structures. Syntax of Octave
language is very similar to MatLab [10] language. GNU Octave is distributed as
a GPL [11] software and it can be used in a wide range of UNIX like operating
systems, including Linux.

Low level quantum computation is based on finite dimensional matrix
calculus. GNU Octave was chosen by authors to create quantum computation
package, because its language was developed to operate on matrices and it
implements wide range of functions useful for matrix-based computing. That
was important because quantum-octave was meant to be a tool for performing
simple simulations quickly. Because simplicity was primary advantage of this
package not every operation is implemented in the most efficient way. It is
possible to simulate up to 10 qubits using quantum-octave.

Most of existing tools designed for testing quantum algorithms are based on
quantum gate array model [5,6]. According to our knowledge only QuCalc
[3,12] package for Mathematica [14] is an exception. In this model quantum
operations are described as a unitary matrix and the states of quantum computers
are described as unit vectors in Hilbert space. Computation process is described
as a matrix multiplication. For realistic physical experiments it is important to
include quantum errors. From theoretical point of view it is also interesting to
observe quantum effects connected with operations on mixed quantum states.

Another interesting issue in quantum information is the problem of
entanglement and its connections with mixed states [15-17]. There is no unique
entanglement measure for mixed states, and most of existing measures cannot be
used for numerical calculations. But it is possible to calculate some measures
based on the numerical properties of density matrix.

For those reasons we include mixed states (density matrices) formalism in
quantum-octave.

Package quantum-octave allows a user to operate on different levels of
abstraction. Lower level functions allow to assembly complex quantum gates,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

Simulations of quantum systems evolution ... 49

including gates with arbitrary controlled and target qubits, to prepare pure states
and arbitrary mixtures of pure states. The examples of low level commands are:

— Ket - produces pure quantum state,

— State — produces density matrix for a given pure state,

— MixStates - produces mixture of density matrices,

— ProductGate — allows to build many qubit gates,

— ControlledGate — allows to build controlled gate with many control

and target qubits,

— CNot = ControlledGate(2,Not, [1],[2]).

The last equality indicates that CNot is an abbreviation for
ControlledGate(2,Not,[1],[2]). Function takes Control ledGate
for arguments. First argument defines size of output gate and second elementary
gate to be controlled. Any one-qubit gate can be used as a second argument for
ControlledGate function. Third and fourth arguments of this function
represent controlled and target qubits respectively and function won’t work
properly if they overlap.

octave:1> sl = State(Normalize(Ket([1,0])+Ket([0,1])))
sl =

0.00000 0.00000 0.00000 0.00000
0.00000 0.50000 0.50000 0.00000
0.00000 0.50000 0.50000 0.00000
0.00000 0.00000 0.00000 0.00000
octave:2> s2 = State(Normalize(Ket([1,1]D+Ket([0,1D))
s2 =
0.00000 0.00000 0.00000 0.00000
0.00000 0.50000 0.00000 0.50000
0.00000 0.00000 0.00000 0.00000
0.00000 0.50000 0.00000 0.50000
octave:3> s3 = MixStates (sl1,s2)
s3 =
0.00000 0.00000 0.00000 0.00000
0.00000 0.50000 0.25000 0.25000
0.00000 0.25000 0.25000 0.00000
0.00000 0.25000 0.00000 0.25000

Fig. 1. Example of mixing pure states using Normal i ze and MixStates functions

MixStates command was designed to produce arbitrary mixture of pure
quantum states. One should remember that superposition of pure states is not

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

50 Piotr Gawron, Jarostaw A. Miszczak

normalized and function Normal ize should be used before mixing states to
preserve proper interpretation of results. Numerical values of mixture
coefficients do not have to sum to one — proper density matrix will be produced
automatically.

In Fig. 1 example of MixStates command is presented. First we produce
density matrices S1 S2, for pure states using function State. Last command
produces uniform mixture of states S1 and S2.

Second group of commands allow controlling evolution of quantum states.
Commands from this group are:

— Measure

— Evolve

Function Evolve implements unitary evolution of mixed quantum states and
it is performed according to the standard rule [13]

P(t)AP(0)4", (1)
where P(0) is state of the system in time ¢ = 0 and a unitary matrix A4 represents
evolution and 4" represents a conjugate matrix. State of the system after time ¢ is
represented by matrix P(2).

Function Measure implements orthogonal measurement and it returns a
vector representing probability distribution on space of results of measurement.
This distribution can be plotted using PlotProbs command described below.
Only orthogonal measurements are supported, but authors are planning to extend
function Measure in future.

Package also provides commands useful for visualization of the results. Some
of them are based on GNU Octave command plot, which allows producing
two dimensional plots of functions. Commands from this group are:

— PrintAmps

— PrintProbs

— PlotAmps

— PlotProbs

Commands PrintAmps and PlotAmps for a given ket vector return
numerical values of amplitudes for every base state. First command returns list
of values while second one produces a two dimensional plot. One should note
that in the second case real or imaginary part of amplitude can be plotted and
behavior of function is determinated by its third argument.

PrintProbs and PlotProbs can be used for visualization of probability
distributions obtained with Measure command. Those functions accept vector
representing probability distributions as an argument.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

Simulations of quantum systems evolution ... 51

In Fig. 2 source code for Deutsch algorithm is presented. Function
deutsch? allows starting quantum calculation from arbitrary mixed state. In
our case we start from ground state State((Ket [0,0])).

input: identifier of function and initial state

output: state after execution of Deutsch’s algorithm
function ret = deutsch(num, state)

preparation of gates corresponding to

set of functions {0,1}->{0,1}

fl = 1d(2);

f2 = kron(1d(1), Not);

3 = CNot(2, [1], [2D);

f4 = kron(Not, 1d(1))* CNot(2, [1]1, [2]DD* kron(Not, 1d(1));

choice of function

it (num == 1)

=11;

elseift (num == 2)

=12;

elseif (num == 3)

=f3;

elseift (num == 4)

=14;

else

error: no such function

endif

preparation of algorithm gate
algorithm = kron(H,H) * kron(1d(1),Not) * ¥ * kron(H,
1d(1));

execution of Deutsch’s algorithm
ret = Evolve(algorithm,state);
endfunction

Fig. 2. Deutsch algorithm in quantum-octave

Fig. 3 presents probability distributions of results after final measurement in
Deutsch’s algorithm. Plots were obtained with PlotProbs function.

! See directory examp les in quantum-octave distribution.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

52 Piotr Gawron, Jarostaw A. Miszczak
8.6 8.6
1
8.5 8.5 £z

" m
L1

L oa.4 oA, 4
+ hal

o83 2 8.3
i]
= a
o C

£oB.z Eoa.z

@1 @1

@ @

@ 1 2 3 @ 1 2 3
States States
M a6
£2 4

ens 8.5
n
t '

bt - @4
o a4 z

8.3 = BR
u o
=2 o
o <

&a.e & ez

Al g1

@

@
b B . 2 @ 1 2 2
States States

Fig. 3. Probability distributions after execution of Deutsch algorithm for all four functions

3. Simulation of Grover’s algorithm

In [18] requirements for physical realization of useful quantum computer are
listed. One of them is the requirement that starting state for execution of any
algorithm should be ground state of the system we operate on. In this section we
present result of Grover’s algorithm simulation for different initial states.

Grover’s algorithm is one of the most important quantum algorithms.
Potentially it could be used to search an unsorted database. Detailed description
of this algorithm can be found in [7-9]. We present here implementation of
Grover’s algorithm in quantum-octave which allows observation of quantum
errors propagation during execution of algorithm.

Source code in Fig. 4 presents implementation of function grover. This
function accepts integer number as a first parameter and a mixed state as a
second parameter. This number could be interpret as database key. First
parameter represents number for which probability of measurement will be
increased. Second argument must be a proper mixed state. As an example pure
ground state modified by some mixture of pure base states can be used.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

Simulations of quantum systems evolution ... 53

State sm defined below is a mixture of 5 base states
sm = MixStates (x0, s0, x/, sl, x2, s2, x3, s3, x4, s4), 2)
parameters x0, xI, x2, x3,x4 can be changed to change statistical contents of state
in canonical base. In the first example we have x0=0.9 and x/=x2=x3=x4=0.1
and in the second example we put x0=0.5 and x/=x2=x3=x4=0.2. Note that
those coefficients do not sum to 1 because they are implicitly normalized.
States 50 ,..., s4 are defined as:

sO0 = State (Ket([0,0,0])),
sl = State (Ket([0,0,1])),
s2 = State (Ket([0,1,0])),
s3 = State (Ket([0,1,1])),
s4 = State (Ket([1,0,0]))-

Input: num — quantum database key, state — initial state
output: state after execution of Grover’s algorithm
function ret = grover(num, state)

get number of qubits
qubits = log2(size(state)(1));

list of all qubits
tvec = [1:qubits];

number of Grover’s iterations
k = ceil((pi/8)*sqrt(size(state)(1)));

Welsh-Hadamrd gate of register size
bigh = ProductGate(qubits,H,tvec);

Grover iterations
Step 1: preparation, set uniform distribution on register
ret = Evolve(bigh,state);

Step 2: i1terate k-times
for 1 = 1:K
Step 2.1: perform oracle gate on register
ret = Evolve(oracle(num, qubits),ret);

Step 2.2: perform diffusion gate on register
ret = Evolve(diffuse(qubits),ret);
endfor
endfunction

Input: num — quantum database key,
qubits — number of qubits in register
output: gate that performs phase flip on base state
labeled by num
on given number of qubits

function ret = oracle (num, qubits)
ret = eye (2™°qubits);
ret(num+1l,num+1l) = -1;

endfunction

input: num — qubits — number of qubits in register

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

54 Piotr Gawron, Jarostaw A. Miszczak

output: gate that performs inversion about the mean

on given number

of qubits
function ret = diffuse(qubits)

tvec = [1:qubits];

tmp = zeros(1l,qubits);

ret = ProductGate(qubits,H,tvec);
ret = ret*(2*Projection(tmp) - Id(qubits));
ret = ret*ProductGate(qubits,H,tvec);
endfunction

Fig. 4. Source code for Grover iteration with starting state as a parameter

Using first state as a starting point for grover? function we get probability
distribution presented in Fig. 4. In Fig. 5 probability distribution for second
starting state is plotted.

1

d.68

]
L.
T

Prokakilitiea

o
*
T

@ L 2 e 4 5 E 7

States

Fig. 5. Probability distribution obtained after Grovers algorithm with
starting state Sm1 defined as mixture (2) with x0=0.9 and x1=x2=x3=x4=0.1

We can see that starting from state other than ground state we lose
information about result and there is stronger probability that we obtain wrong
answer, which means that we measure the state different from predicted. In
physical realization this means that we have to repeat experiment to minimize
probabilities of error. If the mixture is not pure enough all information will be

% See directory examples in quantum-octave distribution.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

Simulations of quantum systems evolution ... 55

lost (see Fig. 5). Strong modification of mixture is reflected by higher
probability of error.

This process occurs in physical situations, because obtaining pure ground
state is a hard task in some implementations. For example in NMR based
quantum computing experiments so called pseudo-pure state is used. It contains
only small amount of ground state in statistical contents and problem of
observation a result is resolved during the measurement.

4. Conclusions

We have shown that quantum-octave package can be useful to simulate,
analyze and observe evolution of states during execution of quantum algorithms.

1 T T T T T T T T

Frobabllitles

a 1 = k) + g 1) 7
States

Fig. 6. Probability distribution obtained after Grovers algorithm with
starting state Sm2 defined as mixture (2) with x0=0.5 and x1=x2=x3=x4=0.2

It is also significant that observation of errors propagation can be easily
realized with quantum-octave. It is possible to introduce errors during execution
of algorithms, for example by changing unitary transformations for operations in
algorithm or by introducing operations which describe quantum errors.

This work was financially supported by the grant from the State Committee
for Scientific Research, Republic of Poland, KBN grant no. 7 T11C 017 21.

References

[1] Project quantum-octave, http://quantum-octave.sourceforge.net/.
[2] GNU Octave home page, http://www.octave.org/.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:28:34

56 Piotr Gawron, Jarostaw A. Miszczak

[3] OctaveForge, http://octave.sourceforge.net/.

[4] Deutsch D., Quantum theory, the Church-Turing principle and the universal quantum
computer, Proc. Roy. Soc. Lond., A 400 (1985).

[5] Deutsch D., Quantum computation networks, Proc. Roy. Soc. Lond., A 425 (1989).

[6] Mosca M., Quantum computer algorithms, Ph.D. thesis, University of Oxford, (1999).
Grover, Lov K., Quantum Mechanics Helps in Searching for a Needle in a Haystack, Phys.
Rev. Lett., 79 (1997) 325.

[7] Grover, Lov K., 4 framework for fast quantum mechanical algorithms, in: Proceedings of

30th Annual ACM Symposium on Theory of Computing (STOC), (1998) 53.

Jozsa, R., Searching in Grover’s search algorithm, arXiv:quant-ph/9706033.

8]

] MathLab home page, http://www.mathworks.com/.

0] GNU general public license, http://www.gnu.org/.

1] Dumais P., Touchette H., QuCalc — Quantum Calculator, http://crypto.cs.mcgill.ca/QuCalc/.

2] Phillips F., Quantum Computation, The Mathematica Journal, 8(1) (2001).

3] Mathematica home page, http://www.wolfram.com/.

4] Preskill, J., Lecture notes on physics: Quantum computation,
http://www.theory.caltech.edu/people/preskill/ph229/.

[15] Werner R.F., Quantum states with Einstein-Rosen-Podolsky correlations admitting a hidden-

variable model, Phys. Rev. A, 40 (1989) 4277.

[16] BruB3 D., Characterizing entanglement, J. Math. Phys, 43 (2002) 4327.

[17] DiVincenzo D.P., Loss D., Quantum information is physical, Superlattices and

Microstructures 23, 419 (1998), arXiv: cond-mat/9710259.

[

[9
[1
[1
[1
[1
[1

http://www.tcpdf.org

