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Abstract 

Article presents package of functions for GNU Octave computer algebra system. Those 
functions were designed to perform simple but not necessary efficient simulations of quantum 
systems, especially quantum computers. The most important feature of this package is the ability 
to perform calculations with mixed states. 

We describe application of quantum-octave package for simulation of Grovers algorithm, 
which is one of the most important quantum algorithms. We also list other possible calculations, 
which can be performed with this package. 
 

1. Introduction 
The simulation of quantum computers is an important issue in quantum 

informatics. No one expects that physical quantum computers will be built in 
less than 20-30 years. That is why simulation of quantum systems is the only 
way for testing existing quantum algorithms and observing quantum effects 
which are connected with processing and transferring of quantum information. 

In this article we present quantum-octave [1] package of functions for GNU 
Octave [2,3] computer algebra system (CAS), which allows to observe unitary 
evolution of quantum systems. This package was developed by authors as a tool 
for simple calculations on pure and mixed quantum states. GNU Octave was 
selected as a target CAS because of its flexibility and portability. Described 
package allows performing many types of calculations. One of its usages is 
calculation of entanglement measures for pure and mixed states. It can also be 
used to observe quantum errors and application of quantum error correcting 
codes. 
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2. Description of package 
In this section we briefly describe functions provided by quantum-octave 

package and present its possibilities. For a more detailed description of function 
please refer to on-line help distributed with source files [1]. We also present 
implementation of Deutsch algorithm [4,5,6] as an example of available 
commands. In the next section we present implementation of Grovers algorithm 
[7-9] which allows to perform computation on mixed states. 

Functions described here were present in version test3 of quantum-octave. 
Most of them probably won’t be changed in near future, but it is possible that 
some internals will be changed. 

GNU Octave is computer algebra system (CAS) primary designed to perform 
numerical rather then symbolical calculations. Basic data structure in Octave is 
matrix, but it is also possible to operate on C-like structures. Syntax of Octave 
language is very similar to MatLab [10] language. GNU Octave is distributed as 
a GPL [11] software and it can be used in a wide range of UNIX like operating 
systems, including Linux. 

Low level quantum computation is based on finite dimensional matrix 
calculus. GNU Octave was chosen by authors to create quantum computation 
package, because its language was developed to operate on matrices and it 
implements wide range of functions useful for matrix-based computing. That 
was important because quantum-octave was meant to be a tool for performing 
simple simulations quickly. Because simplicity was primary advantage of this 
package not every operation is implemented in the most efficient way. It is 
possible to simulate up to 10 qubits using quantum-octave.  

Most of existing tools designed for testing quantum algorithms are based on 
quantum gate array model [5,6]. According to our knowledge only QuCalc 
[3,12] package for Mathematica [14] is an exception. In this model quantum 
operations are described as a unitary matrix and the states of quantum computers 
are described as unit vectors in Hilbert space. Computation process is described 
as a matrix multiplication. For realistic physical experiments it is important to 
include quantum errors. From theoretical point of view it is also interesting to 
observe quantum effects connected with operations on mixed quantum states.  

Another interesting issue in quantum information is the problem of 
entanglement and its connections with mixed states [15-17]. There is no unique 
entanglement measure for mixed states, and most of existing measures cannot be 
used for numerical calculations. But it is possible to calculate some measures 
based on the numerical properties of density matrix.  

For those reasons we include mixed states (density matrices) formalism in 
quantum-octave. 

Package quantum-octave allows a user to operate on different levels of 
abstraction. Lower level functions allow to assembly complex quantum gates, 
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including gates with arbitrary controlled and target qubits, to prepare pure states 
and arbitrary mixtures of pure states. The examples of low level commands are: 

– Ket – produces pure quantum state, 
– State – produces density matrix for a given pure state, 
– MixStates – produces mixture of density matrices, 
– ProductGate – allows to build many qubit gates, 
– ControlledGate – allows to build controlled gate with many control 

and target qubits, 
– CNot = ControlledGate(2,Not,[1],[2]). 
The last equality indicates that CNot is an abbreviation for 

ControlledGate(2,Not,[1],[2]). Function takes ControlledGate 
for arguments. First argument defines size of output gate and second elementary 
gate to be controlled. Any one-qubit gate can be used as a second argument for 
ControlledGate function. Third and fourth arguments of this function 
represent controlled and target qubits respectively and function won’t work 
properly if they overlap. 
 

octave:1> s1 = State(Normalize(Ket([1,0])+Ket([0,1]))) 
s1 = 
  

  0.00000  0.00000  0.00000  0.00000 
  0.00000  0.50000  0.50000  0.00000 
  0.00000  0.50000  0.50000  0.00000 
  0.00000  0.00000  0.00000  0.00000 

  
octave:2> s2 = State(Normalize(Ket([1,1])+Ket([0,1]))) 

s2 = 
  

  0.00000  0.00000  0.00000  0.00000 
  0.00000  0.50000  0.00000  0.50000 
  0.00000  0.00000  0.00000  0.00000 
  0.00000  0.50000  0.00000  0.50000 

  
octave:3> s3 = MixStates (s1,s2) 

s3 = 
  

  0.00000  0.00000  0.00000  0.00000 
  0.00000  0.50000  0.25000  0.25000 
  0.00000  0.25000  0.25000  0.00000 
  0.00000  0.25000  0.00000  0.25000 

Fig. 1. Example of mixing pure states using Normalize and MixStates functions 
 

MixStates command was designed to produce arbitrary mixture of pure 
quantum states. One should remember that superposition of pure states is not 
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normalized and function Normalize should be used before mixing states to 
preserve proper interpretation of results. Numerical values of mixture 
coefficients do not have to sum to one – proper density matrix will be produced 
automatically.  

In Fig. 1 example of MixStates command is presented. First we produce 
density matrices s1 s2, for pure states using function State. Last command 
produces uniform mixture of states s1 and s2. 

Second group of commands allow controlling evolution of quantum states. 
Commands from this group are: 

– Measure 
– Evolve 
Function Evolve implements unitary evolution of mixed quantum states and 

it is performed according to the standard rule [13] 
 ( ) ( )0P t AP A+ , (1) 
where P(0) is state of the system in time t = 0 and a unitary matrix A represents 
evolution and A+ represents a conjugate matrix. State of the system after time t is 
represented by matrix P(t).  

Function Measure implements orthogonal measurement and it returns a 
vector representing probability distribution on space of results of measurement. 
This distribution can be plotted using PlotProbs command described below. 
Only orthogonal measurements are supported, but authors are planning to extend 
function Measure in future. 

Package also provides commands useful for visualization of the results. Some 
of them are based on GNU Octave command plot, which allows producing 
two dimensional plots of functions. Commands from this group are: 

– PrintAmps 
– PrintProbs 
– PlotAmps 
– PlotProbs 
Commands PrintAmps and PlotAmps for a given ket vector return 

numerical values of amplitudes for every base state. First command returns list 
of values while second one produces a two dimensional plot. One should note 
that in the second case real or imaginary part of amplitude can be plotted and 
behavior of function is determinated by its third argument. 
PrintProbs and PlotProbs can be used for visualization of probability 

distributions obtained with Measure command. Those functions accept vector 
representing probability distributions as an argument. 
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In Fig. 2 source code for Deutsch algorithm is presented. Function 
deutsch1 allows starting quantum calculation from arbitrary mixed state. In 
our case we start from ground state State((Ket [0,0])). 

 
# input: identifier of function and initial state 
# output: state after execution of Deutsch’s algorithm 
function ret = deutsch( num, state ) 
# preparation of gates corresponding to  
# set of functions {0,1}->{0,1} 
f1 = Id(2); 
f2 = kron(Id(1), Not); 
f3 = CNot(2, [1], [2]); 
f4 = kron(Not, Id(1))* CNot(2, [1], [2])* kron(Not, Id(1)); 
# choice of function 
if (num == 1) 
f=f1; 
elseif (num == 2) 
f=f2; 
elseif (num == 3) 
f=f3; 
elseif (num == 4) 
f=f4; 
else 
# error: no such function 
endif  
# preparation of algorithm gate 
algorithm = kron(H,H) * kron(Id(1),Not) * f * kron(H, 
Id(1)); 
# execution of Deutsch’s algorithm 
ret = Evolve(algorithm,state); 
endfunction 

Fig. 2. Deutsch algorithm in quantum-octave 
 

Fig. 3 presents probability distributions of results after final measurement in 
Deutsch’s algorithm. Plots were obtained with PlotProbs function.  

                                                 
1 See directory examples in quantum-octave distribution. 
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Fig. 3. Probability distributions after execution of Deutsch algorithm for all four functions 

 
3. Simulation of Grover’s algorithm 

In [18] requirements for physical realization of useful quantum computer are 
listed. One of them is the requirement that starting state for execution of any 
algorithm should be ground state of the system we operate on. In this section we 
present result of Grover’s algorithm simulation for different initial states. 

Grover’s algorithm is one of the most important quantum algorithms. 
Potentially it could be used to search an unsorted database. Detailed description 
of this algorithm can be found in [7-9]. We present here implementation of 
Grover’s algorithm in quantum-octave which allows observation of quantum 
errors propagation during execution of algorithm. 

Source code in Fig. 4 presents implementation of function grover. This 
function accepts integer number as a first parameter and a mixed state as a 
second parameter. This number could be interpret as database key. First 
parameter represents number for which probability of measurement will be 
increased. Second argument must be a proper mixed state. As an example pure 
ground state modified by some mixture of pure base states can be used. 
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State sm defined below is a mixture of 5 base states 
 sm = MixStates (x0, s0, x1, s1, x2, s2, x3, s3, x4, s4), (2) 
parameters x0, x1, x2, x3,x4 can be changed to change statistical contents of state 
in canonical base. In the first example we have x0=0.9 and x1=x2=x3=x4=0.1 
and in the second example we put x0=0.5 and x1=x2=x3=x4=0.2. Note that 
those coefficients do not sum to 1 because they are implicitly normalized. 

States s0 ,..., s4 are defined as: 
 s0 = State (Ket([0,0,0])), 
 s1 = State (Ket([0,0,1])), 
 s2 = State (Ket([0,1,0])), 
 s3 = State (Ket([0,1,1])), 
 s4 = State (Ket([1,0,0])). 
 
# input: num – quantum database key, state – initial state 

# output: state after execution of Grover’s algorithm 
function ret = grover( num, state ) 

# get number of qubits 
qubits = log2(size(state)(1)); 

# list of all qubits 
tvec = [1:qubits]; 

# number of Grover’s iterations 
k = ceil((pi/8)*sqrt(size(state)(1))); 
# Welsh-Hadamrd gate of register size  
bigh = ProductGate(qubits,H,tvec); 

# Grover iterations 
# Step 1: preparation, set uniform distribution on register 

ret = Evolve(bigh,state); 
# Step 2: iterate k-times 

for i = 1:k 
# Step 2.1: perform oracle gate on register  

ret = Evolve(oracle(num, qubits),ret); 
# Step 2.2: perform diffusion gate on register 

ret = Evolve(diffuse(qubits),ret); 
endfor 

endfunction 
 

# input: num – quantum database key,  
# qubits – number of qubits in register 

# output: gate that performs phase flip on base state 
labeled by num  

# on given number of qubits  
function ret = oracle (num, qubits) 

ret =  eye (2^qubits); 
ret(num+1,num+1) = -1; 

endfunction 
 

# input: num – qubits – number of qubits in register 
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# output: gate that performs inversion about the mean 
on given number  
# of qubits  

function ret = diffuse(qubits) 
tvec = [1:qubits]; 

tmp = zeros(1,qubits); 
ret = ProductGate(qubits,H,tvec); 

ret = ret*(2*Projection(tmp) - Id(qubits)); 
ret = ret*ProductGate(qubits,H,tvec); 

endfunction 

Fig. 4. Source code for Grover iteration with starting state as a parameter 
 

Using first state as a starting point for grover2 function we get probability 
distribution presented in Fig. 4. In Fig. 5 probability distribution for second 
starting state is plotted. 

 
Fig. 5. Probability distribution obtained after Grovers algorithm with 

 starting state sm1 defined as mixture (2) with  x0=0.9 and x1=x2=x3=x4=0.1 
 

We can see that starting from state other than ground state we lose 
information about result and there is stronger probability that we obtain wrong 
answer, which means that we measure the state different from predicted. In 
physical realization this means that we have to repeat experiment to minimize 
probabilities of error. If the mixture is not pure enough all information will be 

                                                 
2 See directory examples in quantum-octave distribution. 
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lost (see Fig. 5). Strong modification of mixture is reflected by higher 
probability of error. 

This process occurs in physical situations, because obtaining pure ground 
state is a hard task in some implementations. For example in NMR based 
quantum computing experiments so called pseudo-pure state is used. It contains 
only small amount of ground state in statistical contents and problem of 
observation a result is resolved during the measurement. 

 
4. Conclusions 

We have shown that quantum-octave package can be useful to simulate, 
analyze and observe evolution of states during execution of quantum algorithms. 

 
Fig. 6. Probability distribution obtained after Grovers algorithm with   

starting state sm2 defined as mixture (2) with  x0=0.5 and x1=x2=x3=x4=0.2 
 
It is also significant that observation of errors propagation can be easily 

realized with quantum-octave. It is possible to introduce errors during execution 
of algorithms, for example by changing unitary transformations for operations in 
algorithm or by introducing operations which describe quantum errors. 

This work was financially supported by the grant from the State Committee 
for Scientific Research, Republic of Poland, KBN grant no. 7 T11C 017 21.  
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