

Annales UMCS Informatica AI 4 (2006) 72-85
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Specification of dependency areas in UML designs

Anna Derezińska*

Institute of Computer Science, Warsaw University of Technology,

Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract
A concept of dependency areas can help in tracing an impact of artifacts of a project

(requirements, elements of the UML design, extracts of the code) and assist in their evolution. The
dependency area of an element of a UML design is a part of the design that is highly influenced by
the given initial element. Dependency areas are identified using sets of propagation rules and
strategies. Selection strategies control application of many, possible rules. Bounding strategies
limit the number of elements assigned to the areas. This paper is devoted to the specification of the
rules and strategies. They are specified using an extended UML meta-model and expressions in the
Object Constraint Language (OCL).

1. Introduction
The Unified Modeling Language (UML) [1] is intended as a language to be

used for model-driven development. A model gives the ability to consistently
show different views of the same design. The views are expressed by the
relevant diagrams of the UML. As the UML is semantically rich, we can widely
describe the system that will be developed, but we cannot guarantee the
consistency of the designed model.

There are three natures of checking the rightness of user diagrams, namely
completeness, consistency and correctness [2-4]. The completeness states
whether the user requirements are completely reflected on diagrams of a model.
The consistency is responsible for checking whether the diagrams are coherently
designed with only one requirement. It encompasses so-called vertical
consistency that confirms the relation between corresponding models of different
abstraction levels (inter-model consistency). Finally, the correctness decides
whether the user diagrams are compliant to the syntactic and semantic rules of
the UML standard. Within a model it is also named horizontal or intra-model
consistency. In some cases it is impossible to conclude whether diagrams are
inconsistent or incomplete.

*E-mail address: A.Derezinska@ii.pw.edu.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Specification of dependency areas in UML designs 73

The industrial projects are often incomplete [5]. They comprise mostly class
diagrams. Their state diagrams are assigned only for selected classes. Such
projects can have redundant or contradictory information. Traceability
information can be partially missing or not up to dated. The development tools
for UML models can check the syntax of the diagrams, but the consistency
verification is still unsatisfactory. A systematic modeling strategy, e.g. RUP
(Rational Unified Process) [6], can recommend an appropriate structure of a
model. However, its successful application depends on the effort and experience
of a developer of the model.

Addressing the problems of comprehension and evolution of UML designs,
a framework for the identification of dependency areas was introduced [7]. The
dependency area of an initial element is a part of the model consisting of
elements that are highly related to, and influenced by, this element (or a set of
initial elements).

The identification of the dependency areas is not a final goal, but one step of
a model-driven development. Dependency between parts of design artifacts is an
issue of very high practical relevance. The approach of dependency areas can be
beneficially applied in the following domains:

– Support understanding of a design.
– Ensure that requirements are correctly implemented.
– Determine the effects of parts of the specification.
– Monitor the changes in the design.
– Assist in testing – assuring that an adequate part of the design was covered

by the tests.
Based on the dependency areas, defined in a design by a prototype tool, we

selected the appropriate parts of the code generated from the design [7]. The
automatically selected code was used in the further evaluation of the program
dependability.

Dependency areas are identified using the sets of propagation rules and
strategies. Selection strategies control application of many, possible rules.
Bounding strategies limit the number of elements assigned to the areas.

The approach deals with imperfect designs, incomplete or inconsistent, in a
tool-supportable way. Conflicting and ambiguous situations are resolved
according to given strategies. The usage of the rules can be restricted by the
strategies. In the strategies, the consistency with the UML specification is
preferred. In some ambiguous cases the strategies are based on heuristics that try
to reveal the intensions of a developer.

The focus of this paper is on the precise definition of the rules and strategies
using a UML meta-model combined with a textual specification written in the
Object Constraint Language (OCL) [8]. The OCL, a generic query language is a
part of the current standard of modeling, the UML [1].

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Anna Derezińska 74

The paper is structured as follows. Section 2 presents an overlook of a
concept of dependency areas and its framework. The specification of
propagation rules and strategies is explained in the next sections. Section 5 gives
basic information about experiments and a tool support. Remarks about related
work and conclusions finish the paper.

2. Dependency areas

A concept of dependency areas is a successor of the idea of a dependency
region [7]. It was later revised and specified as an extension of the UML meta-
model [9]. The term area replaced the former term region, because the notion of
a region is used in UML 2.0 for structuralizing of state machines [1].

An outlook of the idea of dependency areas is given below. The framework
for the identification of dependency areas is briefly reminded in Section 2.2.

2.1. A concept of dependency areas

The potential dependency area of an initial element a – PDA(a) – is the set
of all possible model elements accessible from x through the relations available
in the design: traceability, dependency, containment, etc.

The dependency area of an initial element a – DA(a) – is a certain subset of
PDA(a). It is obtained by reducing the potential dependency area according to
given strategies.

One can also define the dependency area of a given set of initial elements.
The identification of the dependency area of a given initial element is based

on the three general strategies:
1. Propagation of relations.
2. Selection of relations.
3. Bounding potential dependency areas.
The first strategy explores different relations between elements of a design. It

decides about assigning elements to potential dependency areas. The
propagation strategy can be expressed by a set of propagation rules. A
propagation rule states that if an element x of a design belongs to a current
PDA(a) and other pre-conditions of the rule are satisfied then the selected
elements of this design are also included in the PDA(a).

Different traceability relations can be identified for an element of a design.
Therefore, the element can satisfy the pre-conditions of different propagation
rules. Moreover, some of the relations can be incomplete, ambiguous, or even
contradictory. According to a selection strategy (2.), we choose which of the
propagation rules should be applied in the defined cases.

Many elements of a design can be assigned to a certain PDA(a). In an
extreme case, even all elements of the design can belong to the same PDA(a).
Such an area will not be useful for the applications of dependency areas,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Specification of dependency areas in UML designs 75

mentioned in the previous section. Therefore, a potential dependency area can be
reduced according to a given bounding strategy (3.).

The idea of dependency areas was adopted for UML designs [7,9]. It was
especially aimed at imperfect designs. A given UML design could be incomplete
or the information from different diagrams is inconsistent. Therefore, the
selection and bounding strategies are based on some heuristics that presume the
intentions of a design developer. Using these strategies the identification of
dependency areas can be performed automatically. The identification of the
dependency area of an element a – DA(a) (i.e. its quality) can be verified by the
following conditions:

– all elements of DA(a) are directly or indirectly dependent on the element a
assuming the defined types of dependency,

– no element of DA(a) is superfluous – i.e. not substantially dependent on
the element a.

2.2. Meta-model of dependency areas

A framework for identification of dependency areas in UML designs was
defined using a conceptual UML model [9]. The model can be interpreted on a
meta-model level – as an extension of the UML meta-model [1]. The meta-
model for identification of dependency areas will be called briefly DA meta-
model. A small part of the DA meta-model is shown in Fig. 1.

{subset of ta}

DependencyArea

TraceTerminator

TraceabilityStrategy

PropagationRule

1..n

+tr

1..n

MetamodelTraceLinker

AreaMember

1..n

0..n

+/ownedElement
1..n

+da0..n

consistsOf

PotentialDependencyArea

1..n

1..n

+ta
1..n

+pda
1..n

consistsOf

InitialElement

1..n
+pda

1..n

+st
ElementInPDA

bounding : Boolean = false

+st

Fig. 1. A part of the DA meta-model – dependency areas

A potential dependency area is defined for a given element of the type

InitialElement. The identification of potential dependency areas assigned to the
initial element is controlled by TraceabilityStrategies. A traceability strategy
consists of a set of PropagationRules. The class DependencyArea is a
specialization of the class PotentialDependencyArea.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Anna Derezińska 76

Any area consists of elements of the type AreaMember. The abstract type
AreaMember combines two concrete types of elements TraceTerminator and
MetamodelTraceLinker. These elements are derived from various elements of
the UML meta-model.

3. Propagation rules

The strategies of the framework are defined using sets of rules. The rules are
specified with the notation of the Object Constraint Language (OCL) [8], which
is a part of the UML standard. In this paper, we focus on the way of
specification of the rules and strategies defined for the identification of
dependency areas. The approach will be illustrated by simple examples. The
complete mapping of the DA meta-model to the whole UML specification will
be not given, for the brevity reasons.

A propagation strategy consists of propagation rules. A propagation rule can
determine that different elements of the design are included to a current PDA(a).
These elements can be for example: properties of a class that belongs to the
PDA(a), a use case included in another use case from the PDA(a), a whole
diagram assigned to an element belonging to the PDA(a). The above examples
correspond to the relations within a UML model. Other propagation rules are
defined also using different relations between the models (trace, access, usage
etc.).

This section explains how the propagation rules are specified. First, a simple
example of an OCL specification of a rule is shown. Next, the same example is
defined more precisely in the context of the DA meta-model.

3.1. Specification of propagation rules in the OCL

Propagation rules are defined as pre and post-conditions of an operation. The
conditions are written in the OCL. The following example explains an idea of a
propagation rule. The reference to the UML meta-model is illustrated by an
appropriate extract from the meta-model diagram [1].

The example considers a relation of the generalization between two elements
of a model. Let us assume that an element x belongs to a certain PDA(a). The
element x is connected with the generalization y to its base element z. The
assignment of the specific element (here x) to PDA(a) implies the assignment of
a more general element (here z) to the same area. The considered element x can
be for example a use case, a class or a signal. The rule R1 is based on the part of
the UML meta-model shown in Fig. 2. The generalization z has its
corresponding class in the meta-model, similarly to the elements x and y.
Therefore, the generalization z is also included in the same potential dependency
area PDA(a).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Specification of dependency areas in UML designs 77

The pre- and post-conditions are interpreted using the combined domain of
elements from the conceptual model and the UML meta-model. The OCL
expression tr.st.pda.ta denotes the set of elements comprised in a potential
dependency area of an initial element. It is specified by the names of the roles
from the classes of the meta-model (Fig. 1). The navigation from the
PropagationRule approaches the TraceabilityStrategy (the role tr), then the
InitialElement (the role st) and its PotentialDependencyArea (pda), and finally
the elements of this area (ta). The standard OCL operation A->includes(a)
denotes that an element a is contained in the set defined by the expression A.

Rule R1 pre: tr.st.pda.ta -> includes(x) and
 x.oclIsKindOf(Classifier) and
 x.generalization -> includes(z) and
 z.general = y
 post:tr.st.pda.ta -> includes(y) and
 tr.st.pda.ta -> includes(z)

DirectedRelanshionship
(from Kernel)

Classifier
(from Kernel)

Generalization
(from Kernel)

1

+general

1
1 0..n

+specific
1

+generalization

0..n

Fig. 2. A part of the UML meta-model – a relation of the generalization

3.2. Propagation rules in the DA meta-model

An abstract class of the type PropagationRule is the base class of all
propagation rules in the DA meta-model (Fig. 3). Each propagation rule has its
identifier and a priority. Pre- and post-conditions of a rule are specified in the
context of its operation ruleBody(). The operation takes as a parameter an
element of the type TraceTerminator. Any TraceTerminator is either the initial
element of a potential dependency area or an element already included in the
current area. A TraceTerminator represents an element from the considered
UML design (the application model). Therefore, it is derived from a certain
element of the UML meta-model.

In the DA meta-model a group of special classes represents a set of
propagation rules. The basic idea of these classes will be explained with an
example. It considers the same relation of the generalization between classifiers
(Fig. 2). A part of the DA meta-model specifying this relation is shown in Fig. 3.
A class of the type ClassifierPropagationRule is responsible for the realization

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Anna Derezińska 78

of all rules devoted to classifiers. This fact is defined in the pre-condition of the
operation of this class.

Context GeneralizationPropagationRule::
ruleBody(x : TraceTerminator):

pre: x.generalization->includes(z) and
 z.general = y;
post: x.pda.ta->includes(y) and
 x.pda.ta - >includes(z);

Context ClassifierPropagationRule:
inv: priority = 3;
Context ClassifierPropagationRule::ruleBody(x : TraceTerminator):
pre: x.oclIsKindOf(Classifier);

NamedElementPropagationRule

GeneralizationPropagationRule

ClassifierPropagationRule

+gen
{subset descendent}

PropagationRule
id : String
priority : Integer

ruleBody(x : TraceTerminator)

Fig. 3. A part of the DA meta-model – a generalization of classifiers

Consequently, analyzing a generalization of a classifier, the pre- and post-

conditions from the both detailed rules, the ClassifierPropagationRule and the
GeneralizationPropagationRule, should be satisfied. The logical conjunction of
the conditions defined in these rules is equivalent to the conditions presented in
the Rule R1 in the previous section.

Many other propagation rules are specified in the similar way in the DA
meta-model.

4. Specification of the strategies

Specifying the selection and bounding strategies, we use a notion of the
propagation rules written in the OCL. The strategies are based on heuristics that
presume the intentions of the developer. The application of the rules is
controlled by their position in the DA meta-model, by their priorities and
additional attributes of the strategies.

4.1. Selection strategy

Many propagation rules can be applied to a given element (TraceTerminator)
belonging to a potential dependency area. The application of propagation rules is
controlled by selection strategies. These strategies are responsible also for the
resolving of ambiguous situations. A selection strategy defines a hierarchy of
applicable propagation rules. The strategy takes into account the priorities of the
propagation rules and additional selection priorities, if necessary to decide
among the rules of the same priority.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Specification of dependency areas in UML designs 79

In the DA meta-model the propagation rules create a hierarchy. This
hierarchy corresponds to the inheritance hierarchy of the base types of
TraceTerminators, i.e. the inheritance hierarchy of elements in the UML meta-
model. For example, a class of the type ClassifierPropagationRule is derived
from the NamedElementPropagationRule (Fig. 3), because the class Classifier
derives from the class NamedElement in the UML specification. Other
propagation rules that are derived from the ClassifierPropagationRule exist also
in the DA meta-model, e.g. a rule of a use case or a rule of a class.

A given TraceTerminator can satisfy pre-conditions of many propagation
rules in its inheritance path of the hierarchy. In the first step, the most specific
propagation rule that corresponds to a given TraceTerminator type will be taken
into account. After considering this rule and the rules aggregated to it, its base
rule, defined for a more general TraceTerminator, can be evaluated. For
example, a TraceTerminator is at first recognized as a use case and later as a
classifier.

Furthermore, a certain propagation rule PR corresponding to a given type of a
TraceTerminator can have more detailed propagation rules that are aggregated
to PR. It can have more than one such rule. These rules have priorities of the
same or different values. At first, the rules with the highest priority are applied.
Among the rules with the same priority all of them are used or only a subset can
be chosen. The application of these rules is controlled by appropriate attributes
of the selection strategy.

As an example, the UML dependency relation between two elements of a
design is defined by the rule R2 given below. It is one of the rules defined for a
TraceTerminator that is the NamedElement from the UML meta-model. A
similar rule is also defined for another TraceTerminator – the class. According
to the selection strategy and its hierarchy, this similar rule will be applied first
than the rule R2.

Rule R2 pre: tr.st.pda.ta -> includes(x) and
 x.oclIsKindOf(NamedElement) and
 x.suplierDependency-> includes(z) and
 z.stereotype.name->includes(‘derive’)
 and z.client->includes(y)
 post:tr.st.pda.ta -> includes(y) and
 tr.st.pda.ta -> includes(z)

In the rule R2, the dependency relation is specified with the stereotype
«derive». Another rule can describe the same dependency relation but without
any stereotype. This rule has a lower priority than the rule R2.

In some designs, no direct relations between elements can be found and/or no
meaningful stereotypes are present. In this case, the rules based on an identity or
a similarity of the names of appropriate elements can be used. For example,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Anna Derezińska 80

a name of a use case is equal to a name of a collaboration. Such rules have lower
priorities than the rules discussed above.

4.2. Bounding strategy

Bounding strategies limit a number of elements included in a potential
dependency area. According to given heuristics, they try to select only those
elements which are directly pointed out or intently used by a developer. Instead
of identifying potential dependency areas and further excluding the assigned
elements, a bounding strategy can be specified as a specific selection strategy.
Bounding strategies use the similar notion of propagation rules. Within a
bounding strategy the application of the rules can be restricted. The potential
dependency area PDA(a) finally obtained according to the selection and
bounding strategies is the resulting dependency area DA(a) identified for the
initial element a.

Bounding strategies are based on heuristics. One of them assumes that the
information included in the behavioral diagrams of a design is superior to that
from the structural diagrams. A simple example will illustrate this approach and
its specification.

There are two diagrams concerning a class C in a UML design. The class C is
defined with its operations O1 and O2 in a class diagram - structural diagram
(Fig. 4a). The second one is a behavioral diagram assigned to the class C
(Fig. 4b).

a)

C

O1()
O2() b)

State1 State2

Start End

O1()
Event

Fig. 4. a) A structural diagram – class C b) A behavioral diagram – state machine of the class C

The propagation rule R3 given below takes into account the information

derived from a class diagram. According to the rule R3, if the class C belongs to
a certain PDA(a) then both its operations O1 and O2 would be assigned to the
same PDA(a).

Rule R3 pre: tr.st.pda.ta -> includes(x) and
 x.oclIsKindOf(Class) and
 x.ownedOperation->includes(y)
 post:tr.st.pda.ta -> includes(y)

Other rules deal with the information defined in the behavioral diagrams. The
class C is a classifier that has its behavior specification expressed by a state

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Specification of dependency areas in UML designs 81

machine. One of transitions of this state machine is triggered by the operation
O1. If the class C belongs to the PDA(a) a sequence of propagation rules can be
performed. The last rule of this sequence is the rule R4 shown below. Appling
this rule, the operation O1 will be assigned to the PDA(a).

Rule R4 pre: tr.st.pda.ta -> includes(x) and
 x.oclIsKindOf(transition) and
 x.trigger.operation->includes(y)
 post:tr.st.pda.ta -> includes(y)

Without using any bounding strategy, both operations O1 and O2 are
contained in the considered PDA(a). However, the operation O2 is present only
in the structural diagram. It is not used in any behavioral diagram. In this design,
only the operation O1 expresses an activity of the class C. Therefore, after using
the bounding strategy, the operation O1 will be included in the PDA(a) and the
operation O2 will be not included. The developer of the design can be warned
that the operation O2 could be missing in behavioral diagrams due to
incompleteness or inconsistency of the design.

The bounding strategy is realized by the modification of the propagation rules
and the restricted order of their application. As an example, the modified parts of
the rules R3 and R4 are shown below. The inclusion of an element to a given
area is controlled by a bounding attribute defined for the bounding strategy in
the DA meta-model (Fig. 1). The bounding strategy assures also that the rule R4
will be applied before the rule R3.

Rule R3 (The modified pre-condition)
 pre:tr.st.pda.ta -> includes(x) and
 x.oclIsKindOf(Class) and
 x.ownedOperation->includes(y) and
 x.ownedOperation-> forAll (p|
 p.st.pda.elementInPDA.bounding = false)
Rule R4 (The modified post-condition)
 post:tr.st.pda.ta -> exist (p| p = y and
 p.st.pda.elementInPDA.bounding)

In another example, a design contains only one diagram dealing with the class
C, namely a class diagram (Fig. 4a). In this case no information about the
behavior can be used. The rule R4 is not applied and no bounding will be
provided. According to the modified rule R3 both operations O1 and O2 are
included in the PDA(a).

Summing up, the following heuristics is specified by the rules discussed
above. If a class has no information about its behavior all its operations, given in
structural diagrams, are assigned to a PDA(a). Otherwise, the PDA(a) comprises
only these operations that were specified in the behavioral diagrams. The

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Anna Derezińska 82

bounding strategy deals in the similar way with other members of a class and
with other classifiers.

5. Experimental evaluation of dependency areas

The proposed strategies were empirically verified on several small UML
projects. Dependency areas identified automatically by a prototype tool [7] were
compared with the corresponding parts of the model selected manually by
developers of the projects. In some projects the dependency areas generated by
the tool contained fewer elements than those anticipated by the developers. In an
extreme case, the dependency area of a given use case was even the empty set.
The analysis of such projects revealed the lack of traceability notions in them
and/or a disordered structure of these projects. In general a dependency area can
help in pointing out an ill-quality of a project.

In other projects, evaluated in these experiments, the elements automatically
assigned to the dependency areas were consistent with the expectations of the
developer. These areas contained all elements responsible for the realization of
initial use cases. At the same time, no superfluous elements were assigned to
these areas.

The analysis of the adequacy of dependency areas identified by the tool and
the evaluation of the quality of a project could be supported by quantitative
measures. Identification of a dependency area that has no elements or a
relatively small number of them can be a warning of an incomplete design. On
the other hand, a dependency area containing many, or even all, elements can
indicate a project that is coupled too strongly. The analysis of a project can be
also supported by other metrics, based on the number and kinds of the rules used
during the identification of dependency areas. The detailed definition of all these
metrics and their interpretation is beyond the scope of this paper.

The experiments, mentioned above, were performed using the prototype tool
for Identification of Dependency Area – so-called IDA. Only the elements
belonging to class diagrams were taken into account during identification of
dependency areas in a UML model. Next, these dependency areas were used for
selection of the corresponding fragments of the C++ code generated from the
model. IDA traced the changes of requirements managed by IBM-Rational
RequisitePro [10]. The UML models were analyzed in cooperation with the
UML designer IBM-Rational Rose [10]. IDA recognized use cases assigned to
the changed requirements and identified their dependency areas. All elements
belonging to the dependency areas were marked with additional stereotypes,
modifying the given model. A dependency area of any initial element (here a use
case) was denoted with its own stereotype. In this way one element could have
been assigned to many different dependency areas, eg. DA(a) and DA(b) for
a≠b. Dependency areas of the sets of initial elements were also identified, if
required.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Specification of dependency areas in UML designs 83

After analyzing the results of the experiments, we started developing an
improved version of the tool. It is based on the given meta-model and the
specification of pre- and post-conditions in the OCL. A new version of IDA
identifies dependency areas using information from all types of UML diagrams.
A dependency area can contain any element of the design. The tool supports
UML 2.0.

6. Related work

Traceability from software artifacts (requirements, models) through to the
program code supports understanding the code, and how the former implement
the latter [11-13]. Many traceability approaches address a granularity level of
diagrams, not interfering into the UML details. In [13], the elements of a UML
model are integrated with textual specifications of requirements, but the
approach does not explore dependencies within the model. In [14] uncertain
relations between requirements and elements of a UML model are resolved by a
statistical evaluation of the developers’ decisions.

Our work relates also to the field of consistency of UML models. The
consistency problems in UML designs were extensively studied in many papers
[2-5,15,16]. Nevertheless, many existing approaches, especially formally-based
ones, require complete traceability to guide consistency checking. Egyed [16]
maintains the consistency of UML class diagrams during refinement and takes
into account partial lack of traceability information. Hypothesizing that at least
one of the potentially many choices ought to be consistent, the maximum flow
algorithm finds the unique correct interpretation and inconsistent traces are
removed.

OCL is primarily used for two purposes, for a precise description of UML
models and for the specification of the UML with the relation to its meta-model
[1,8]. It was successfully applied in different UML-based specifications [2-
4,15,17]. There are some tools that offer verification of OCL constraints or
animation of UML/OCL specifications [4,17]. However, the widespread
adoption of the OCL by industry is still limited due to the insufficient support
and integration with other CASE tools.

7. Conclusions

This paper presents the specification of dependency areas identified in the
UML designs. The approach is based on the strategies and propagation rules.
The rules are precisely defined using pre- and post-conditions denoted in the
Object Constraint Language (OCL) [8]. The OCL expressions are interpreted in
a meta-model (DA meta-model). It extends the UML meta-model [1] with a
conceptual model of dependency areas. The rules and strategies take into
account real-world designs, possibly incomplete or inconsistent.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Anna Derezińska 84

The concept of dependency areas provides a basis for controlling changes
within a design, as well as an impact of requirements on the design and the
generated code. It can support automation of project management and
maintenance.

Currently, the work is focused on developing a new version of IDA, a tool
that can support experiments with more comprehensive projects. Furthermore,
an integration of the tool with other CASE-tools is needed.

Our future work is dedicated also to the construction of certain metrics. The
metrics are based on the size of dependency areas and kinds of the rules used for
the identification of the dependency areas. These metrics help in assessing a
quality of dependency areas identified automatically by the tool and a quality of
the current stage of the design. The new tool should support the calculation of
the metrics.

References

[1] Object Management Group, UML 2.0 Superstructure Specification, formal/05-07-04,
www.uml.org.

[2] Ha L-K., Kang B-W., Meta-Validation of UML Structural Diagrams and Behavioral
Diagrams with Consistency Rules, Proc. of IEEE Pacific Rim Conf on Communications,
Computers and Signal Processing, PACRIM, (2) (2003) 679.

[3] Kuzniarz L. et al. (eds.), 2nd Intern. Workshop on Consistency Problems in UML-based
Software Development, <<UML>> 2003, San Francisco, (2003).

[4] Kuzniarz L. et al. (eds.), 3rd Intern. Workshop on Consistency Problems in UML-based
Software Development, <<UML>> 2004, Lisbon, (2004).

[5] Lange C.F.J., Chaudron M.R.V., An Empirical Assessment of Completeness in UML Designs,
Proceedings of “EASE International Conference on Empirical Assessment in Software
Engineering”, Edinburgh, Scotland, (2004).

[6] Krutchen P., The Rational Unified Process an Introduction, Addison-Wesley, (2000).
[7] Derezińska A., Reasoning about Traceability in Imperfect UML Projects, Foundations of

Computing and Decision Sciences, (29)1-2 (2004) 43.
[8] Warmer J., Kleppe A., The Object Constraint Language: Getting Your Models ready for

MDA, Addison Wesley (2003).
[9] Derezińska A., Bluemke I., A Framework for Identification of Dependency Areas in UML

Designs, Proc. of IASTED Inter. Conf. on Software Engineering and Application (SEA’05),
Phoenix, USA, (2005) 177.

[10] Rational Rose, Rational Requisite Pro, www-306.ibm.com/software/rational/
[11] Alves-Foss J., Conte de Leon D., Oman P., Experiments in the Use of XML to Enhance

Traceability Between Object-Oriented Design Specifications and Source Code, Proc. of the
35th Hawaii Int.. Conf. on System Sciences, HICSS-35’02 (2002).

[12] Egyed A., A Scenario-Driven Approach to Trace Dependency Analysis, IEEE Trans. on
Software Engineering, (29)2 (2003) 116.

[13] Letelier P., A Framework for Requirements Traceability in UML-based Projects, Proc. of 1st
Int. Workshop on Traceability in Emerging Forms of Soft. Eng. by IEEE Conf. on Automated
Software Engineering (ASE 02), Sept. 28, Edinburg, (2002).

[14] Spanoudakis G. et al., Rule-based Generation of Requirements Traceability Relations,
J. Systems and Software, (72)2 (2004) 105.

[15] Briand L. C., Labiche Y., O’Sullivan L., Impact Analysis and Change Management of UML
Models, Proc. of International Conference on Software Maintenance, Amsterdam, The
Netherlands, IEEE CS Press (2003) 256.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Specification of dependency areas in UML designs 85

[16] Egyed A., Consistent Adaptation and Evolution of Class Diagrams during Refinement,
Proceedings of the 7th International Conference on Fundamental Approaches to Software
Engineering (FASE), Barcelona, Spain, March (2004) 37.

[17] Correa A.L. Werner C.M.L., Precise Specification and Validation of Transactional Business
Software, Proc. of the 12th IEEE Inter. Requirements Eng. Conf. (RE’04) (2004).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/01/2026 11:27:36

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

