

Annales UMCS Informatica AI 4 (2006) 148-160
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Comparison of two approaches to processing long aggregates lists

in spatial data warehouses

Marcin Gorawski*, Rafał Malczok

Institute of Computer Science, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland

Abstract

In this paper we present a comparison of two approaches for storing and processing of long
aggregates lists in a spatial data warehouse. An aggregates list contains aggregates, calculated
from the data stored in the database. Our comparative criteria are: the efficiency of retrieving the
aggregates and the consumed memory. The first approach assumes using a modified Java list
supported with materialization mechanism. In the second approach we utilize a table divided into
pages. For this approach we present three different multi-thread page-filling algorithms used when
the list is browsed. When filled with aggregates, the pages are materialized. We also present test
results comparing the efficiency of the two approaches.

1. Introduction

Data warehouses store and process huge amounts of data. We work in the
field of spatial data warehousing. Our system (Distributed Spatial Data
Warehouse-DSDW) presented in [1] is a data warehouse gathering and
processing huge amounts of telemetric information generated by the telemetric
system of integrated meter readings. The readings of water, gas and energy
meters are sent via radio through the collection nodes to the telemetric server. A
single reading sent from a meter to the server contains a timestamp, a meter
identifier, and the reading values. Periodically the extraction system loads the
data to the database of our warehouse. The data gathered in the database provide
information about a given utility consumption. Thanks to this information we
can analyze an average consumption of a given medium and appropriately
control its production and distribution. When we want to analyze utility
consumption we have to investigate consumption history. That is when the
aggregates lists are useful. In the case of electrical energy providers, meter
reading, analysis, and decision making is highly time sensitive. For example, in
order to take stock of energy consumption all meters should be read and the

*Corresponding author: e-mail address: Marcin.Gorawski@polsl.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Comparison of two approaches to processing long aggregates lists … 149

spatial data analyzed every thirty minutes. The data warehouse operation must
be interactive. Query evaluation time in the relational data warehouse
implementations can be improved by applying proper indexing and
materialization techniques. View materialization consists of first processing and
then storing partial aggregates, which later allows the query evaluation cost to be
minimized, performed with respect to a given load and disk space limitation [2].
In [3,4] materialization is characterized by workload and disk space limitation.
Indexes can be created on every materialized view. In order to reduce problem
complexity, materialization and indexing are often applied separately. For a
given space limitation the optimal indexing schema is chosen after defining the
set of views to be materialized [5]. In [6] the authors proposed a set of heuristic
criteria for choosing the views and indices for data warehouses. They also
addressed the problem of space balancing but did not formulate any useful
conclusions. [7] presents a comparative evaluation of benefits resulting from
applying views materialization and data indexing in data warehouses focusing
on query properties. Next, a heuristic evaluation method was proposed for a
given workload and global disk space limitation.

In our current research we are trying to find the ways to improve the DSDW
efficiency and scalability. After different test series (with variations of
aggregation periods, numbers of telemetric objects etc.) we found that the most
crucial problem is to create and manage long aggregates lists. The aggregates list
is a list of meter reading values aggregated according to appropriate time
windows. A time window is the amount of time in which we want to investigate
the utility consumption. The aggregator is comprised of the timestamp and
aggregated values (Fig. 1).

Fig. 1. The example of an aggregates list for time window of 30 minutes

In the system presented in [1] aggregates lists are used in the indexing

structure, aggregation tree, that is a modification of an aR-Tree [8]. Every index
node encompasses some part of the region where the meters are located and has
as many aggregates lists as types of meters featured in its region. If there are
several meters of the same type, the aggregates lists of the meters are merged
(aggregated) into one list of the parent node (Fig. 2). In the following sections
we present and compare two different approaches for storing and managing long
aggregates lists. First we present the theoretical background and then we discuss

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Marcin Gorawski, Rafał Malczok 150

the efficiency test results. Finally we conclude the paper choosing the more
efficient and scalable solution.

Fig. 2. A hypothetical indexing structure

2. First approach-materialized Java list

The first approach assumes using a standard Java language list (like
LinkedList or ArrayList, see [9]) to store the aggregates. Created aggregates are
added to the list; the list is sorted according to the timestamp. The aggregates
lists are stored in the main computer memory. Memory overflow problems may
occur when one wants to analyze long aggregation periods for many utilities
meters. If we take into consideration the fact that the meter readings should be
analyzed every thirty minutes, simple calculations reveal that the aggregates list
grows very quickly with the extension of an aggregation period. For instance, for
single energy meter an aggregates list for one year has 365 48 17520⋅ =
elements. In order to protect the system from this failure we designed a memory
management algorithm. The algorithm operation is unnoticeable for a system
user.

When the system starts, the algorithm evaluates the memory capacity by
creating artificially generated aggregates lists. Each allocated aggregates list is
counted. The action is continued until there is no more free memory. The next
step is to remove the allocated lists and compute the value indicating the
maximal amount of lists in the memory during system operation. That value is
computed as 50% of the all of allocated lists. The 50% margin is set in order to
leave enough memory for other system needs, e.g. user interface and insurance
against memory fragmentation.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Comparison of two approaches to processing long aggregates lists … 151

Memory overflow may occur when new aggregates lists are created. When
the previously mentioned limit is exceeded (too many aggregates lists in the
memory) then some aggregates lists have to be removed from the memory. In
order to determine which lists to remove, we applied a mechanism that uses a
lists reading counter. Every indexing structure node has the reading counter
increasing each time the lists are read. The memory managing mechanism
searches for the nodes with the smallest value of the reading counter and
removes them from the memory. Aggregates removal is proceeded by the
materialization operation. In Figure 3 we present a flowchart illustrating the
memory managing algorithm operation supported by the materialization
mechanism.

Fig. 3. The memory managing algorithm operation

2.1. Materialization

In order to save time spent on raw data processing we decided to apply the
idea of aggregates lists materialization. When a given aggregates list is created
for the first time, a set of queries must be executed and the resulting raw data
processed. Once calculated, the data is stored for further use. The materialization
mechanism combines the Java streams and the Oracle BLOB table column. The
created aggregates are stored in a table consisting of two columns, the first being
NUMBER storing node’s identifier and the second is BLOB storing materialized
binary data of a given node’s aggregates list. Figure 4 shows a simple schema of
the materialization mechanism. The presented approach of storing a single
aggregates list as one stream has two main drawbacks: the list must always be
read starting from the beginning which, if not necessary, can be very time-
expensive, and the list cannot be easily updated (to attach new aggregators we
must restore, update and store whole long list). In the next section we present a
different solution to the list materialization problem.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Marcin Gorawski, Rafał Malczok 152

Fig. 4. A simple schema of the materialization mechanism

3. Second approach – Materialized Aggregate List

The second approach is called a Materialized Aggregate List (MAL). Our
main goal when designing the MAL was to create a list that could be used as a
tool for mining data from the database as well as a component of indexing
structure nodes (Fig. 5). In this paper we focus mainly on the differences
between the previously and currently applied solutions. For more theoretical and
practical details on the Materialized Aggregate List please refer to [10]. The list
interface is identical to the standard Java list so the MAL can easily replace the
previously described aggregates list. We also suppose that the applied multi-
thread page-filling algorithms and selective materialization will result in the
MAL being more efficient when compared to the standard Java list.

Fig. 5. MAL idea – provide a solution based on a well-known standard

Our main intention when designing the MAL was to build an efficient solution
free of memory overflows which would allow aggregates list handling with no
length limitations. The MAL structure and operation are based on the following
approach: every list iterator uses a table divided into pages (the division is purely
conventional). When an iterator is created some of the pages are filled with
aggregators (which pages and how many is defined by the applied page-filling
algorithm, see description below). Applying a multi-thread approach allows
filling pages while the list is being browsed. The solution also uses an
aggregates materialization mechanism to store once created aggregates.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Comparison of two approaches to processing long aggregates lists … 153

The actual list operation begins when a new iterator is created (iterator()
function call). Every iterator is characterized by two dates:

– border date. The border date is used for managing the materialized data.
The border date is equal to the timestamp of the first aggregator in the
page.

– starting index. In the case that starting date given as a parameter in the
iterator() function call is different from the calculated border date, the
iterator index is adjusted so that a the first next() function call returns the
aggregator with the timestamp nearest to the given starting date.

Consider the following: we have the install date 2004-01-01 00:00:00, an
aggregation window width of 30 minutes and page size of 240. So, as can be
easily calculated, on one page we have aggregates from five days (48 aggregates
from one day, 240/48 = 5). Next we create an iterator with the starting date
2004-01-15 13:03:45. The calculated border date will be 2004-01-11 00:00:00,
starting index 218 and the first returned aggregator will have the timestamp
2004-01-15 13:30:00 and will contain the medium consumption between
13:00:00 and 13:30:00.

3.1. Page-filling algorithms

The iterator table pages are filled by separate threads. Regardless of the
applied page-filling algorithm an individual thread, characterized by a page
border date, operates according to the following steps:

1. Check whether some other thread filling a page with an identical border
date is currently running. If yes, register in the set of waiting threads and
wait.

2. If no, check if the required aggregates were previously calculated and
materialized. If yes, restore the data and go to 4.

3. If no, fill the page with aggregates. Materialize the page.
4. Browse the set of waiting threads for threads with the specified border

date. Transfer the data and notify them.
In the subsections below we present three different page-filling algorithms

used for retrieving aggregates from the database. Their operation is illustrated
with figures that use the symbols described in Figure 6.

Fig. 6. Symbols used in the page-filling algorithms descriptions

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Marcin Gorawski, Rafał Malczok 154

3.1.1. Algorithm SPARE
Two first pages of the table are filled when a new iterator is being created and

the SPARE algorithm is used as a page-filling algorithm. Then, during the list
browsing, the algorithm checks in the next() function if the current page (let’s
mark it n) is exhausted. If the last aggregator from the n page was retrieved, the
algorithm calls the page-filling function to fill the n + 2 page while the main
thread retrieves the aggregates from the n + 1 page. One page is always kept as a
“reserve”, being a spare page (Fig. 7). This algorithm brings almost no
overhead-only one page is filled in advance. If the page size is set appropriately
so that the page-filling and page-consuming times are similar, the usage of this
algorithm should result in fluent and efficient list browsing.

Fig. 7. Operation of the SPARE algorithm

3.1.2. Algorithm RENEW

When the RENEW algorithm is used, all the pages are filled during creation
of the new iterator. Then, as the aggregates are retrieved from the page, the
algorithm checks if the retrieved aggregator is the last from the current page
(let’s mark it n). If the condition is true, the algorithm calls the page-filling
function to refill the n page while the main thread explores the n + 1 page. Each
time a page is exhausted it is refilled (renewed) immediately (Fig. 8). One may
want to use this algorithm when the page consuming time is very short (for
instance the aggregators are used only for drawing a chart) and the list browsing
should be fast. On the other hand, all the pages are kept valid all the time, so
there is a significant overhead; if the user wants to browse the aggregates from a
short time period but the MAL is configured so that the iterators have many big
pages – all the pages are filled but the user does not use all of the created
aggregates.

Fig. 8. Operation of the RENEW algorithm

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Comparison of two approaches to processing long aggregates lists … 155

3.1.3. Algorithm TRIGG

During new iterator creation by means of the TRIGG algorithm, only the
first page is filled. When during n page browsing the one before last
aggregator is retrieved from the page the TRIGG algorithm calls the page-
filling function to fill the n + 1 page. No pages are filled in advance.
Retrieving the next to last aggregator from the n page triggers filling the
n + 1 page (Fig. 9). The usage of this algorithm brings no overhead. Only
the necessary pages are filled. But if the page consumption time is short
the list-browsing thread may be frequently stopped because the required
page is not completely filled.

Fig. 9. Operation of the TRIGG algorithm

3.2. MAL in indexing structure

The idea of the page-filling algorithm in the MAL running as a component of
a higher-level node is the same as in the TRIGG algorithm for the database
iterator. The difference is in aggregates creating because the aggregates are
created using aggregates of lower-level nodes. The creation process can be
divided into two phases. In the first phase the aggregates of the lower-level
nodes are created. This operation consists of creating the aggregates and
materialization. In the second phase, the aggregates of the higher-level node are
created through merging all the available materialized pages of the lower-level
nodes created in the first phase into pages of the higher-level node. The second
phase is performed using the materialized data created in the first phase and its
execution takes less than 10% of the whole time required for creating the
aggregates of the higher-level node.

To control the number of concurrently running threads we use a resource pool
storing the iterator tables. Thanks to such approach we are able to easily control
the amount of memory consumed by the system (configuring the pool we decide
how many tables it will contain at maximum) and the number of running threads
(if no table is available in the pool a new iterator will not start its page-filling
threads until some other iterator returns a table to the pool).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Marcin Gorawski, Rafał Malczok 156

3.3. Materialization
Page-filling thread operation description shows that the MAL applies

materialization. For the MAL we use a table with three columns storing the
following values: the object identifier (telemetric object or indexing structure
node), page border date and aggregators in the binary form (Fig. 10). The page
materialization mechanism operates identically for each page-filling algorithm.
The MAL can automatically process new data added by the extraction process. If
some page was materialized but it is not complete, then the page-filling thread
starts retrieving aggregates from the point where the data was not available.

Fig. 10. A schema of the materialization mechanism applied in the MAL

4. Test results

This section contains a description of the tests performed for the both
presented approaches. The aggregates were created for 3, 6, 9, and 12 months
with a time window of 30 minutes. The created aggregates were not used in the
test program; the program only sequentially browsed the list. Aggregates
browsing was performed twice: during the first run the list has no access to the
materialized data, and during the second run a full set of materialized data was
available.The tests were executed on a machine equipped with Pentium IV 2.8
GHz and 512 MB RAM. The software environment was Windows XP
Professional, Java Sun 1.5 and Oracle 9i. In the case of the first presented
approach we have little influence on the list configuration. But in the case of
MAL we can change the following configuration parameters to make the list
operation most efficient:

– page size defines how many aggregates are stored on a single list page,
– page number defines the amount of pages creating the iterator table,
– page-filling algorithm defines which algorithm is to be used for filling the

pages.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Comparison of two approaches to processing long aggregates lists … 157

In order to compare the two presented approaches we first analyze operation
of the MAL to find the best combination of the configuration parameters. The
choice criterion consisted of two aspects: the efficiency measured as a time of
completing the list-browsing task and memory complexity (amount of the
memory consumed by the iterator table).

4.1. MAL configuration

The tests were performed for the three page-filling algorithms, size of a single
page varied from 48 aggregates (1 day) to 4464 (93 days – 3 months) and
number of pages 2÷10. The number of tables available in the table pool was
limited to 1 because increasing this number brought no benefit.

We first analyze the results of completing the list-browsing task during the
first run (no materialized data available) focusing on the influence of the page
number and the size of a single page. We investigated the relations between
these parameters for all three algorithms, and we can state that in all the cases
their influence is very similar; graphs of the relations are very convergent. The
list browsing times for small pages are very diverse. For a page of size 48 the
times vary from 30 to 160 seconds depending on the amount of pages. MAL
operation for a page of size 240 is more stable; the differences resulting from the
different number of pages do not exceed 25 seconds. For pages of size 672 and
more we observe very stable operation of the MAL. A page size of 672 seems to
be the best choice. Extending the page size brings very small efficiency gain but
results in much more memory consumption. After choosing the best pair of page
size and page number parameters, we compared the time efficiency of the page-
filling algorithms. Figure 11 shows a graph comparing efficiency of the
algorithms applied in the child nodes for browsing the list of aggregates for 3, 6,
8 and 12 months.

Fig. 11. Page-filling algorithms operation for index iterator

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Marcin Gorawski, Rafał Malczok 158

The lists were configured to use 6 pages, each of size 672. In the graph we
observe that the SPARE and the TRIGG algorithms show similar efficiency.
Along with extending the aggregation period the operation time increases; for
the TRIGG algorithm the increase is purely linear. The RENEW algorithm
shows worse efficiency, especially for long aggregation periods of 6 and 12
months. Filling and merging the pages not used during the list browsing results
in worse performance. Therefore, to summarize the parameters selection we can
state that the MAL works efficiently for the following configuration: number of
pages 4÷6, size of a single page 672 and TRIGG as the page-filling algorithm.

4.2. Efficiency comparison
In this subsection we compare efficiency of the two presented approaches.

The scenario concerns operation of the lists when applied in a theoretical
indexing structure. The structure consisted of one parent node and 5÷20 child
nodes; the query concerned parent aggregates but obviously resulted in creating
the aggregates of all the child nodes. As first we compare the results of the lists
operation during the first run when no materialized data was available.
Figures 12 and 13 present the graphs for gathering aggregates from respectively
5 and 20 child nodes. In the both cases the MAL shows better efficiency. It
operates about 40% faster than the standard Java list supported by the
materialization mechanism. Further graph analysis reveals that extending the
aggregation period results in operation time growth. The growth is significantly
greater in the case of the Java list. The conclusion is that the MAL solution is
more scalable.

Fig. 12. Comparison of efficiency of the Java list and the MAL for 5 meters

The aspect last investigated was materialization influence on system

efficiency. The test results interpretation reveals that materialization strongly
improves efficiency of both approaches. Thanks to materialization both lists

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Comparison of two approaches to processing long aggregates lists … 159

operate from 6 to 8 times faster than when no materialized data is available. The
longer the aggregation period and the more meter readings are to be aggregated
the greater the benefit of materialization.

Fig. 13. Comparison of efficiency of the Java list and the MAL for 20 meters

5. Final conclusions and future plans

In this paper we presented a comparative study of two approaches for storing
long aggregates lists in spatial data warehouse. The first approach is a standard
Java list supported by aggregates materialization mechanism. The second
solution is called Materialized Aggregate List (MAL) and is a data structure for
storing long aggregates lists. The MAL also uses the materialization mechanism.
After presenting the theoretical background for both approaches we discussed
test results proving the MAL being more efficient and scalable. The MAL
operates about 40% faster than a standard Java list.

The data warehouse structure described in [1] applies distributed processing.
We suppose that in this aspect introducing the MAL to our system will bring
benefits in efficiency. The current approach to sending complete aggregates lists
as a partial result from a server to a client results in high, single client module
load. When we divide the server response into MAL pages, the data transfer and
the overall system operation will presumably be more fluent. Implementation
and testing of those theoretical assumptions are our future plans.

References

[1] Gorawski M., Malczok R., Materialized aR-Tree in Distributed Spatial Data Warehouse,
SSDA_ECML/PKDD Workshop, Pisa, (2004).

[2] Theodoratos D., Bouzehoub M., A general framework for the view selection problem for data
warehouse design and evolution, In. Proc. DOLAP, McLean, (2000).

[3] Baralis E., Paraboschi S., Teniente E., Materialized view selection in multidimensional
database. In Proc. 23th VLDB, Athens, (1997) 156.

[4] Gupta H., Selection of views to materialize in a data warehouse. In. Proc. ICDT, (1997) 98.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Marcin Gorawski, Rafał Malczok 160

[5] Golfarelli M., Rizzi S., Saltarelli E., Index selection for data warehousing. In. Proc. DMDW,
Toronto, (2002).

[6] Labio W.J., Quass D., Adelberg B., Physical database design for data warehouses. In. Proc.
ICDE, (1997) 277.

[7] Rizzi S., Saltarelli E., View Materialization vs. Indexing: Balancing Space Constraints in
Data Warehouse Design. CAISE, Austria, (2003).

[8] Papadias D., Kalnis P., Zhang J., Tao Y., Effcient OLAP Operations in Spatial Data
Warehouses. Spinger Verlag, LNCS, (2001).

[9] JavaTM 2 Platform Standard Edition 5.0, API Specification. Sun Microsystems, (2005).
[10] Gorawski M., Malczok R., On Efficient Storing and Processing of Long Aggregate Lists.

DaWaK, Copenhagen, (2005).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 13:23:58

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

