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Abstract

The simple genetic algorithm (SGA) and its convergence analysis are main subjects of the
article. A particular SGA is defined on a finite multi-set of individuals (chromosomes) together
with mutation and proportional selection operators, each of which with some prescribed
probability. The selection operation acts on the basis of the fitness function defined on individuals.
Generation of a new population from a given one is made by iterative actions of those operators.
Each iteration is written in the form of a transition operator acting on probability vectors which
describe probability distributions of all populations. The transition operator is power of Markovian
matrix. Based on the theory of Markov operators [1-3] new conditions for asymptotic stability of
the transition operator are formulated.

1. Introduction

In the last two decades there has been growing interest in universal
optimization methods realized by genetic and evolutionary algorithms. These
algorithms use only limited knowledge about problems to be solved and are
constructed on the basis of some similarity to the processes in nature. Extensive
application of those methods in practical solutions of complex optimal problems
cause a need to their develop theoretical foundations. The question of their
convergence properties is one of the most important issues [4-9].

2. Preliminaries

The genetic (GA) as well as the evolutionary algorithms (EG) perform multi-
directional search by maintaining a population of potential solutions, called
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individuals, and encourage information formation and exchange between these
directions. A population, i.e. a set of individuals, undergoes a simulated
evolution with a number of steps. In the most general case the evolution is due to
an iterative action — with some probability distributions — of a composition of
three operators: mutation, crossover and selection. If a population is regarded as
a point in the space Z of (encoded) potential solutions then the effect of one
iteration of this composition is to move that population to another point. In this
way the action of GA as well as EA is a discrete (stochastic) dynamical system.
In the paper we use the term population in two meanings; in the first it is a finite
multi-set (a set with elements that can repeat) of individuals, in the second they
are frequency vector components of which fractions are composed, i.e. the ratio
of the number of copies of each element z; € Z to the total population size. The
action of that composition is a random operation on populations.

In the paper we deal with a particular case of the simple genetic algorithm
(SGA) in which the mutation follows the fitness proportional selection and the
crossover is not present. In the case of the binary genetic algorithm (BGA) the
mutation can be characterized by the bitwise mutation rate u — the probability of
the mutation of one bit of a chromosome. In SGA with the known fitness
function the fitness proportional selection can be treated as a multiplication of
each component of the frequency vector by the quotient of the fitness of the
corresponding element to the average fitness of the population. This allows to
write the probability distribution for the next population in the form of the
product of the diagonal matrix with the population (frequency) vector.
Moreover, results of the mutation can also be written as a product of another
matrix with the population (probability) vector. Finally the composition of both
operations is a matrix (cf.(10)), which leads to the general form of the transition
operator (cf.(12)) acting on a new probability vector representing a probability
distribution of appearance of all populations of the same size equal to the
population size PopSize. The matrix appearing there turns to be Markovian and
each subsequent application of SGA is the same as the subsequent composition
of that matrix with itself (cf.(13)). In the paper owing to the well-developed
theory of Markov operator([1-3,10]) new conditions for the asymptotic stability
of the transition operator are formulated and some conclusions are drawn.

3. Frequency and population vector
In the case of BGA the set of individuals
Z= {zo,...,zs_l}
are chromosomes and they form all binary /-element sequences. For a better
description one orders them and the set Z with s = 2! becomes a list, in which its
typical element (chromosome) is of the form z; ={0,0,1,0,...,1,0,0} .
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At first by a population we understand any multi-set of 7 chromosomes from
Z, then r is the population size: PopSize.

Definition 1. By a frequency vector of population we understand the vector

a
pz(p09-..’ps—1))7 Where Dy :7k (1)

where a; is a number of copies of the element z;.
The set of all possible populations now understood in the other meaning as
frequency vectors is

s—1
A:{peRsikaO,pkzi, deN, Zpkzl}- ()
r k=0

When GA is realized by an action of the so-called transition operator on a
given population, a new population is generated. Since the transition between
two subsequent populations is random and is realized by a probabilistic operator,
then if one starts with a frequency vector, a probabilistic vector can be obtained,
in which p; may not be rational any more. Hence for our analysis the closure of
the set A, namely

_ s—1
A:{xeR"':Vk, x, >0, and Zxkzl}, A3)
k=0
1s more suitable.

4. Selection operator
The optimization problem at hand is characterized by a goal (or cost)
function. If we transform it by a standard operation to a nonnegative function we
will get the so-called fitness function f:Z —>R". If we assume the first

genetic operator is the fitness proportional selection, then the probability that the
element z; from a given population p will appear in the next population equals

f&zk )pk (4)
f(p)
where 7( p) is the average population fitness denoted by
_ s—1
.f(p):z.f(zk)pk' (5)
k=0
Then the transition from the population p into the new one, say ¢, can be
given by
1
q==—=5p, (6)
f(pr)

where the matrix § of the size s, has on its main diagonal the entries

Su=r(z). @)
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Matrix § describes the selection operator [7-9].

5. Mutation operator

The second genetic operator considered the binary uniform mutation with a
parameter u as the probability of changing bits 0 into 1 or vice versa. If the
chromosome z; differs from z; at ¢ positions then the probability of mutation of
the element z; into the element z; is

Uy =u (1= ﬂ)lic - (®)

Then we may define a matrix
U=[U,],

with Uj; as in (8) and U; — the probability of the surviving of the element
(individual) z;. In general one requires
U; =0,

s—1

> U, =1, forall;. 9)

i=0

6. Transition operator

When we have the specific population p, then it means p is a frequency vector
and p € A. If the mutation and selection (random) operators are applied to it they
could lead p out the set A. The action of the genetic algorithm in the first and all
subsequent steps is the following: if we have a given population p then we
sample with returning 7-elements from the set Z, and the probability of sampling
the elements zy,...,z, | is described by the vector G(p), where

G(p)z;USp. (10)
f(p)
This r-element vector is our new population g.

Let us denote by W the set of all possible r-element populations composed of
the elements selected from the set Z, where elements in the population could be
repeated. This set is finite and let its cardinality be M. It can be shown that the
number M is given by a combinatoric formula, cf. [12]. Let us order all
populations, then we identify the set W with the list W= {w',....w"}. Typical w",
k=1,2,...,M is some population for which we used the notation p in the previous
section. That population will be identified with its frequency vector or
probabilistic ~ vector. This means that for a given population

k k k
p=w =(w0,...,w

H), the number W,-k , for i€ {0,....s—1}, denotes the
probability of sampling from the population w* the individual z. If p is a
frequency vector then the number w' is the fraction of the individual z; in the

population w".
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Beginning our implementation of BGA from an arbitrary population p = w* in
the next stage each population w',...,w" can appear with the probability, which
can be determined from our analysis. In particular, if in the next stage the
population has to be ¢, with the position / on our list ¥ (it means q=w'), then
this probability [8,11,12] is equal to

= (o))"

()

After two steps, every population w',....w" will appear with some probability,
which is a double composition of this formula. It will be analogously in the third
step and so on. This formula gives a possibility of determining all elements of a
matrix T which defines the probability distribution of appearance of populations
in the next steps, if we have current probability distribution of the populations.
With our choice of denotations for the populations p and g, the element (/,k) of
the matrix will give transition probability from the population with the number &
into the population with the number /. It is important that elements of the matrix
are determined once forever, independently of the number of steps. The
transition between elements of different pairs of populations is described by
different probabilities (11) represented by different elements of the matrix. We
can see that the nonnegative, square matrix 7 of dimension M, with elements py,
Lk=1,2,...,M has the property: the probability distribution of all M populations
in the step ¢ is given by the formula

T'u=0,1,2,..

r!

(an

Let us denote by
F:{xeRM :Vkx, >0 oraz ||x||:1},

where ||x||:x1+...+xM, for x:(x],...,xM), the set of new AM-dimensional

probabilistic vectors. A particular component of the vector x represents the
probability of the appearance of this population from the list W of all M
populations. The set /7is composed of all possible probability distributions for M
populations. Then the described implementation transforms, in every step, the
set /”into the same.

Note that if at the beginning we start our SGA at a specific population p,
which attains the place j-th on our list W,i.e. p = w/, then the vector u will denote
the particular situation of the population distribution in the step zero 0 if

u= (0,..., 0,1,0...,0) eR".
On the set /"the basic, fundamental transition operator,
T():NxI'>TI (12)
is defined. According to the above remark, the transition operator 7(¢) is linked
with the above matrix by the dependence
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T(1)=T". (13)
Ifue 7 then T(t)u=((7(t)u),,..(T(t)u), ) is the probability distribution

for M populations in the step number ¢, if we have begun our implementation of
SGA given by G (10) from the probability distribution u =(u,,...,u,, )€ I, by t —

application of this method. The number (T (t)u)k for ke{l...M} denotes the

probability of appearance of the population w* in the step of number z. By the
definition G(p) in (10),(11), and the remarks made at the end of the previous

section, the transition operator 7(¢) is linear for all natural z.

Notice that though formula (11) determining individual entries (components)
of the matrix 7 is a dependent population, and hence nonlinear, the transition
operator 7(¢) is due thanks to the order relation introduced in the set W of all M
populations. The multi-index [k of the component py kills, in some sense, this
nonlinearity, since it tells (is responsible for) a pair of populations between
which the transition takes place. The matrix 7 is a Markovian matrix. This fact
permits us to apply the Theory of Markov operators to analyze the convergence
of genetic algorithms [1-3,10].

Note that the action of the matrix T can be seen as follows. In the space of all
possible populations there is a walking point, which attains its next random
position numbered by 1,2,...,M, as an action of SGA on the actual population,
with probabilities uy,uy,...,uy. We know that if at the moment ¢ (in the generation
number f) we had population p with the position & on our list, i.e. the population
w’, then the probability that at the moment ¢+ 1 (in the generation number 7 + 1)
it will attain population ¢ with the position /, on our list, i.e. the population w/, is
P, and this probability is independent of the number of steps in which it is
realized. With this denotation the probability py is given by formula (11).

Let ¢, € I be a vector which at the k-th position has one and zeroes at the
other positions. Then e, describes the probability distribution in which the
population w* is attained with the probability 1.

By the notation 7T(f)w* we will understand

T(t)w' =T(t)e, (14)
which means that we begin the GA at the specific population w".

Further on we will assume U;; > 0 forj € {0,...,s—1}. Note that in the case of

binary mutation (8) this condition will be satisfied if 0< g <1.

Definition 2. We will say that the model is asymptotically stable if there exists
u* € I'such that:

T(t)u"=u" for t=0,1,... (15)
lim||7(¢)u—u"|=0 forall uer . (16)

t—>
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Since for k € {1,...,M} we have

(T ()u), ~u;

< HT(t)u -u

(17)

then (16) gives
lim(7 (¢)u), =u;. (18)

It means that probability of appearance of the population w* in the step
number ¢ converges to a certain fixed number u, independently of the initial

distribution u. It is realized in a special case, when our implementation begins at
one specific population p = w’.

We can say that from the chromosome z, it is possible to obtain z, in one
mutation step with a positive probability if U,,>0 and that from the chromosome
z, it is possible to get the chromosome z, with a positive probability in r-step
mutation if there exists a sequence of chromosomes z, ,...,z, , such that

wsZ s
z, =2,, 2, =z, andany z, forj=1,...,nis possible to be obtained from z, in

one step with a positive probability.
Definition 3. Model is pointwise asymptotically stable if there exists such a
population W that

lim(T(t)u)j =1 for uel . (19)

—0
Condition (19) denotes that in successive steps the probability of appearance
of other population than w tends to zero. It is a special case of the asymptotic
stability for which

*_
u —6/..

Theorem 1. Model is pointwise asymptotically stable if and only if there exists
exactly one chromosome z, with such a property that it is possible to attain it
from any chromosome in a finite number of steps with a positive probability. In
this situation the population W is exclusively composed of the chromosomes z,
and

T(t)wj =w (20)
holds. Moreover, the probability of appearance of other population than w
tends to zero in the step number t with a geometrical rate, i.e. there exists

A €(0,1), DeR, thats

M

2 (T(t)u) <D-2". (21)

i=1
i#]

The proofs of our theorems and auxiliary lemmas are presented in original
articles [12,13].

Numbers 4 and D could be determined for a specific model. This will be the
subject of next articles.
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Theorem 1 states that the convergence to one population could occur only
under specific assumptions. This justifies the investigation of asymptotic
stability in Definition 2.

Definition 4. By an aftainable chromosome we denote z, € Z such that it is
possible to attain it from any other chromosome in a finite number of steps with
a positive probability. Let us denote by Z the set of all z, with this property.

Theorem 2. Model is asymptotically stable if and only if Z" # & . A

Theorem 3. Let us assume that the model is asymptotically stable. Then the next
relationship holds:
(war) u; >0 if and only if the population w* is exclusively composed of

chromosomes belonging to the set Z'. A

7. Conclusions

Here we present the summary of our results obtained in this and our other
papers [11-13]:

1. If Z* = then there is a lack of asymptotic stability.

2. If Z" #J then asymptotic stability holds but:

3. If cardinality (Z) =1 then pointwise asymptotic stability (in some sense
convergence to one population) holds.

4. If cardinality (Z")>1 then asymptotic stability holds, but there is no
pointwise asymptotic stability.

5.1fZ =Zthen u; >0 forallk e {1,...,M}.

REMARK. In SGA with a positive mutation probability, it is possible to attain
any individual (chromosome) from any other individual. Then there is more than
one chromosome which is possible to attain from any other in a finite number of
steps with a positive probability. Hence, from Theorem 1, it is impossible to get
the population composed exclusively of one type of chromosomes.

The last conclusion means that if any chromosome is possible to attain from
any other in a finite number of steps with a positive probability then in the limit
(probability distribution) of infinite number of generations each population (has
a positive probability) may be reached with a positive probability.

Theorem 2 is an extension of 74.4.2.2.4 4 from [9] for the case when it is
possible to attain any population in a finite number of steps, (not only in one
step). It means that transition operator does not need to be positively defined, but
there exists such k, that the k-th power of the transition operator possesses a
column which is strongly positive. The same concerns 74.4.2.2 1 of [9] which is
true only for a positively defined transition matrix.
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