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Abstract 

We present two fast polynomial interpolating algorithms with knots generated in a field K by 
the recurrent formula of the form ( )1 01,2,.., 1;i ix x i n xα β γ−= + = − = . The running time of 

them is ( ) ( )C n O n+  base operations from K, where ( ) ( )2logC n O n n=  denotes the time needed 
to compute the wrapped convolution in Kn. Moreover, we give an application of these algorithms 
to threshold secret sharing schemes in cryptography.  
 

1. Introduction and preliminaries 

Let ( )Κ Κ , ,n n= + ⋅  be an n-dimensional linear space of vectors 

 ( )0 1 1, ,..., , Κn ia a a a a−= ∈  
over a field ( )Κ Κ, ,= + ⋅  with a primitive root ψ from the unity of degree 2n. 
Additionally, let the vector addition and scalar multiplication be defined in the 
usual coordinatewise way. In the same coordinatewise way we also define the 
vector subtraction, multiplication and division. For example, if 

( )0 1 1, ,..., na a a a −=  and ( )0 1 1, ,..., nb b b b −=  are two vectors in nΚ , then we set  
 ( )0 0 1 1 1 1, ,..., , Κn n ia b a b a b a b a− −= ∈ , 
where 1

i i i ia b a b−= ⋅  and 0ib ≠  ( )0,1,..., 1i n= − . Moreover, we define the 
wrapped convolution 
 ( )0 1 1, ,.., ,na b c c c −⊗ =  
where 
 ( )0 1 1, ,..., na a a a −= , ( )0 1 1, ,..., nb b b b −=  
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and  

 ( )
0

0,1,..., 1
i

i k i k
k

c a b i n−
=

= = −∑ . (1)  

It is well known that wrapped convolutions can be computed by an algorithm, 
which has a running time of ( )2logO n n  base field operations in K. Such an 
algorithm is based on the following fundamental identity   
 ( ) ( ) ( ) ( ){ }1 1 2a b F F a F b F F a F b− −⊗ = ⎡ ⋅ ⎤ + ⎡ Ψ ⋅ ⋅ Ψ ⋅ ⎤ Ψ⎣ ⎦ ⎣ ⎦ , (2) 

which is implicitly presented and used in [1]. In this formula we have 
( )11, ,..., nψ ψ −Ψ = . Moreover, discrete Fourier transformations 

: n nF Fω= Κ → Κ  and 1 1 : n nF Fω
− −= Κ → Κ  ( )2ω ψ=  are defined by 

 
( ) ( ) ( )

( )

0 1 1 0 1 1

1

0

, , ,.., , , ,.., ,

0,1,.. 1

n n

n
ik

i k
k

b F a a a a a b b b b

b a i nω

− −

−

=

= = =

= = −∑
 (3) 

and  

( )
1

0
1

1 0,1,..., 1 ,

1 1 1 ... 1 , 1 the unity in .

n
ik

i k
k

n items

a b i n
n

n

ω
−

−

=

−

−

= = −

⎛ ⎞
= + + + − Κ⎜ ⎟

⎝ ⎠

∑

��	�


 

Now the claim follows directly from the well known fact that Fourier 
transformations F and F-1 can be evaluated by the famous FFT-algorithm [1], 
which has a running time of ( )2logO n n  base operations from the field Κ.  

For the completeness, we now present a simple proof of the formula (2). In 
order to do this, we recall that the coordinates kc  ( )0 k n≤ <  of c a b= ⊗  are 
identical with the corresponding coefficients of the polynomial product 
 ( ) ( ) ( ) ,c x a x b x x= ∈Κ  
with 

 ( ) ( )
1 1

0 0
,

n n
k k

k k
k k

a x a x b x b x
− −

= =

= =∑ ∑  

and 

 ( )
1 1

2 1
0 0

, 0
n n

k n k
k n k n

k k
c x c x x c x c

− −

+ −
= =

= + =∑ ∑ . 

Since we have 

 
1

0 1
and

i n

i k i k n i k n i k
k k i

c a b c a b
−

− + + −
= = +

= =∑ ∑  (4) 
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we can use the auxiliary vectors , nd h∈Κ  with the coordinates defined by 
 ( )and 0,1,..., 1i i n i i i n id c c h c c i n+ += + = − = −  
to get 

 ( ) ( ) ( )
1 2 1 2 1

0 0 0

n n n
i ik ik ik i i

k k j k j
k k k j

d d c a b a bω ω ω ω ω ω
− − −

−
= = =

⎛ ⎞
= = = = ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑  

for 0,1,..., 1i n= − . Clearly, this is equivalent to 
 ( ) ( )1 ,d F F a F b F Fω

−= ⎡ ⋅ ⎤ =⎣ ⎦ . 

On the other hand, one can apply the formulae 1nψ = −  and (4) to obtain 

 
1 2 1 2 1

0 0 0

n n n
k ik k ik j k j ik

k k j k j
k k k j

h c a bψ ω ψ ω ψ ψ ω
− − −

−
−

= = =

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ , 

whenever 0 i n≤ < . Hence the division by ( )11, ,..., nψ ψ −Ψ =  yields  

 ( ) ( )1h F F a F b−= ⎡ Ψ ⋅ ⋅ Ψ ⋅ ⎤ Ψ⎣ ⎦ . 

Finally, it remains to compute ( ) 2d h+  to finish the proof of the formula 
(2). 

 
2. Fast interpolation with special knots  

Let us suppose that the points ix ∈Κ  ( )0,1,.., 1i n= − are pairwise distinct and 
that iy ∈Κ  ( )0,1,..., 1i n= −  are arbitrary. Then the unique interpolating 
polynomial ( )p x  in the space [ ]1n x−Κ  of all polynomials of degree less than n 
is defined under the interpolating conditions 
 ( ) ( )0,1,..., 1i ip x y i n= = − . 
Moreover, it is given by the Newton interpolatingformula 
 0 1 0 1 0 1 2( ) ( ) ... ( )( )...( )n np x c c x x c x x x x x x− −= + − + + − − − , (5) 
where the divided differences 
 [ ] ( )0 1, ,..., 0,1,.., 1i ic y y y i n= = −  

can be computed by the usual recurrent formulae, which require ( )2O n  base 

operations from the field Κ. However, if the knots form an arithmetic or 
geometric progression, then the running time of the algorithm based on the 
recurrent formulae can be reduced to ( )2logO n n  [2].  

More generally, let us suppose that pairwise distinct knots 0 1 1, ,..., nx x x − ∈Κ  
are generated by the following recurrent formula 

 
( )

0

1

,
1,2,.., 1 ,i i

x
x x i n

γ
α β−

=

= + = −
 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 15:14:01

UM
CS



Joanna Kapusta, Ryszard Smarzewski  40 

where 0, ,α β γ≠  are fixed in Κ. Then one can insert  

 ( )1 2 ... 1i i i
ix α γ β α α− −= + + + +  

into the formula  

 [ ]
( )

( )0 1 1
0

0

, ,..., 0,1,.., 1
i

j
i i i

j
j k

k
k j

y
c y y y i n

x x
−

=

=
≠

= = = −
−

∑
∏

 

and use the identity  
 ( )( )1 21 1 ... 1j k j k j kα α α α− − − − −− = − + + +  

in order to get 

 ( )
0

0,1,.., 1
i

i j i j i
j

c p q r i n−
=

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∑  

or equivalently  
 ( )c p q r= ⊗ , 
where 

 
( )

1

0
1 1

0 00 0

1
,

j
j k

j k
j jj jk k

k m

m mk k

y
p q

α

α α

−

=
− −

= == =

−
= =

∏

∑ ∑∏ ∏
 

and 

 ( ) ( )
1

0

1 0,1,..., 1
j

j k
j

k

r j nα γ β α
−

=

= ⎡ − + ⎤ = −⎣ ⎦ ∏ . 

Here and in the following it is assumed that products and sums are equal to 1, 
whenever their upper indices are smaller than the lower. Furthermore, note that 
the coordinates  

 ( )
1

0
1,2,..., 1

k
m

k
m

s k nα
−

=

= = −∑  

of vector ( )110 ,...,, −= nssss  satisfy the following recurrent formula 
 ( )1 01 1,2,..., 1; 0k ks s k n sα−= ⋅ + = − = . 
Hence we get Algorithm 1 to compute the required divided differences in the 
Newton interpolating formula. This algorithm uses two classes KType and 
KTypeVector, which enable to perform operations in K and Kn. 

It is clear that Algorithm 1 has a running time of ( ) ( )C n O n+  base 
operations from the field K, where C(n) denotes the time needed to compute the 
wrapped convolution  
 ( ),conv p q p q= ⊗ . 
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INPUT: KTypeVector y; KType a, b, g; 
OUTPUT: KTypeVector c; 
 KTypeVector p, q, r; 
 KType d=(a–1)*g+b, s=0, 
             v=1/a, u=1, z=1; 
 p[0]=y[0]; q[0]=1; r[0]=1; 
 for(int k=1; k<c.length(); k++){ 
 s=s*a+1; u=u*s; p[k]=y[k]/u; 
 v=v*a; z=-z*v; q[k]=z/u; 
 r[k]=r[k-1]*v*d; 
 } 
 c=conv(p,q)/r; 

Algorithm 1. The divided differences with knots ( )1 01,2,..., 1;i ix ax b i n x g−= + = − =  

 
3. Fast evaluation of Newton polynomial at special knots  

In this section we present the inverse algorithm to Algorithm 1, which is 
useful in the threshold secret sharing scheme [3,4]. More precisely, we consider 
the problem of fast computation of the polynomial  
 0 1 0 1 0 1 2( ) ( ) ... ( )( )...( )n np x c c x x c x x x x x x− −= + − + + − − −  
at the knots 
 ( )1 01,2,.., 1;i ix x i n xα β γ−= + = − = . 
For this purpose, we insert  
 ( )1 2 ... 1i i i

ix α γ β α α− −= + + + +    

into the formula (5) to derive  

 
( )

0 1 1
0

0

( )( )...( )

0,1,..., 1

i

i j i i i j
j

i

j i j i
j

y c x x x x x x

p q r i n

−
=

−
=

= − − −

⎛ ⎞
= ⋅ = −⎜ ⎟

⎝ ⎠

∑

∑
 

or equivalently 
 ( ) ( )0 1 1, ,..., ny y y y p q r−= = ⊗ ⋅ , 
where  

 ( )
1

0

1
j

j k
j j

k

p c α γ β α
−

=

= ⎡ − + ⎤⎣ ⎦ ∏  

and 
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00

1 j k
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vkj
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These identities immediately yield Algorithm 2, which is an inversion of 
Algorithm 1. 
 

INPUT: KTypeVector c, KType a, b, g; 
OUTPUT: KTypeVector y; 
 KTypeVector p, r; 
 KType d=(a–1)*g+b, s=0, 
              v=1/a, w=1; 
 p[0]=c[0]; r[0]=1; 
 for(int k=1; k<c.length(); k++){ 
 v=v*a; w=w*v*d; p[k]=c[k]*w; 
 s=s*a+1; r[k]=r[k-1]*s; 
 } 
 y = conv(p,1/r)*r; 

Algorithm 2. Newton’s polynomial evaluation at the knots 
( )1 01,2,..., 1;i ix ax b i n x g−= + = − =  

 
The running time of this algorithm is again ( ) ( )C n O n+  base operations 

from the field K. 
 

4. An application to secret sharing schemes 
Let us consider a secret sharing scheme of Shamir type [3,4] with respect to a 

Newton interpolating polynomial in [ ]1n x−Κ , where 65537Z=Κ  is a field of 
integers modulo 65537 and 128=n  is an artificially small number. More 
precisely, let us suppose that a dealer does the following:  

– in a random way chooses numbers 6α = , 2257β = , 528γ = , 62750ψ =  
and a polynomial 

 
( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
0 0 1 122

0 1 123 0 1 126

578 3452 218 ...

947 ... 5321 ... ,

p x x x x x x x x x

x x x x x x x x x x x x

= + − + − − − +

+ − − − + − − −
 

 where 0 528x =  and 16 2257i ix x −= +  ( )1,2,...,127i = ; 
– defines the polynomial key 57834522189475321κ = , which guarantees 

opening an access gate to the secret; 
– applies Algorithm 2 with ,a bα β= =  and g γ=  to compute the 

shares ( )i iy p x=  ( )0,1,...,127i =  and distributes a fixed number (say 6) 
of the following shares 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 0 1 1 2 2

3 3 4 4 5 5

, 528,578 , , 5425,62013 , , 34807,37401 ,

, 14488,20803 , , 23648,52289 , , 13071,44594

x y x y x y

x y x y x y

= = =

= = =
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 among participants of the secret sharing scheme, and the remaining 122 
shares ( ),i ix y  ( )6 128i≤ <  together with n, α, β, γ  and ψ gives to the 
combiner. 

Then the combiner can recover the key κ  and get the required access after 
receiving all shares from the participants of the secret sharing. For this purpose, 
he has only to apply Algorithm 1 in order to show that the nonzero coefficients 
of the polynomial  

 ( ) ( )
1127

0 0

i

i k
i k

p x c x x
−

= =

= −∑ ∏   

are equal to 
0 1 123 124 127578, 3452, 218, 947, 5321c c c c c= = = = = . 

Consequently, he recovers the key 
57834522189475321κ = . 

It is important that the secret sharing scheme can be changed in such a way 
that combiner can check if shares are falsified, and consequently can verify 
authenticity of recovered key. For this purpose the dealer should be allowed to generate 
more shares than 128n =  with respect to pairwise distinct interpolating knots ix  
( )0,1,.., 1; 128i m m= − > . Then the combiner ought to verify that  

 128 129 1... 0mc c c −= = = = . 
Finally, we note that the dealer and combiner can save about 99 percent of 

base operations in the field Κ, whenever the dealer chooses n of order 214. 
Indeed, if 142=n  then Algorithm 1 requires 5799888 base operations in the 
field Κ. On the other hand, the classical algorithm based on usual recurrent 
formulae uses 402628608 such operations. Hence the number of based 
operations in Algorithm 1 equals 1.44% of the number of operations in the 
classical algorithm. 
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Fig. 1. The numbers of base operations in the classical recurrent algorithm and  Algorithm 1 
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Further, if 162n =  then the dealer saves  

 6416531501*100% 99.6%
6442352640

=  

of base operations in the field Κ, whenever he uses Algorithm 2 instead of the 
extended  Horner algorithm. Moreover, the graphs of numbers of base operations 
are presented in Figures 1 and 2 for these four algorithms. In view of the huge 
difference between the numbers of operations in the corresponding algorithms, 
we use the logarithmic scale in these graphs. 
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Fig. 2. The numbers of base operations in the extended Horner algorithm and Algorithm 2 

 
Conclusions 

In this paper, we have presented fast polynomial interpolating and evaluating 
algorithms in the case of n knots generated dynamically in a field Κ by the 
recurrent formula of the form   
 ( )1 01,2,.., 1;i ix x i n xα β γ−= + = − = . 
The first algorithm computes divided differences with the running time of 

( ) ( )C n O n+  base operations from the field Κ, where ( ) ( )2logC n O n n=  
denotes the complexity of computation of the wrapped convolution in Κn. In 
comparison, the classical algorithm using usual recurrent formulae requires 

( )2O n  of base operations in Κ. The second algorithm evaluates Newton 

polynomial at n knots given by the above recurrent formula in the same time as 
the first one. Numerical experiments show that these both algorithms can be 
useful in practice, whenever n is sufficiently large. For example, such a situation 
occurs during the computation of shares and recovering keys in the secret 
sharing schemes of Shamir type [4]. 
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