
 

Annales UMCS Informatica AI 5 (2006) 59-67 
Annales UMCS 

Informatica 
Lublin-Polonia  

Sectio AI 
http://www.annales.umcs.lublin.pl/ 

 
Agent based approach to University Timetabling Problem 

 
Paweł Peryt* 

 
Institute of Applied Computer Science, Wrocław University of Technology,  

Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland 
 

Abstract 
A concept of agent-based approach to timetabling problem is presented. Based on the problem 

description and with its formalization the term “agent” is introduced. Agents act on behalf of 
entities taking part in the timetabling process (activities, rooms and students) and they interact to 
maximize their own utility. Also a brief overview of existing approaches is presented. 

 
1. University Timetabling Problem 

At the typical university students attend various courses (activities). These 
activities take place in designated rooms with some equipment and a maximum 
capacity. Some activities require dedicated equipment (e.g. beamers, 
oscilloscopes, etc.) available only in several rooms (like labs). Students attend 
activities they enrolled on. It would be also preferable if a constructed timetable 
reflected students’ preferences (e.g. to time). On the other hand, the enrolment is 
guarded by some formal criterion (like paying the tuition or finishing 
prerequisite courses).   

The university timetabling problem (UTP) can be defined as follows: having 
the set of defined timeslots, the set of available rooms and the list of activities to 
be planned, the aim is to assign activities to rooms in particular timeslots in such 
a way that activities take place in properly equipped rooms and all the students 
have a possibility to attend their classes. To be more precise: 

– every student attends no more than one activity at any timeslot, 
– no more than one activity takes place in any room at any timeslot, 
– every student may attend his or her classes 
– ach activity takes place in a room with appropriate equipment 
– at any time no more students than the maximum capacity of a room 

attend a course. 

                                                 
*E-mail address: pawel.peryt@pwr.wroc.pl 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 29/09/2024 03:21:56

UM
CS



Paweł Peryt 60 

The aforementioned criteria are so called “hard constraints” – breaking them 
is not allowed. 

However, it is often preferable to address also other requirements – criteria 
that are not critical, but it would be good to have them kept. These are so called 
“soft constraints”, for example: 

– it is preferable that no student attends more than 3 classes in a row, 
– the number of students attending to a class taking place in a 

particular room should be close to maximum capacity of the room 
(to avoid a situation when class for 10 students is held in room for 
100 students), 

– the overall cost of renting rooms is minimized. 
The UTP is solved when there is such a plan constructed, that no hard 

constraints are broken and preferably soft constraints are satisfied [1]. Because 
of space limitation only the problems which have a solution – i.e. it is possible to 
find a timetable with all hard constraints satisfied (in the conclusions section an 
approach to the case with no possible solution will be tackled) are considered 
here. 

If we treat students as a special kind of resources, the problem may be 
formulated as assignments of activities to resources over time in a way that 
specified constraints are kept. 

In the following sections a more formal definition of the problem will be 
presented, and then a concept of agent will be introduced. 

 
2. Constraint satisfaction problem 

Hard constraints may be specified in terms of constraint satisfaction problem 
(CSP) defined as [3] Πcs = ( X, D, C), where: 

 X = {x1,…, xn} – set of domain variables xi over domains Di constituting 
the set D = {D1,…, Dn}  

 λ: X → D1∪…Dn, λ = (v1,…, vn)∈D1 x … x Dn – labeling associating 
a value vi∈Di with each domain variable xi;  

C = {C1,…, Cm} – set of constraints (relations of type 2Di1x…xDik) 
limiting the set of possible (partial) labelings.  
The problem is to find a labeling λ∈Λ(C) in solution space Λ given by C in a 

way that all constraints are satisfied. 
In UTP variables may refer for example to: 
– a time when a particular activity takes place in a room, 
– time and activity assigned to a student at particular time. 
Soft constraints may be modeled by imposing a partial order on values of 

variables. Then if more than one value of a variable satisfies the constraint, the 
one taking the precedence over the other will be chosen. 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 29/09/2024 03:21:56

UM
CS



Agent based approach to University Timetabling Problem 61 

3. Distributed constraint satisfaction problem 
The variables and constraints in CSP are derived from entities and 

relationship between them present in the problem statement. Often more than 
one variable and/or constraint refers to a particular object from the considered 
domain. This relationship may be more formally stressed by defining for a given 
CSP a grouping function for constraints and variables. It is said that variables 
and/or constraints are in the same group if values of associated grouping 
function are the same. The grouping reflects logical relationships from the 
problem domain. 

This way the CSP has been extended to distributed constraint 
satisfaction problem [2] – DCSP – Πdcs = (X,D,C,A,φ), where: 

– X, D, C – refers to variables, domains and constraints (as in 
definition of CSP), 

– A – set of groups, 
– φ: X∪C→A – assigns variables and constraints to groups. 
Similarly to CSP, the problem is to find a labeling λ satisfying the constraints 

defined on the variables. In the case when φ is a constant function, DCSP 
becomes an ordinary CSP (sometimes referred to as centralized CSP). 

If there is a local consistency predicate defined to indicate that all variables 
within a group do not break constraints belonging to that group, then the original 
problem is divided into sub-problems (defined by these predicates). In the 
special case, when there are no constraints between groups (i.e. constraints 
which referr to variables belonging to separate groups) the problem was divided 
into independent sub-problems and each of the sub-problems may be solved 
independently. 

In a general case (and in most of the practical cases) such a division is not 
possible. Variables from different groups are tied with constraints. There can be 
two classes of constraints identified [3,4]: 

– external constraints – those with variables belonging to separate 
groups, 

– internal (local) constraints – constraints with variables belonging 
only to a particular group. 

The concept of grouping is not only a formal construct, it also can be derived 
from the following practical premises [5,6,7]: 

– in the case of naturally distributed problems the cost of gathering all 
constraints in one place may be too high (e.g. cost of sending, storing the 
data, but also converting it to a one dedicated format – especially 
important when data is gathered from many independent sources), 

– gathering all information in one place may be unwanted because of 
security of privacy reasons, 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 29/09/2024 03:21:56

UM
CS



Paweł Peryt 62 

– in the case of problems which are dynamic (in a sense that conditions are 
changing fast) there is no point in processing data in one place, because by 
the time data is gathered, it is outdated. 

In the case of UTP we can enumerate also several reasons for not gathering 
all information about the problem in one place, for example: 

– the full knowledge about time preferences of student is known only to a 
student and there is no point in revealing them, 

– the full information about cost of renting a room is known to the authority 
which the room belongs to. 

Local sub-problems may be solved independently without the need of looking 
at values of variables in other groups. When the local sub-problem is solved all 
local constraints are not violated and variables are given proper values. In the 
case that there exist more than one solution to a local problem, the best solution 
can be chosen according to some preferences. As it does not affect solution of 
other local problems the preferences can be set up for all groups independently. 

The case with external constraints is more complicated and it requires that a 
special coordination mechanism has to be used. When a variable is given a value 
in one group the information have to be propagated to other groups that share a 
constraint. 

In [6,7,9] there is an overview of algorithms for solving DCSPs and some 
practical problems that can be formalized in this way. 

The grouping concept can be refined further – the groups can be combined 
together to formulate higher level groups. The constraints are then defined 
between such a higher level groups or within a particular group. Of course if the 
process is continued finally only one group will remain and the problem will 
become a classical CSP one. 

 
4. An Agent-Based approach to DCSP 

A term “agent” is widely used in AI related publications. Although there are 
many doubts about its precise definition there was a significant progress made in 
the area. Several important results were achieved in AI domain and in software 
engineering domain. However, there is still much work to be done in both the 
tools and the methodologies to construct reliable and scalable agent systems. 

One of the general definitions of an agent will be adapted here – a (software) 
entity which is able to interact with environment (gather information from the 
environment and change the environment by means of actions) in order to fulfill 
its goals. An agent makes an autonomous decision about what action to take in 
order to achieve the goals.  

In the case of Multi Agent Systems (MAS) there are many interacting agents 
which are acting independently of each other. Without going into too much 
details it can be said, that the agents’ goals do not have to be consistent or 
coherent. It is often the case that they are contradictory, so in order to allow 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 29/09/2024 03:21:56

UM
CS



Agent based approach to University Timetabling Problem 63 

coexistence of such agents a special coordination mechanism has to be 
incorporated into the system [8]. In a special case, agents interact to achieve a 
common global goal – in this case this is so called cooperative problem solving 
[10,11]. Each agent may follow its own reasoning procedure and gather 
information from previous interactions. More detailed description of areas of 
interest in MAS can be found for instance in [13,14]. 

Referring to DCSP domain, an agent has information about all variables 
belonging to one group as well as about constraints relating to these variables. 
The actions that agent can take are to give a value to own variable and to 
exchange with other agents information about change in value of a variable 
bounded by external constraint. The goal of the agent is to find an acceptable 
assignment to all its variables. The assignment is acceptable when all external 
constraints are satisfied. An agent is also endowed with a preference function 
(utility function) that allows choosing among acceptable assignments. 

In the case of UTP we can distinguish agents representing rooms, students 
and activities. Each agent is responsible for establishing its own timetable. In 
addition, agents have their own preferences (like preferred time, number of 
activities in a row, usage ratio, etc). The timetable constructing is guided by this 
local utility functions instead of global utility function defined for the whole 
timetable. 

 
5. Proposed approach 

In the presented description of UTP three kinds of agents may be identified: 
– representing students (AS) – responsible for constructing a timetable for a 

student assuring that individual preferences are fulfilled. Each agent has an 
initial amount of money, 

– representing rooms (AR) – responsible for providing appropriate room 
allocations (taking into account its utilization, availability). For each 
timeslot there is an initial price for renting each room defined, 

– representing activities (AA) – responsible for assuring that each activity 
takes place in properly equipped room, and each student enrolled on the 
activity may attend it. 

Agents interact in order to label all defined variables. Variables local to a 
particular agent may be labeled independently on other agents. In the case of 
external dependencies all concerned agents have to be informed about the 
current labeling. Each proposal of a change to the labeling have to be agreed 
before it is set. As the change may cause a violation to local constraints of other 
agents, or other external constraints that the initiator is not aware of, it has to 
have means of convincing others. A straightforward model may be assumed that 
there exist a kind of “money” in the system. The utility function of each agent is 
somehow dependent on it. Each agent representing a student may freely allocate 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 29/09/2024 03:21:56

UM
CS



Paweł Peryt 64 

its money to buy a place on activity at the specified time. The money is allocated 
according to an individual preference of an agent. Agents do not have to 
explicitly express they preferences – it is done only implicitly by revealing bids. 

When AS wants to buy a place, it informs appropriate AA about this fact, and 
gives information about amount of money it wants to spend (a bid). The AA 
accumulates information from all interested AS agents and seeks for an 
appropriate AR agent. The AR agent adjusts its initial renting price according to 
incoming requests and preferences relating for example to utilization ratio and 
kind of offered facilities. 

The timetable construction is performed in two alternate phases: 
1. Allocation of students’ activities in time. 
2. Allocation of rooms to activities. 
The process ends when there is no agent willing to change its plan, or if there 

is no way (no money) for conducting the process further. 
When there is a change in problem conditions (for example one of the rooms 

become unavailable) all concerned agents are informed by AR and they can 
react. It is not necessary to rework the whole timetable. 

 
6. Related work 

One approach to CSP in context of agent-based systems can be found in [12]. 
In [15] there is a timetabling problem described, where also lecturers are taken 
into account – a lecturer is capable of conducting only a limited set of courses 
and it is not allowed that a lecturer has more than one class at the same time. 
Students are not treated separately; instead predefined groups of students are 
introduced. In addition, the walking distances between various rooms are 
modeled and the following quality measures for the plan were defined: 

– compactness – the number of free time slots between subsequent classes 
for lecturers and students have to be kept minimal, 

– there is a daily limit for the maximum number of classes per lecturer or 
student, 

– the rooms should be assigned in such a way that the walking distance 
between them is minimized. 

The initial timetable is constructed using a centralized approach – one central 
planning agent solving CSP. In the next step the timetable is refined by adjusting 
assignment of activities in time and then activities to rooms. During the process 
the following agents interact: 

– representing teachers, 
– representing groups of students. 
Agents negotiate among themselves in turns. In each turn agents are selected 

in a predefined order and may propose a change to its timetable. The aim is to: 
– maximize compactness of the own timetable, 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 29/09/2024 03:21:56

UM
CS



Agent based approach to University Timetabling Problem 65 

– minimize the overall number of free time slots in the own plan (the sum of 
all free slots within an entire plan may remain the same). 

During the negotiation process it may happen, that a change in a timetable 
proposed by one agent decreases the utility of timetable of another agent. In such 
a case an initiator of a change may propose some “money” as a refund to the 
second agent. Initially, each agent has a particular amount of money – 
proportional to the number of free timeslots in its timetable. This gives a natural 
preference to agents with worse timetable. To prevent the occurrences of cycles 
during negotiations there is a special parameter limiting the number of free 
timeslots that can be inserted into a timetable during the negotiation process. To 
increase the stability of a timetable the value of this parameter decreases over the 
time according to the simulating annealing scheme. Additionally, agents have to 
pay an entrance fee (or tax) at the beginning of each negotiation turn – the 
overall amount of money in the system decreases over time. If during a 
negotiation there is a better timetable constructed, it becomes the solution. 

In [16] there is a problem room utilization considered in context of multi-
faculty university timetabling. Each faculty has to construct a timetable for its 
activities using (preferably) own resources (rooms). There is cost associated with 
each resource. If it is not possible to construct a timetable for a faculty using 
only its own resources, resources from other departments can be used. A task of 
coordination of timetables between faculties in order to allow resource sharing is 
delegated to a special broker agent. The broker is responsible for optimal 
allocation of university resources. The solution refined by a broker is sent back 
to each department. 

In [5] a problem of timetabling on multi-department university is also 
considered. Similarly, resources between departments may be shared and the 
constructed timetable should minimize the overall cost. Constructing a timetable 
for a particular department is a responsibility of a Scheduling Agent (SA), which 
is aware of all faculty specific constraints. The coordination between SA’s is 
done by one dedicated agent – Central Agent (CA). 

In [17,18] there is a multi agent system MedPAge presented. It is capable of 
constructing a timetable for medical activities in hospital. Various medical 
activities are interrelated – for example must be executed in a fixed order. 
Additionally, for some procedures the presence of a patient is unavoidable, so 
they cannot be performed in parallel. The schedule might be also affected by 
some unpredicted emergency cases. For some procedures there is dedicated 
unique equipment required. This can be shared between hospital divisions or it 
might be necessary to transport it from another hospital. The domain is modeled 
in the system using agents representing resources and patients. Each agent is 
endowed with a utility function and a goal to maximize it. Agents can sell or buy 
time slots in a pro-active manner: if an agent (buyer) wants to change the start of 
an execution of a task it contacts an agent responsible for the concerned 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 29/09/2024 03:21:56

UM
CS



Paweł Peryt 66 

resource, then agents representing patients (sellers) are informed. The 
transaction takes place if the gain of a buyer is not less than the cost of 
establishing of a new timetable (alignment of patients’ schedule, change in 
resources’ allocation). 

 
Conclusions 

The relation between distributed constraint satisfaction problem and 
multiagent systems has been presented. On that basis a concept of a multiagent 
system for university timetabling problem was sketched. The model can be 
easily extended by introducing additional agents (e.g. representing teachers).The 
next step is to verify these concepts on a real system implemented using existing 
multiagent and CSP technologies. 

There are some interesting problems left open, like the problem of relaxing 
constraints has to be refined: in the case that there is no solution with a given set 
of hard constraints some of them have to be relaxed. As it is hard to define a 
general approach guiding which constraints should be dropped, it was good if 
such a decision would be left to an agent itself. For example based on a concept 
of punishment an agent would have to pay a special amount of money when it 
violates a hard constraint. 

 
References 

[1] Abbas A.M., Tsang E.P.K., Constraint-Based Timetabling – a Case Study, (2001). 
[2] Solotorevsky G., Gudes E., Meisels A., Distributed Constraint Satisfaction Problems – A 

model and Application, Kluwer Academic Publishers. 
[3] Hannebauer M., Their problems are my problems, in [8]., (2001). 
[4] Zhou L., Thornton J.,Sattar A., Dynamic Agent Ordering in Distributed Constraint 

Satisfaction Problems, (2003). 
[5] Meisels A., Kaplanski E., Scheduling Agents – Distributed Timetabling Problems (DisTTP), 

Practice and Theory of AutomatedTimetabling IV, Lecture Notes in Computer Science, 
Springer-Verlag Heidelberg., (2004). 

[6] Yokoo M., Durfee E. H., Ishida T., Kuwabara K., The Distributed Constraint Satisfaction 
Problem: Formalization and Algorithms, IEEE Trans. on Knowledge and DATA 
Engineering, 10(5) (1998). 

[7] Yokoo M., Hirayama K., Algorithms for Distributed Constraint Satisfaction: A Review, 
Autonomous Agents and Multi-Agent Systems, 3(2) (2000) 198. 

[8] Tessier C., Chaudron L., Muller H.-J. (editors), Conflicting Agents, Conflict Management in 
Multi-Agent Systems, Kluwer Academic Publishers, (2001). 

[9] Kumar V., Algorithms for Constraint Satisfaction Problems: A Survey, AI Magazine, 13(1) 
(1992) 32. 

[10] Ferber J., Multi-Agent Systems, An Introduction to Distributed Artificial Intelligence, 
Addison-Wesley Longman, (1999). 

[11] Weiss G. (editor), Multi-Agent Systems: A Modern Approach to Distributed Artificial 
Intelligence, MIT Press, (1999). 

[12] Calisti M., Neagu N., Constraint Satisfaction Techniques and Software Agents, Agents and 
Constraints workshop, AIIA’04, September 2004, Perugia, Italy, (2004). 

[13] Murthy S., Akkiraju R., Rachlin J., Wu F., Agent-Based Cooperative Scheduling, (1997). 
[14] de Weerdt M., Transport planning and scheduling, (1999). 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 29/09/2024 03:21:56

UM
CS



Agent based approach to University Timetabling Problem 67 

[15] Anke K., Staudte R., Dilger W., Producing and Improving Time Tables by Means of 
Constraint and Multi-agent Systems, AAAI-97, WS Constraints and Agents, Technical Report 
WS-97-05, AAAI Press, Menlo Park, (1997). 

[16] Richards E.B., Das S., Choi H., El-Kholy A., Liatsos V., Harrison C., Distributed 
Optimisation, A Case Study of Utilising Teaching Space in a College, Proceedings of the 
Expert Systems 96 Conference, SGES Publications, (1996). 

[17] Bartelt A., Lamersdorf W., Paulssen T.O., Heinzl A., Agent oriented specification for patient-
scheduling systems in hospitals, (2002). 

[18] Paulssen T.O., Jennings N.R., Decker K.S., Heinzl A., Distributed Patient Scheduling in 
Hospitals, (2003). 

 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 29/09/2024 03:21:56

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

