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Abstract

Timetabling problems are often hard and time-consuming to solve. Profits from full
automatization of this process can be invaluable. Although over the years many solutions have
been proposed, most of the methods concern only one problem instance or class. This paper
describes a possibly universal method for solving large, highly constrained timetabling problems
from different areas. The solution is based on evolutionary algorithm’s framework, with
specialized genetic operators and penalty-based evaluation function, and uses hyper-heuristics to
establish its operating parameters. The method has been used to solve three different timetabling
problems, which are described in detail, along with some results of preliminary experiments.

1. Introduction

Timetabling problems are quite popular to be seen about and arouse interest
of many researchers for more than thirty years. Their practical importance
should not be underestimated — institutions involved in education, healthcare,
transportation, sports, courts of law, production enterprises and many others
devote considerable resources to establish effective plans of their actions. As the
planning is often the most serious administrative task of institutions of such
kind, over the years many approaches to its partial or complete automatization
have been presented. Artificial Intelligence (Al) research community is quite
active in the area of timetabling and scheduling and has developed a variety of
approaches for solving such problems. They can be roughly divided into four
types [1]:

— sequential methods — these methods order events using domain heuristics
and then assign the events sequentially into valid time periods (also called
timeslots) so that no events in the period are in conflict with each other;
events are most often ordered in such a way that events that are most

*E-mail address: maciej.norberciak@pwr.wroc.pl



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 15:21:50

134 Maciej Norberciak

difficult to schedule are assigned into timeslots first (this course of action
is called direct heuristic based on successive augmentation) [2];

— cluster methods — in these methods events are collected in clusters where
any two events in a particular cluster do not conflict with each other; the
main drawback of these approaches is that the clusters of events are
formed and fixed at the beginning of the algorithm and that may result in a
poor quality timetable [3];

— constraint-based approaches — in these methods a timetabling problem is
modeled as a set of variables (i.e., events) that have a finite domain to
which values (i.e., resources such as time periods) have to be assigned to
satisfy a number of constraints; a number of rules is defined for assigning
resources to events and when no rule is applicable to the current partial
solution a backtracking is performed until a solution is found that satisfies
all constraints; as the satisfaction of all constraints may not be possible,
algorithms are generally allowed to break some constraints in a controlled
manner in order to produce a complete timetable [4,5];

— meta-heuristic methods — variety of meta-heuristic approaches such as
simulated annealing, tabu search, evolutionary algorithms and hybrid
approaches have been investigated for timetabling; meta-heuristic methods
begin with one or more initial solutions and employ search strategies to
find optimal solution, trying to avoid local optima in the process [6-10].

Recently the application of case-based reasoning to timetabling has become
increasingly popular [11-13]. Most approaches use heuristics because traditional
combinatorial optimization methods often have a considerable computational
cost. Although they can produce high quality solutions, they are not suitable for
solving large, highly constrained problems.

Based on this enumeration one could conclude that Al-based automatic
planning is at a quite mature level, all the problems solved in principle, and the
research tends to steer towards making existing methods faster, more effective
and giving better quality solutions for more complex and larger problems.
However it must be pointed out that vast majority of the solutions concern only
one, specific problem type (e.g. [14,15]) or some particular problem class
[16,17] and to be employed in concrete, practical case, time and resources have
to be devoted to adapt the solution to the specifics of the considered problem.

This paper presents an attempt to create a universal method, i.e. that capable
of solving problems from different areas with minimum user-side interaction.
Three different problems have been chosen for testing. The typical university
course timetabling problem is one of the most popular and widely featured in
research thus making the access to test data, both real and artificially generated,
very easy. Similar, but more specific problem, with some different constraints, is
timetabling on Faculty of Computer Science and Management of Wroclaw
University of Technology. The last problem belongs to personnel scheduling
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class — it is the problem of making monthly duties plan in the ward of one of the
Polish hospitals. Although it is relatively small in size, a large number of
different constraints makes it quite interesting.

2. Description of the problems

The typical timetabling problem consists in assigning a set of
activities/actions/events (e.g. work shifts, duties, classes) to a set of resources
(e.g. physicians, teachers, rooms) and time periods, fulfilling a set of constraints
of various types. Constraints stem from both nature of timetabling problems (e.g.
two events using the same resources cannot be planned at the same time) and
specificity of the institution involved. In other words, timetabling (or planning)
is a process of putting in a sequence or partial order a set of events to satisfy
temporal and resource constraints required to achieve a certain goal, and is
sometimes confused with scheduling, which is the process of assigning events to
resources over time to fulfill certain performance constraints (however, many
scientists consider scheduling as a special case of timetabling and vice versa)
[9].

Timetable problems are subject to many constraints that are usually divided
into two categories: “hard” and “soft”. Hard constraints are rigidly enforced and
have to be satisfied for the timetable to be feasible, for example no resource can
be demanded to be in more than one place at any time. Soft constraints are those
that are desirable but not absolutely essential (e.g. an event may need to be
scheduled in a particular time period or one event may need to be scheduled
before/after the other). In real-world situations it is usually impossible to satisfy
all soft constraints (often because they are mutually excluding).

The first problem considered is a typical university course timetabling
problem (UCTP). It consists of a set of events (classes) to be scheduled in a
certain number of timeslots, and a set of rooms with certain features and size
which events can take place in. There is a defined set of students attending each
event and the number of timeslots is 45 (5 days, 9 timeslots each). Test sets for
this problem come from the International Timetabling Competition.

A feasible timetable is one in which all the events have been assigned a
timeslot and a room, and the following hard constraints are satisfied:

— only one event is scheduled in each room at any timeslot,

— the room is big enough for all the attending students and satisfies all the

features required by the event,

— no student attends more than one class at the same time.

There are also three soft constraints defined; they are broken if:

— astudent has a class in the last slot of the day,

— a student has more than two classes in a row,

— astudent has a single class on a day.
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The second problem — timetabling on the Faculty of Computer Science and
Management (FCSM) of Wroctaw University of Technology has some
constraints related to teachers’ availability — each event had a teacher assigned
and each teacher had a defined set of forbidden timeslots, and the set of students
attending each event was undefined (only the number of students and the faculty
they attend was known) and it has to be concluded from the other data. In this
problem the number of timeslots is 35 (5 days, 7 timeslots each) and each event
had a defined course (the class is a part of particular university course). Some
test sets for this problem come from real data from FCSM and some have been
artificially generated. In this problem, similarly to the previous one, feasible
timetable is one in which all the events have been assigned a timeslot and a
room, so the following hard constraints have to be satisfied:

— only one event is scheduled in each room at any timeslot,

— the room is big enough for all the attending students and satisfies all the

features required by the event,

— no teacher carries on more than one class at the same time,

— no teacher carries on any class in timeslot which is forbidden for him; if a
particular course has only one class assigned, no class with students from
the same faculty is scheduled at the same timeslot with this course (this
covers the obligatory courses which are usually taught for all the faculty’s
students).

A typical hospital department employs about a dozen or so physicians of
various specialties. On each day one or more doctors has a duty. The number of
doctors on duty may vary from day to day. A planning horizon (i.e. a period of
time for which the problem must be solved) amounts one month (in both
aforementioned course timetabling problems it is one week). If specialties of
physicians in particular department are not homogenous (e.g. casualty ward
employs surgeons and anesthesiologists) there are often requirements for
specialty of doctors on duty. The following hard constraints are defined:

— all the timeslots (i.e. days) have a proper number of physicians of

appropriate specialties assigned,

— mno physician has a duty in two (or more) consecutive days,

— no physician has more than two duties in the week,

— at least one physician on each duty is able to perform duties single-handed
(that means that a particular doctor has a certain degree of medical
education and is experienced and responsible enough).

In order to consider and model fairness and job satisfaction issues, the

following soft constraints are introduced:

— physicians have duties on preferred days of the month and, symmetrically,
they have no duties assigned in timeslots they do not want to have duties;
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— if more than one physician has a duty assigned in a particular time period
social preferences are taken into consideration (doctors have duties with
persons they like).

Duties on special days, like Eastern, Christmas, New Year’s Eve, etc. are

preassigned, according to schedules from previous years so no one has duty on
the same holiday two years in a row.

3. Solution details

Evolutionary algorithms (EA) are considered to be a good general-purpose
optimization tool due to their high flexibility accompanied by conceptual
simplicity. Moreover, they have proven to be quite an effective tool for solving
timetabling problems ([3,18]). Thus EA framework has been taken into
consideration. Solution has been implemented solely by the author of the paper
using Microsoft Visual C++.

3.1. Representation of the problem

In order to assure universality of the approach each solution (genotype) of
particular problem’s instance is represented directly each timeslot has a list of
assigned events and each event — a list of resources. Genotype’s length is
constant for a particular problem — in the case of hospital duties genotype has a
length of the number of physicians on duty times the number of timeslots; course
timetable genotype’s length amounts the number of timeslots times the number
of rooms. The data needed to describe a particular problem class is abstract and
unified for all the problem classes.

3.2. Genotype initialization strategies

In order to work EA has to be provided with the initial population of
solutions. In most of the approaches either random or heuristics initialization is
used. Random method has the least computational complexity and does not take
into consideration problem’s domain knowledge. Heuristic approaches have
proven to be more effective though, i.e. the final solution tend to be found faster
than in the case of random initialization. Nevertheless, heuristics always
employs some kind of event sequencing strategy — the events are placed in the
timetable in order of their decreasing “difficulty” to plan —i.e. the events that are
the most difficult to schedule are allocated first. Either some kind of graph
coloring or problem-specific heuristics is used. Reduction of the problem
representation to a graph (as described in [19]), where events are represented by
graph’s vertices and if an edge between two vertices exists, the events
represented by these vertices can not be scheduled together (at the same
timeslot) has unfortunately many limitations (e.g. tells nothing about the reason
why particular events can not be scheduled together, so it is impossible to tell the
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difference between individual constraints). On the other hand, using problem-
specific heuristics compromises flexibility of the solution. In the approach
described in this paper, random initialization has been used as the point of
reference to grade the other method — the peckish initialization method. In this
approach for each timeslot k sets of events (and resources) are chosen at random;
the set that breaks the least number of hard constraints is assigned to the
timeslot. The number £ is called greediness level — when & amounts 1 this
method corresponds to random initialization; when & aspires to the number of
combination of events and resources, the algorithm becomes greedy. The details
of establishing & value are given in chapter 4.

3.3. Evaluation function

Penalty-based evaluation function was used. Penalty for genotype g amounts
i<t j<c
fg :Z,-:o ;:onnU’ (1)
where ¢ is the number of timeslots, ¢ is the number of constraint types, w; is the
weight assigned to a particular constraint type, and n; is the factor determined by
the penalization method. Four different methods have been considered:
a) the timeslot is penalized once for every type of constraint broken (i.e. n;
amounts either 0 or 1);
b) the timeslot is penalized every time the particular type of constraint is
broken,;
c) as in b), but additionally for each subsequent constraint of the particular
type broken, the penalty is doubled;
d) binary penalty — if the timeslot with events planned breaks no constraints,
penalty for this timeslot amounts 0 (1 otherwise); this is an exception to
(1), as no weights are used to determine value of the penalty.
Value of the evaluation (fitness) function for solution g is calculated by
dividing the lowest penalty value in the population by penalty value for g

F, = S . (2)
p

After generating the initial population the evolutionary algorithm begins to
operate. Creation of population in subsequent generations (iterations) is achived
by means of classical genetic roulette, as described in [20], but 20% of the
population is always preserved from previous generation: 10% consist of best
solutions (in terms of evaluation function described above) and the remaining
10% are the solutions that are most distant from the rest of the population, in
order to preserve population diversity. The distance between two timetables can

be measured in three ways:
— the number of events planned with the same resources in the same timeslot

in both timetables,
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— the number of pairs of events planned with the same resources in the same
timeslot in both timetables; as described in [1] this method is favored
because it allows to represent diversity as a single value average and did
not have the drawback of method where absolute positions of the events in
timetables are considered,

— search space coverage — how often the tuple <event, resources, timeslot>
appears in the whole population.

The higher the score is, the smaller the distance between timetables.

Additionally, three methods of determining the weights have been proposed:

— unified weights (all weights amount 1),

— weak constraints have a weight value of one, strong constraints have a
weight which amounts the number of weak constraints,

— automatic weight assignment — the details of this procedure are given in
chapter 4.

3.4. Genetic operators

In the classic evolutionary algorithm in each iteration after the selection phase
some specimens are exposed to genetic operators — mutation and crossover. The
contents of operators’ set and their operation depend strongly on both specifics
of problem being solved and the approach chosen. In the approach described
only mutation operators are used, because of high computational and conceptual
complexity of recombination operator. Resources, events and timeslots can be
mutated — that gives a set of three different types of mutation operators. In the
“classic” EA mutation operator is “blind”, i.e. changes the solution at random.
This approach, however, has proven to be ineffective ([3]) so directed operators
have been used. The place in genotype (tuple <event, resources, timeslot>),
which breaks the most constraints (so it is most difficult to schedule) is selected
to be mutated (if a few places are tied to be most difficult to schedule, one is
chosen at random). The operators try to reschedule the event in such a way, that
they would eliminate one particular type of conflict (broken constraint of
particular type), caused by this event — k possible variants are examined, and the
one, that breaks the least constraints of particular type is chosen (like in the
peckish initialization algorithm). The order of eliminating the conflicts is
established by means described in chapter 4. Application of any operator can
spoil timetable in terms of both evaluation function and the number of
constraints broken, but allows the algorithm to escape the local optima
efficiently.

4. Hyper-heuristic

As can be seen in the description of method, there some parameters that have
to be established for the solution to work. Such parameters are usually
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established either arbitrarily (e.g. based on the domain knowledge) or
experimentally. However, in the ‘‘knowledge poor’’ algorithms, designed to
solve a range of problems such an approach proves impossible to be applied. It
has recently been suggested ([21]), that hyper-heuristic methods can be used to
cope with this setback. A hyper-heuristics denotes a heuristic that selects
heuristics for a wide variety of problems, including timetabling. It differs from
the widely used term “metaheuristic” in that the term meta-heuristic usually
refers to a heuristics which manages one other heuristics for a particular
problem. A hyper-heuristic can be thought of as a heuristic to choose or to create
heuristics.

4.1. Automatic weight assignment

This procedure allows to establish the weights employed in calculating of the
evaluation function based on how frequently constraints of a particular type are
broken in randomly generated solution. A set of solutions is generated at random
and the least frequently broken constraint is assigned a weight of one. The rest of
the weights are established proportionally — the more frequent the constraint is
broken, the higher the weight is.

4.2. Establishing greediness level

After assigning the weights (by means of any aforementioned method),
greediness level of peckish initialization strategy is established. A dozen or so
sets of solutions are generated with ascending greediness level (due to increasing
computational complexity of the generation process, the highest greediness level
considered has been arbitrarily set up to amount the number of timeslots in the
particular solution). Then the average fitness for each set of solutions is
calculated, along with average time in which the solutions were generated. The
greediness which gives the best score (the shortest time and the highest average
fitness) is chosen.

4.3. Second-level EA

To find out which methods of penalization, measuring the distance between
solutions and weight assignment, along with the order of conflict elimination
and greediness level of genetic operators constitute the most effective set of
parameters (in terms of solution quality and time to reach feasible solution), the
evolutionary algorithm is used. The genotypes represent the aforementioned
parameters (greediness level is a natural number no greater than the number of
timeslots, order of conflict elimination is an ordered sequence, the rest of
attributes are nominal). In each iteration of the algorithm the solution of a
particular problem is generated using the parameters given in each of the
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genotypes (to avoid infinite operation the first-level algorithm ceases to operate
after finding a feasible solution or after 1000 iterations). The 2™ level genotypes
that did not give feasible solutions are scrapped, the rest are evaluated — the
value of the evaluation function is the value of the binary penalty function for
the best genotype in population. The best set of parameters is memorized, and
then the genetic operators of mutation and crossover are applied to the solutions.
Mutation (acting with the probability of 0.2) changes one of the parameters at
random (in the case of the conflict elimination order, changes that order).
Crossover (with the probability of 0.05) swaps random parts of two parameter
sets (treating conflict elimination order as one parameter). The procedure stops
after the fixed number of iterations or if no improvement has been made in two
subsequent iterations.

5. Results of experiments

Some preliminary experiments have been conducted with the approach
described in this paper. For all the experiments the second-level EA had a
population size of 100, and the first-level of 500. The second-level EA ran for
1000 iterations.

The first task was to prove, that the method is able to find a feasible solution
for all the test problems. Ten sets from the International Timetabling
Competition (ITTC) has been used for the first problem, two real datasets for the
second and one real and nine artificially generated for the third. The feasible
solution has been found for all the test sets. The first problem proved most
difficult, as it required a few hundred iterations of the second-level EA for
feasible solution to be found. For the other two problems solutions were
sometimes found without the help of the second-level algorithm but its operation
improved the results considerably.

More extensive experiments were conducted on UCTP. The results are
presented in Table 1. The fitness function values of the best solution achieved by
the method described in this paper presented in the table have been recalculated
to match the method used for evaluating solution in ITTC (all weights equal one,
second penalization method). The results have been compared with the best and
average results of ITTC competitors.

Table 1.
Dataset No. 1 2 | 3 4 5 6 7 8 9 | 10
ITTC best 45 | 25 | 65 | 115 77 | 6 12 | 29 | 17 | 61
ITTC average | 137 | 87 | 150|289 | 248 | 143 | 145|129 | 123 | 153
Universal | 158|103 | 156|399 |336|146| 125|110 (154|153
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As it can be seen, most of the results are worst than average of the ITC score.
Nevertheless, it has to be emphasized, that the methods used in ITC were
designed to perform only one task, and the parameters of their operation were
chosen intentionally to perform that task in the most effective way possible.
Moreover, almost all the methods used some form of local search to improve the
solutions.

Conclusions and future work

The question whether the universal, “knowledge-poor” method is able to
perform better or at least comparably well as the domain-specific one remains
open. In terms of computational time it is probably not possible, as the general
method searches the parameter space blindly. Preliminary results look appealing
but more work is needed to improve the algorithm — employing local search
seems especially promising. Nevertheless, universal methods will always have
one distinctive advantage over the specialized ones — they do not need a
laborious and time consuming process of redesigning and fine-tuning to fit
specific needs.
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