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Abstract – The restricted problem of the fourteen bodies with three rings is considered. The

results of the visualization and dynamic investigations with the Mathematica system are given. The

equilibrium positions are found with the use of analytical, numerical and graphical possibilities of the

system. The stability of the equilibrium positions is then considered. Visualization and animation

techniques are used for the observations of the motion processes.

1 Introduction

The computer algebra methods are the effective means for the search of problems

of mathematical and theoretical physics, celestial mechanics, astrodynamics and other

natural sciences. With the systems of computer mathematics put into practice, the

solutions of many classical natural science problems have been improved. In such a

way H. Poincaré [1] formulated the classical restricted three-body problem and provided

the method for its solution. The generalization of this problem for n–bodies is given

in the papers by Grebenikov and Elmabsout [2, 3, 4]. In the models like these the

gravitational field is created by the bodies which make up regular polygons revolving

around the central body. In such a gravitational field the motion of passively gravitating

mass is studied. The systems of differential equations which describe such models are

nonlinear and that is why it is impossible to integrate them by quadratures. In such

cases H. Poincaré recommended to discover the problem of existence of equilibrium

points [1]. This problem, as the authors have shown [5, 6, 7], can be reduced to

∗achichurin@gmail.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 16/01/2026 09:48:38

UM
CS



56 Simulation of the algorithms and their visualization forthe...

the solution of rather complicated systems of the nonlinear algebraic (non-differential)

equations. It’s impossible to find the exact solution to these algebraic systems in

the analytical form because of their essential nonlinearity. But when using modern

computer mathematical systems (for example,the Mathematica system by Wolfram

Research [8] the coordinates of equilibrium points can be found with the arbitrary

calculation accuracy.

In this paper the restricted problem of the fourteen bodies with three rings is studied.

That means that in the arbitrary Euclidean space there are 13 bodies (one central and

12 bodies situated at the apexes of three squares, which have the general center and

revolve around the central body with the equal angular velocity) and one body m with

a negligibly small mass which does not gravitate with other bodies. It is necessary to

study the motion of body m with a negligibly small mass. While solving this problem

we use the analytical, numerical and graphical possibilities of the Mathematica system.

We should point out that such restricted problems with the number of bodies from

4 to 12 and the number of rings equal to one or two are studied in papers [5, 6, ?, 9,

10, 11, 12]. The restricted problem with the number equal fourteen and the number

of rings equal one or two is studied in papers [13, 14, 15].

2 Algorithms for solutions to the restricted problem of the

cosmic dynamics

Let us define the next algorithm of solving the considered three-ring restricted prob-

lem:

2.1 Visualization of the model;

2.2 Obtaining the existence conditions of the correspondent partial solution of the

Newtonian thirteen-body problem and finding the gomographic solution [5, 13];

2.3 Plotting the graphics of the dependences between the geometric and dynamical

parameters of the model;

2.4 Defining the equilibrium positions (visually and finding the values of coordinates);

2.5 Numerical research (as the first stage in proving the stability and non-stability of

the equilibrium positions).

The program modules realized in the Mathematica system codes, and the graphs

built with the use of the visualization capabilities of the system are given below.

2.1 Building the program module allowing visualization of the model of the three-

ring problems, where n is the number of bodies lying on the same ring.

picture[n_, α,_, β_] := Module

[

{d}, xk[k_] := cos

[

2π(k − 1)

n

]

;

yk[k_] := sin

[

2π(k − 1)

n

]]

;
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xi[k_] := α cos

[

2π(k − 1)

n
+

π

n

]

; yi[k_] := α sin

[

2π(k − 1)

n
+

π

n

]

;

xj[k_] := β cos

[

2π(k − 1)

n

]

; yj[k_] := β sin

[

2π(k − 1)

n

]

; d = max[1, α, β];

p0 = Graphics [{GrayLevel[0.5],PointSize[0.025],Point[{0, 0}]}] ;
pk = Graphics [Table [{PointSixe[0.02], Point [{xk[k], yk[k]}]} , {k, l, n}]] ;
pi = Graphics [Table [{PointSixe[0.02], Point [{xi[k], yi[k]}]} , {k, l, n}]] ;
pj = Graphics [Table [{PointSixe[0.02], Point [{xj[k], yj[k]}]} , {k, l, n}]] ;
l1 = Graphics [{Dashing [{0.02, 0.015}] ,Thinckness[0.008],

Line [Table [{xk[k], yk[k]}, {k, l, n+ 1}]]}] ;
l2 = Graphics [{Dashing [{0.02, 0.015}] ,Thinckness[0.008],

Line [Table [{xi[k], yi[k]}, {k, l, n+ 1}]]}] ;
l3 = Graphics [{Dashing [{0.02, 0.015}] ,Thinckness[0.008],

Line [Table [{xj[k], yj[k]}, {k, l, n+ 1}]]}] ;
t0 = Graphics [Text [Style ["PO",Bold,Blue, 16] , {0, 0}, {−1,−1}]] ;
t1 = Graphics [Table [Text [Style ["P"<>ToString[k],BoldBlue, 16] ,
{

cos

[

2π(k − 1)

n

]

, sin

[

2π(k − 1)

n

]}

,

{

−1.5 cos

[

2π(k − 1)

n

]

,−1.5 sin

[

2π(k − 1)

n

]}

, {k, l, n}
]]]

;

t2 = Graphics [Table [Text [Style ["P"<>ToString[k],BoldBlue, 16] ,
{

α cos

[

2π(k − 1)

n
+

π

n

]

, α sin

[

2π(k − 1)

n
+

π

n

]}

,

{

−1.5 cos

[

2π(k − 1)

n
+

π

n

]

,−1.5 sin

[

2π(k − 1)

n
+

π

n

]}

, {k, n+ 1, 2n}
]]]

;

t3 = Graphics [Table [Text [Style ["P"<>ToString[k],BoldBlue, 16] ,
{

β cos

[

2π(k − 1)

n

]

, β sin

[

2π(k − 1)

n

]}

,

[

−1.5 cos
2π(k − 1)

n

]

,

{

−1.5 cos

[

2π(k − 1)

n

]

,−1.5 sin

[

2π(k − 1)

n

]}

, {k, 2n+ 1, 3n}
]]]

;

Show [{pk, po, pi, pj , l1, l2, l3, to, t1, t2, t3}Axes → True,

PlotRange → {{−1.3d, 1.3d}, {−1.3d, 1.3d}},AspectRatio → Automatic,

Ticks → {{−1,−α, α, 1}, {−1,−α, α, 1}},AxesLabel → {x, y}]

Application of the picture [n_, α_, β_] module: using, for example, the following

function picture[4,0.5,0.15] we will obtain the visualization of the three–ring model

(Fig.1)
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58 Simulation of the algorithms and their visualization...

Fig. 1. Three–ring model of the thirteen bodies Pi
(

i = 0, 12
)

, where β <

α < 1 (α = 0.5, β = 0.15).

2.2 Geometric visualization of the partial solution represented in Fig.1. Determine

the coordinates xk[k], yk[k], xi[k], yi[k], xj[k], yj[k] (k = 1, 2, 3, 4) of the twelve ro-

tating bodies Pi
(

i = 0, 12
)

in the same way as picture [n_, α_, β_]. Then using

the Bang-Elmabsout theorem [16], we obtain the analytical condition for the angular

velocity of the rotating squares

ω2 = m0 +

(

1

4
+

1√
2

)

m1 +





2−
√
2α

(

α2 −
√
2α+ 1

)3/2
+

2 +
√
2α

(

α2 +
√
2α+ 1

)3/2



m2

+

(

2

(β2 + 1)
3/2

− 1

(β − 1) |β − 1| +
1

(β + 1)
2

)

m3

(1)

and two analytical conditions for the masses mi(= 1, 2, 3) and distances α, β relation-

ship

m2 =



4m0

(

α−3 − 1
)

+m1





8− 4
√
2α−1

(

1−
√
2α+ α2

)3/2
+

8 + 4
√
2α−1

(

1−
√
2α+ α2

)3/2
− 1− 2

√
2




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+4





2−
√
2α−1β

(

α2 −
√
2αβ + β2

) +
2 +

√
2α−1β

(

α2 +
√
2αβ + β2

)3/2
− 1

(1 + β)2
− 2

(1 + β2)3/2

+
|β − 1|
(β − 1)3

)

m3

)

/(

8− 4
√
2α

(1−
√
2α+ α2)3/2

+
8 + 4

√
2α

(1 +
√
2α+ α2)3/2

− 1 + 2
√
2

α3

)

(2)

m3 =

(

m0

(

β−3 − 1
)

+m1

(

1

β(1 + β)2
+

2

(1 + β2)3/2
+

β − 1

|β − 1|3β − 1

4
−

√
2

2

)

−





2−
√
2α

(

1−
√
2α+ α2

)3/2
+

2 +
√
2α

(

1 +
√
2α+ α2

)3/2
+

2−
√
2αβ−1

(

α2 −
√
2αβ + β2

)3/2

+
2 +

√
2αβ−1

(

α2 +
√
2αβ + β2

)3/2



m2





/(

1

(1 + β)
2
+

2

(1 + β2)
3/2

+
1− β

|β − 1|3 − 1 + 2
√
2

4β3

)

.

(3)

Conditions (1)–(3) follow from the Bang–Elmabsout conditions [16] and create the

conditions for existence of the exact gomographic solutions to the Newtonian thirteen-

body problem.

Building the following program module makes it possible to get the analytical condi-

tions for visualizing the restricted model of the 3n+2 bodies of the three-ring problems,

where n is the number of bodies lying on the same ring.

sys[n_] := Module

[

{ }, xk[k_] := cos

[

2π(k − 1)

n

]

; yk[k_] := sin

[

2π(k − 1)

n

]

;

xi[k_] := α cos

[

2π(k − 1)

n
+

π

n

]

; yi[k_] := α sin

[

2π(k − 1)

n
+

π

n

]

;

xj[k_] := β cos

[

2π(k − 1)

n

]

; yJ [k_] := β sin

[

2π(k − 1)

n

]

;

g = x

(

ω − 1

(x2 + y2)3/2

)

−m1

n
∑

k=1

x− xk[k]
(

(x− xk[k])
2
+ (y − yk[k])

2

)3/2

−m2

n
∑

k=1

x− xi[k]
(

(x− xi[k])
2
+ (y − yi[k])

2

)3/2
−m3

n
∑

k=1

x− xj[k]
(

(x− xj[k])
2
+ (y − yj[k])

2

)3/2
;

h = y

(

ω − 1

(x2 + y2)3/2

)

−m1

n
∑

k=1

y − yk[k]
(

(x− xk[k])
2
+ (y − yk[k])

2

)3/2

−m2

n
∑

k=1

y − yi[k]
(

(x− xi[k])
2
+ (y − yi[k])

2

)3/2
−m3

n
∑

k=1

y − yj[k]
(

(x− xj[k])
2
+ (y − yj[k])

2

)3/2
;

Print[”g = ”, g];Print[”h = ”, h];

]

.
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60 Simulation of the algorithms and their visualization......

2.3 By means of the Mathematica we can solve system (1)–(3) as relates to

omega,m2,m3 using the function Solve. Using the animational capabilities of the

Mathematica system [7] makes it easy to prove that there are the areas of the positive

dynamic m0.m1, and geometric parameters α, β, in which the values ω,m2,m3 will be

positive as well. At that we can accept – without the restriction of generality - that

m0 = 1.

In Figs 2 and 3 such areas built with the use of the Plot3D and Manipulate

functions [8] are depicted for the defined parameters. Below we can see the graphics

of the dependence between the masses, distances and angular velocity.

Fig. 2. Dedependence between the mass m1, distances α, β and angular

velocity ω where m1 ∈ [0.00001, 0.1] (the slider represents the values of

m1), α ∈ [0.0001, 2], β ∈ [0.0001, 2].

Fig. 3. Dedependence between the mass m1, distances α, β and angular

velocity ω where m1 ∈ [0.00001, 0.1] (the slider represents the values of

m1), α ∈ [2, 1000], β ∈ [2, 1000].
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2.4 The general method for finding the equilibrium positions in the restricted prob-

lem of the fourteen bodies, the problem visualization, as well as finding the coordinates

of the equilibrium position for the cases of one or two rings are presented in [13]. We

will use the method and the module sys[n]. In this problem n = 4. As a result, function

sys[4] gives the analytical form for the g(x,y) and h(x,y) functions. The intersection

of these functions results in the localization of the equilibrium positions on the plane.

In Fig.4 all the equilibrium positions are shown for the parameters α = 0.8, β = 0.9,

m0 = 1, m1 = 0.0001. Bold points are the bodies Pk (vertexes of the three squares).

Fig.5 presents the enlarged view of the portion of Fig.4 (0.8 ≤ x ≤ 1.2, −0.1 ≤ y ≤ 0.3),

where the two of the equilibrium positions are located. The other the equilibrium po-

sitions are located symmetrically.

Fig. 4. Equilibrium positions are points of the intersection of two curves:

g(x, y) = 0 (contiguous curve) and h(x, y) = 0 (dashed curve), α = 0.8,

β = 0.9 , m0 = 1, m1 = 0.0001.

Fig. 5. The enlarged 0.8 ≤ x ≤ 1.2, −0.1 ≤ y ≤ 0.3 area of Fig.4. We can

see that in the neighborhood of (0.97, 0.22) and (1.0,0.0) there is the only

one equilibrium position.
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62 Simulation of the algorithms and their...

We obtain the points of equilibrium by using the function FindRoot [8]

N1 =FindRoot[{g==0,h==0},{x,1.0},{y,0.0}]//Chop

S1 =FindRoot[{g==0,h==0},{x,0.97 },{y,0.22}]//Chop

As a result, we have the coordinates of the two equilibrium positions.

{x → 1.01977, y → 0}
{x → 0.94528, y → 0.099918}
N1 is a radial equilibrium position as it is located on the line going through the two

bodies, whereas S1 is a non-radial equilibrium position. Likewise using the function

FindRoot we can easily find the coordinates of all the equilibrium positions with the

arbitrary required accuracy.

2.5 Let us do numerical research of the non-radial equilibrium position S1. In

papers [11, 12] it was proved that in the case of one- and two-ring problems with some

accurately defined values of masses, the similar equilibrium positions are stable in the

Lyapunov sense. We will study the point S1 with the following coordinates

x1 = 0.97502446651498, y1 = 0.223541709590483. (4)

Let us set the initial conditions

x(0) = x1, y(0) = y1, x
′(0) = 0, y′(0) = 0, (5)

and choose for instance the time t (0 < t < 10000). Using the numerical capabilities

of the Mathematica system we can solve the Cauchy problem [12, 15]:

sys = {x′′[t]− 2ωy′[t] == g, x[0] == x1, x′[0] == x′

1
,

y′′[t] + 2ωx′[t] == h, y[0] == y1, y′[0] == y′
1
}

ρ1 = NDSolve[sys, {x, y}, {t, 0, 10000}]
(6)

where the functions g and h are defined by function sys[4], with the angular velocity

ω obtained from (1). We obtained the results in the form of interpolating functions.

We build graphics of these interpolating functions for different values of time t and

different initial conditions x1, y1, x
′

1
, y′

1
. Let us build the graphics of these interpolating

functions [12, 15]

{{x → InterpolatingFunction[{{0., 10000.}}, <>],

y → InterpolatingFunction[{{0., 10000.}}, <>]}},

for different values of t at the time intervals (0, 200) and (0, 10000) (Figs 6 and 7) using

the following instruction (the origin of the coordinates is point S1)

ParametricP lot[Evaluate[{x[t], y[t]}/.ρ1], {t, 0, 100}, AxesLabel → {”x[t]”, ”y[t]”},
AxesOrigin → {x1, y1}, AspectRatio → 1, P lotRange → All, P lotPo int s− > 50000]

Let ∆ρ(t) is the distance of point on the trajectory from the equilibrium point S1

for t. We can then show ∆ρ(t) for 0 < t < 1000 (Fig.8)
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Fig. 6. Graphic of the solution to the Cauchy problem (4)–(6) for

0 ≤ t ≤ 200, x1 = 0.0001, x′

1 = 0, y1 = 0.001, y′1 = 0.

Fig. 7. Graphic of the solution to the Cauchy problem (4)–(6) for

0 ≤ t ≤ 1000, x1 = 0.0001, x′

1 = 0, y1 = 0.001, y′1 = 0.

Fig. 8. Graphic of the function ∆ρ(t) for 0 < t < 1000.
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3 Conclusions

With the changes in the initial conditions and the defined values of masses, the

trajectory does not deviate from the position of equilibrium S1. We can propose that

the point S1 is stable or – to be more precise – does not contradict to the stability

property. Exact proof for the stability of the point S1 requires the use of the results of

the Kolmogorov-Arnold-Moser theory [17]. Having done the numerical study for the

point N1 similar to that which was done for the point S1 (with such initial conditions

the trajectory moves away from the equilibrium position N1), let us make sure that

this point has the non-stability characteristics.
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