
Annales UMCS Informatica AI XII, 2 (2012) 27–37

DOI: 10.2478/v10065-012-0035-x

A self–stabilizing algorithm for finding weighted centroid

in trees

Halina Bielak1∗, Michał Pańczyk2†

1Institute of Mathematics, Maria Curie-Sklodowska University,

pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland.
2Institute of Computer Science, Maria Curie-Sklodowska University,

pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland.

Abstract – In this paper we present some modification of the Blair and Manne algorithm for finding

the center of a tree network in the distributed, self-stabilizing environment. Their algorithm finds
n

2
-separator of a tree. Our algorithm finds weighted centroid, which is direct generalization of the

former one for tree networks with positive weights on nodes. Time complexity of both algorithms is

O(n2), where n is the number of nodes in the network.

1 Introduction

A notion of self-stabilizing algorithms on distributed systems was introduced by

Dijkstra [1] in 1974. A survey in the topic can be found in the paper by Schneider

[2], and more details in the book by Dolev [3]. The notions from the graph theory not

defined in this paper can be found in the book by Harary [4].

A distributed self-stabilizing system consists of a set of processes (computing nodes)

and communication links between them. Every node in the system runs the same

algorithm and can change state of local variables. These variables determine local state

of a node. Nodes can observe the state of variables on themselves and their neighbour

nodes. The state of all the nodes in the system determines the global state.

Every self-stabilizing algorithm should have a class of global states called legitimate

state defined, when the system is stable and no action can be done by the algorithm

itself. Every other global state is called illegitimate and for the algorithm to be correct
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28 A self–stabilizing algorithm for finding weighted centroid...

there has to be some possibility to make a move if the state is illegitimate. The aim

of the self-stabilizing algorithm is to bring the legitimate (desirable) state of the whole

system after some alteration (from the outside of the system) of variables in the nodes

or after the system has been started.

The tree leader (medians) notions were first studied by Zelinka in [5] in 1967. The

self-stabilizing leader electing in unweighted trees was presented in [6] by Bruell, et al.

and improved in [7] by Blair and Manne. Recently Chepoi et al. [8] have presented the

self-stabilizing algorithm for the so-called partial rectangular grids. Their algorithm

uses generalization of the algorithm from [6], which computes also the median of a tree,

but in a different way from that in our paper.

In this paper we present an algorithm for electing a centroid node in weighted trees.

Every node in the system has its weight. We are going to find the node whose removal

would split the tree into connected components with the sum of weights not greater

than the half of the weight of the whole tree. Of course, for any node there would be

as many such components as the degree of the node is. In other words, we are looking

for weighted centroid of a tree. Fig. 1 presents the weighted tree of order 7.

Fig. 1. An example of a weighted tree.

2 Computational Model

We consider a self-stabilizing system modelled by a finite, undirected graph G =

(V,E). Let the number of vertices be n = |V | and the number of edges e = |E|. In

this paper we consider trees, so the number e of the edges in the graph is n− 1. A set

of all neighbours of the node i is N(i).

We think of every process as a node in the tree, whereas edges are the connection

links between them. There are some variables in each node. Names and types of the

variables are set during design of an algorithm. Every node can also look up the state

of the variables at its neighbours.
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Halina Bielak, Michał Pańczyk 29

Each node runs the same algorithm. The algorithm consists of a set of rules. A rule

has the form

: label

If guard

then assignment instructions.

A guard is a logic predicate which can refer to variables in the node itself and its

neighbours. We say that a rule is active if its guard is evaluated to be true. A node

is active if it contains any active rule. If there is no active node in the graph, we say

that the system is stabilized.

A self-stabilizing system contains also a scheduler. Its task is to choose one process

from the set of active processes and to trigger an active rule in it. We call such an action

a move. In this article the scheduler is assumed to be distributed and adversarial, so the

order of activating the nodes is nondeterministic. As a consequence, while describing

pessimistic complexity of the algorithm (number of moves), we must take the worst

case scenario of triggering actions in particular nodes.

3 Finding Centroid Node Algorithm

Blair and Manne [7] presented a fast algorithm for leader election in unweighted

trees. Now we present an algorithm for finding centroid in weighted trees. The idea

is quite similar to the original algorithm without weights. Let us have an unrooted

tree. Every node i of the tree has got the assigned weight wi which is a positive

natural number. A weighted centroid is such a node that its removal splits the tree

into connected components with the sum of weight of each one not greater than W/2,

where W denotes the entire tree weight.

Lemma 1. There is at least one weighted centroid node in a weighted tree.

Proof. Let us assume that there is no weighted centroid node in a tree. This

means that if we remove any node from the tree, there will be one connected component

with the weight greater than W/2.

Starting at an arbitrary node we can go to a neighbour which is a part of the

component with the weight greater than W/2. By repeating this step, at some point

we will get back to the previous node we have been in. Further steps would loop

infinitely between these two nodes. If we cut the edge between them, there will be two

connected trees, both with the weight greater than W/2. But this cannot be true since

the weights should sum up to W. �

As the existence of centroid nodes has been proven, now we state an upper bound

on the number of such nodes.

Theorem 1. The number of centroid nodes in a tree with positive weights on the

nodes is either one or two. Moreover, if there are two centroid nodes, they are adjacent.
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30 A self–stabilizing algorithm for finding weighted...

Proof. Let us assume that there are two weighted centroid nodes i, j in a tree,

such that they are not adjacent. There is at least one node between them from the

subtree containing nodes from the set B as shown in Fig. 2. Let B contain neither i

nor j. Also let A and C denote the sets of nodes in subtrees (other than the subtree

containing B) rooted on the neighbours of nodes i and j respectively.

Fig. 2. Visualisation of the proof of Theorem 1.

Let W denote the weight of the entire tree, so we can write

wA + wi + wB + wj + wC = W, (1)

where wA, wB , wC , wi, wj mean the weights of subgraphs induced by the sets

A,B,C, {i}, {j}, respectively. Since i is a weighted centroid we can write down:

wB + wj + wC ≤ W/2.

The same applies for j, so

wA + wi + wB ≤ W/2.

By adding the above two inequalities side by side we have

wA + wi + 2wB + wj + wC ≤ W,

which compared to (1) implies that wB = 0. But this cannot be true since all weights

in the tree are positive. This proves that two centroid nodes are always adjacent.

To end up the proof, it is sufficient to show that there cannot be more than two

centroid nodes. Let us assume that there are at least 3 centroid nodes. Since every two

of them must be adjacent, they must form a cycle with 3 nodes as a subgraph. But

this is impossible since a tree is an acyclic connected graph (net). �

Now we are ready to present the searching weighted centroid node algorithm in the

weighted trees. The algorithm consists of two phases. The first one determines weights

of some components adjacent to every node of a tree. After stabilization of the first

phase every node can also find out the weight of entire entire tree. The second phase

of the algorithm selects the centroid node relying on the information given by the

first phase. Both phases of algorithms run in parallel. However, while the first one is

running, moves made by the second phase are meaningless — they only increase the

number of moves made by the algorithm.
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3.1 Phase one — determining weights of components

In our algorithm each node contains in itself an array Wi of weights. After stabi-

lization of the system, the value of array Wi[j] for every neighbour j of the node i is

the weight of connected component containing node i but with {i, j} edge cut.

: R1

If ∃j∈N(i) Wi[j] �= wi +
∑

k∈N(i)−{j} Wk[i]

then Wi[j] := wi +
∑

k∈N(i)−{j} Wk[i]

Note that for any leaf i and its neighbour j, Wi[j] will be set to the weight wi of the

node i.

Fig. 3. The tree from Fig. 1 with Wi[j] calculated for every node i and its

neighbour j — after stabilization of R1 algorithm.

Below we state a lemma about stabilization of R1 algorithm. It is analogous to that

from [7], but in this case for the weighted tree network algorithm. The idea of the

proof is also the same, but in this paper we give an extension to the weighted tree

network algorithm.

Lemma 2. Algorithm R1 stabilizes.

Proof. Let us have any sequence of executions E1, E2, . . . , Ek of the rule R1 on

a sequence of the consecutive nodes n1, n2, . . . , nk, nk+1 (Ei is an execution of R1 rule

on ni node) such that Ei, 1 < i ≤ k, is the first update of Wni
[ni+1] that makes use of

the value Wni−1
[ni]. For example, the first such dependency is the use of Wn1

[n2] for

updating Wn2
[n3].

Now we show that ni �= nj for i �= j. According to the rule R1, it is impossible

to have ni = ni+1. To show that also ni �= ni+2 for every i, let us consider that

propagation of R1 moves along a path in the tree (see Fig. 4). For any node i the value

of Wi[j] depends only on the values Wh[i] in the neighbours h �= j. On the other hand,

the value Wi[j] influences the value Wj [k] in a node j for its any neighbour k �= i. If

we take ni = h and ni+2 = j, then the equation ni = ni+2 would imply that there is
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32 A self–stabilizing algorithm for finding weighted...

a cycle in the graph. But since it is a tree it is not possible. The above argument can

be repeated for any c ≥ 2 in rejecting the equation ni = ni+c. Thus we have k < n,

where n is the number of nodes of the tree.

There exists exactly one path between any two nodes in a tree. Thus the set of

all maximal paths of executing the rule R1 contains n2 elements when the orientation

of such paths (the order from left to right, and from right to left) is distinguished. The

only way the number of paths is unbounded is if the same path sequence appears more

than once in the set but with different input values. To show that it is impossible,

note that the first move of every maximal sequence of moves must depend only on the

system initial state. So if E and E′ are two maximal paths of execution of the rule R1

such that ni = n′
i, then the first move for both sequences must be the same. Now it

follows by induction that E and E′ must consist of the same moves since the i-th move

is uniquely dependent on the previous (i− 1)-th move. �

Fig. 4. Propagation of R1 moves along a path in a tree.

Lemma 3. When algorithm R1 has stabilized Wi[j] is correctly computed for every

node i and its neighbour j.

Proof. The proof is by induction on the number of nodes in a tree. As the base

case let us take a leaf. There are two possibilities: either Wi[j] in a leaf i is correct or

it is not correct at the beginning of running of the algorithm. If it is not correct, the

rule R1 is active and it will be triggered finally. After this move, the rule R1 becomes

inactive. If the Wi[j] is correct in a leaf, it will never be changed or become incorrect.

Now our induction hypothesis is that for a node i its every neighbour k except for a

node j, i.e. k �= j has computed the value Wk[i] correctly. Given that, if node i has the

value Wi[j] incorrect, now it can compute it and set a correct value to Wi[j] relying on

its neighbours’ information. The proof is done. �

We will now consider a number of moves the algorithm makes to stabilize. Let

vi(j) be the number of nodes in the connected component containing the node i in

the graph with {i, j} edge cut, and let ci(j) be the number of the value Wi[j] changes
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during execution of algorithm R1. Now we comprise lemma from [7] that will allow us

to deduce about the complexity of our algorithm.

Lemma 4. When algorithm R1 has stabilized ci(j) ≤ vi(j) for every node i and

its neighbour j.

The proof of Lemma 4 is similar to that for lemma 3, so it is omitted.

The number of moves in our algorithm is the same as in that for the network tree

without weights, so the following lemma from [7] also holds.

Lemma 5. The rule R1 is executed at most n(n− 1) times.

Proof. For every pair of adjacent nodes i, j the property vi(j) + vj(i) = n holds,

so from Lemma 4 the total number of times that the values Wi[j] and Wj [i] change is

at most n. Since the network system is a tree, so the number of edges is n − 1, the

result follows. �

3.2 Phase two — rooting the tree

Once the R1 phase has stabilized the system, every node can determine the weight

of the tree. To show this, we introduce a predicate similar to that from [7], which in

our algorithm states whether from the node i point of view, it can determine correct

weight of the whole tree. The following predicate:

wCorrecti =

⎛

⎝∀j∈N(i) ( Wi[j] = wi +
∑

k∈N(i)−{j}

Wk[i] )

⎞



is evaluated in order to run the following part of the algorithm. It is worth mentioning

that for any node i, the predicate wCorrecti is true iff the rule R1 is not active for the

node.

Given that the system has been stabilized, every node can determine the weight of

the tree. The following lemma gives the method how the node i can calculate the

weight of the whole tree.

Lemma 6. If wCorrecti is true then Wi[j]+Wj [i] = Wi[k]+Wk[i] for the neighbours

j, k of node i.

Proof. Since wCorrecti is true:

Wi[j] +Wj [i] = wi +
∑

q∈N(i)−{j} Wq[i] +Wj [i]

= wi +
∑

q∈N(i) Wq[i]

= wi +
∑

q∈N(i)−{k} Wq[i] +Wk[i]

= Wi[k] +Wk[i]

�
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34 A self–stabilizing algorithm for finding weighted...

This way each node can determine whether any of its neighbours has component

weight bigger than half of the weight of the whole tree. If this occurs, the node itself

cannot be the weighted centroid, and the neighbour is closer to it. In fact, it can be

the centroid itself. On the other hand, if for a node its every neighbour has component

weight less than half of the whole tree weight, then this node is considered the weighted

centroid of the tree.

There can be a situation, where two adjacent nodes can be considered as the weighted

centroid, actually when two neighbours have component weight exactly equal to half

of the whole tree weight. In such a case we arbitrarily choose the node with greater

ID.

All the time the wCorrecti predicate is true for the node i, from its point of view

it can determine the weight of the whole tree, but it is not necessarily correct. It is

correct after the rule R1 has stabilized in the whole system. Apart from the above

correctness, the weight of the entire tree calculated by node i we denote by Wi.

We present below four further rules of our algorithm. Their meaning is to make

a pointer to the centroid: after stabilization if a node is centroid then it points to

itself, otherwise the node points to the neighbour closer to the centroid. So each node

i contains the variable pi whose integer value points to the neighbour closer to the

centroid or to itself if it is the centroid itself.

: R2

If (wCorrecti) ∧ (∀j∈N(i)Wj [i] < Wi/2) ∧ (pi �= i)

then pi := i

: R3

If (wCorrecti) ∧ (∃j∈N(i)Wj [i] > Wi/2) ∧ (pi �= j)

then pi := j

: R4

If (wCorrecti) ∧ (∃j∈N(i)Wj [i] = Wi/2) ∧ (IDi > IDj) ∧ (pi �= i)

then pi := i

: R5

If (wCorrecti) ∧ (∃j∈N(i)Wj [i] = Wi/2) ∧ (IDi < IDj) ∧ (pi �= j)

then pi := j

In all above rule guards there is wCorrecti predicate. This makes the rules inactive

if from the node i point of view weights of components have not been calculated yet.

Thus for a node any of the rules R2-R5 can be active if and only if the rule R1 is

inactive.

The meaning of the rule R2 is to indicate in the node i that the weighted centroid is

only one (unique) and i is the one. The rule R3 makes the pi pointing to the neighbour

of i closer to the centroid if i is not the one. The rules R4 and R5 are activated only if

there are two weighted centroid nodes. Then the one with greater ID becomes elected:

by itself (the rule R4) and by the other one (the rule R5).
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Lemma 7. The algorithm R1–R5 stabilizes on every weighted tree network after

at most 2n2 − n moves.

Proof. The first phase of the algorithm (stabilization of the rule R1) takes no

more than n2 − n moves. The second phase consisting of the rules R2-R5 gives the

following number of moves: every node can make one move according to the rules

R2-R5 before any node triggers the rule R1. This gives n moves. Furthermore, after

every R1 move a node can make one of the R2-R5 rules move — this gives extra n2−n

moves. All in all, it gives n2 − n+ n+ n2 − n = 2n2 − n moves. �

Lemma 8. After stabilization of the R1-R5 algorithm, the pointer values pi for

every node i in the weighted tree determine a rooted tree with the weighted centroid

as the root.

Proof. It is obvious that execution of the R2-R5 rules does not have any influence

on the rule R1. Thus the rule R1 will stabilize with correct values Wi[j], for every node

i and its neighbour j.

Let us now assume that the entire algorithm has stabilized the weighted tree network.

Take a look at the nodes that are not the weighted centroid. Any such node i has exactly

one neighbour j for which Wj [i] > W/2, where W is the weight of the entire tree. For

these nodes i the rule R3 may apply after stabilization of the rule R1, but none of the

R2, R4, R5 rules is applicable. After possible application of the rule R3, pi will point

to the neighbour which is part of the connected component with its weight greater than

W/2. So these nodes point to the neighbour which is part of the subtree containing

the weighted centroid.

Now let us assume that there is a unique weighted centroid. Thus there exists no

node with Wj [i] = W/2. The centroid i has all the neighbours j with the property

Wj [i] < W/2. Then the node i which is the unique centroid may apply the rule R2,

pointing to itself as a centroid node. But it is also impossible that i can make a move

according to the rules R3-R5. Given that all the other nodes may apply only the rule

R3 , the whole tree has been stabilized with orientation to the root denoted.

The other case is when there are two nodes with the weighted centroid property. This

means that there is a pair of adjacent nodes p and q such that Wp[q] = Wq[p] = W/2.

Then no node i in the tree can have Wj [i] < W/2 for all its neighbours. Thus the

nodes with the weighted centroid property cannot apply the rules R2 or R3, and all

other nodes can apply only the rule R3. The non-centroid nodes will properly set their

p variables pointing towards the centroid node, as shown above. The weighted centroid

nodes are adjacent so one of them can apply the rule R4 and the other one can apply

the rule R5 if necessary. So the one with greater ID becomes a leader and the other

one points to the leader. This proves the last case. The proof is done. �
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To end up we can state the following corollary.

Corollary 1. Starting with any global state of weighted tree network system, the

algorithm R1-R5 stabilizes in at most 2n2 − n moves having the values pi for every

node i pointing towards the just elected leader as one of the weighted centroid nodes.

The final state of the system Fig. 1 is shown in Fig. 5. The arrows symbolize the

pointers pi for every node i. We have two weighted centroids in the example (nodes 4

and 5). The leader is marked with the circle.

Fig. 5. A state of variable pi for every node i in a tree after stabilization of

the algorithm R1–R5. The weighted centroid node elected by the algorithm

is circled.

4 Conclusions

We have presented the self-stabilizing algorithm for finding a centroid in the weighted

trees. It is generalization of the algorithm [7] for tree networks without weights (pre-

cisely with all node weights equal to 1). Our algorithm can be applied in the networks

with the weights for electing a node which is the center of the network. One can think

of it as limelight of the network.

In the future work we would like to study the weighted centroid and the weighted

median in the self-stabilizing systems with topologies other than trees. Some results

connected with the above subject can be found in [9].
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