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Abstract – Automatic disorders recognition in speech can be very helpful for a therapist while

monitoring therapy progress of patients with disordered speech. This article is focused on sound

repetitions. The signal is analyzed using Continuous Wavelet Transform with 16 bark scales. Using

the silence finding algorithm, only speech fragments are automatically found and cut. Each cut

fragment is converted into a fixed-length vector and passed into the Kohonen network. Finally, the

Kohonen winning neuron result is put on the 3-layer perceptron. Most of the analysis was performed

and the results were obtained using the authors’ program WaveBlaster. We use the STATISTICA

package for finding the best perceptron which was then imported back into WaveBlaster and used

for automatic blockades finding. The problem presented in this article is a part of our research work

aimed at creating an automatic disordered speech recognition system.

1 Introduction

Speech recognition is a highly important branch of computer science nowadays – oral

communication with a computer can be helpful in real-time document writing, language

translation or simply in using a computer. Therefore the issue has been analyzed for

many years by the researchers which resulted in creating many algorithms, such as the

Fourier transform, Linear Prediction, spectral analysis. Disorders recognition in speech

is quite a similar issue – one attempt to find where speech is not fluent instead of trying
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40 Automatic disordered sound repetition recognition in...

to understand the speech, therefore the same algorithms can be used. Automatically

generated statistics of disorders can be used as a support for therapists in their attempts

at estimating therapy progress.

Several methods for the disordered speech detection have been used by researchers for

disordered speech recognition, like: Fourier Transform, third octave filters, fuzzy logic

[1], Hidden Markov Models, MFCC coefficients [2], Linear Prediction [3] or Kohonen

networks [4]. In this paper a relatively new algorithm is used – Continuous Wavelet

Transform (CWT) ([5, 6, 7]) as - by using it - the most suitable scales (frequencies)

can be chosen. Fourier transform and Linear Prediction [8] are not so flexible – we have

to choose if we want to have more precise time scale (small window) and more precise

frequencies or the opposite - for the whole spectrogram. In CWT such a decision can

be made for each scale separately. The bark scales set was taken, which is, besides

the Mel scales and the ERB scales, considered as a perceptually based approach[9].

Using only the speech finding algorithm, the utterance fragments were found and cut

(automatically). Each cut fragment was converted into the fixed-length window (which

contained several vectors eq. 5) and passed into the Kohonen network which received

the 3D data and produced the 2D data (see Fig. 3). Such a dimensionally reduced

signal was passed to a 3-layer perceptron with a mark: containing a blockade or not.

Perceptron learning was performed by the STATISTICA’s ’Neural Network’ package

and its tool – Intelligent Problem Solver. Once found, the best network was imported

back again into WaveBlaster and then it was used for the automatic disorders finding.

Two–result statistics were presented: learning statistics of the best perceptrons from

the STATISTICA package and recognition statistics obtained by WaveBlaster using

these perceptrons.

2 Input signal processing by CWT

2.1 Mother wavelet

Mother wavelet is the heart of the Continuous Wavelet Transform:

CWTa,b =
∑

t

x(t) · ψa,b(t), where ψa,b(t) =
1√
a
ψ

(

t− b

a

)

(1)

where x(t) – input signal, ψa,b(t) – wavelet family, ψ(t) – mother wavelet, a – scale

(multiplicity of mother wavelet), b – offset in time. The Morlet wavelet represented by

equation (2) was used ([10]):

ψ(t) = e−t2/2 · cos(2π · 20 · t) (2)

which has the center frequency FC = 20Hz. Mother wavelets have one significant

feature: length of the wavelet is connected with FC which is a restraint. The Morlet

wavelet is different because the length can be chosen and then its FC can be set by

changing the cosines argument.
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2.2 Scales

For frequencies of scales, a perceptually based approach was assumed – because it

is considered to be the closest to the human way of hearing. The Hartmut scales were

chosen [11]:

B =
26.81

1 + 1960/f
− 0.53, f– freq. in Hz. (3)

The frequency Fa of each wavelet scale a was computed from the equation

Fa = FCFS/a, FS– sampling frequency. (4)

Due to the discrete nature of the algorithm, it was not always possible to match

scale a with scale B perfectly (Table 1). During the research some Hartmut scales

were found as insignificant in the recognition process. Therefore eventually only 16

scales were used.

Table 1. 16 scales a with the corresponding frequencies f and the bark scales B.

2.3 Smoothing scales

Because the CWT values are similarity coefficients between the signal and wavelet,

their sign are therefore irrelevant, in all computations, the following modules are taken

– |CWTa,b|. We went one step further and the |CWTa,b| was smoothed by creating a

contour (see Fig. 1) because of its good recognition ratio influence [12].

Fig. 1. Left: Cross-section of one CWTa,b scale. Right: Cross-section of

one |CWTa,b| scale and its contour (smoothed version).
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42 Automatic disordered sound repetition recognition in...

2.4 Windowing

Thus the spectrogram consists of 16 smoothed bark scales vectors. Then the spec-

trogram was cut into 23.2ms frames (512 samples when FS=22050Hz), with a 100%

frame offset. Because each scale has its own offset – one window of fixed width (e.g. 512

samples) will contain a different number of CWT values (CWT similarity coefficients)

in each scale (see Fig. 3), therefore the CWT arithmetic mean of each scale value was

taken.

Fig. 2. One CWT window (512 samples when FS=22050Hz).

From one i–th window the vector V of the form presented in eq. (5) was obtained.

Such consecutive vectors were then passed into the Kohonen network.

�V = {mean (|CWT57,i|) ,mean (|CWT68,i|) , . . . ,
mean (|CWT572,i|) ,mean (|CWT700,i|)}

(5)

3 Modified kohonen network algorithm

The Kohonen network ([13, 14, 15, 16, 17, 18]) (or "self-organizing map" or SOM,

for short) was developed by Teuvo Kohonen. The basic idea behind the Kohonen net-

work is to establish a structure of interconnected processing units ("neurons") which

compete for the signal. While the structure of the map may be quite arbitrary, rect-

angular maps were used in the research.

Let us assume that:

• Kohonen network has K neurons

• n is the dimension of each input vector X

• each element xi ∈ X is connected to all K neurons, so we have K × n con-

nections. Each connection is represented by its weight wij , i = 1, . . . , n,

j = 1, . . . ,K which is adjusted during the training.

The Kohonen neurons were numbered by rows from the top to the bottom

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:41:56

UM
CS



Ireneusz Codello, Wiesława Kuniszyk–Jóźkowiak, Elżbieta Smołka... 43

For every 2D CWT vector (see eq. (5)) one winning neuron is obtained. Therefore the

Kohonen network is used to convert the 3–dimension CWT spectrogram (which consists

of 2D CWT vectors situated one next to another) into the 2–dimension winning neuron

contour as depicted in Fig. 3 ([4, 19]). Such reduction of data, from 3D into 2D, which

is later passed on to MLP, occurred to have a positive impact on the non-fluencies

recognition ratio ([4, 19]) (the whole 3D spectrogram seems to be too large for MLP

to find general features).

Fig. 3. Converting 3D CWT (Left picture. Y axis: the bark scale, X axis:

the time) into the 2D Kohonen winning neuron contour (Right picture. Y

axis: winning neuron, X axis: the time). In this example the Kohonen

network was of the size 8× 9 giving 72 neurons.

The standard training algorithm [16, 18] was used with one modification – i.e. 0th

neuron clearing [20].

4 Automatic disordered sound repetitions recognition

4.1 Input data

The Polish speech recordings of 9 stuttering persons were taken of the summary

length equal to 9 min 44 s divided into 3 files: allblknn1, allblknn2, allblknn3 contain-

ing 294 disordered repetitions of the sounds: b,d,g,k,n,o,p,t. The statistics were the

following:

Table 2. Disordered sound repetition fragments counts.

4.2 Automatic blockades cutting

Input files were automatically divided into words by a simple algorithm. We divided

the CWT scalogram into 22ms windows with 11ms offset. Each window was marked

as speech if it contained at least one value above the threshold: -53dB, -54dB or
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-55dB (maximum CWT value was assigned as 0dB). Because we were looking only for

disordered blockades, which are always short, words longer than 200ms were removed.

Moreover, we observed that cutting algorithm was so sensitive, that it found silence in

fluent words and divided them into pieces. Therefore we added the second parameter

– distance: 50ms, 40ms, 30ms, 0ms. If two words were closer than the distance, then

they were treated as one longer word and removed. Based on these two parameters,

we created blockades cutting statistics containing a number of correctly cut blockades

and a number of fluent words:

Table 3. Blockades cutting statistics (number of words) for the threshold

and distance parameters.

Based on these statistics we decided to get only the configurations: 50ms-55dB,

50ms-54dB, 30ms-54dB.

4.3 Training algorithm

The procedure of finding sound repetitions in the file was the following:

1. The CWT spectrogram of the continuous speech was computed.

2. The CWT signal was divided into 22ms windows with 50% offset, and only the words

that match criteria (see 4.2) were chosen. The distance and threshold parameters
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were applied to the algorithm (see 4.2), and the most suitable ones were used: 50ms-

55dB, 50ms-54dB, 30ms-54dB.

3. If the speech fragment passed the above verification, it was cut with a surrounding

according to the window length parameters: 700ms, 1000ms, 1500ms, 2000ms,

2500ms, 3000ms (each window always contained the 500ms prefix, speech fragment

and the postfix of variable length so that we would obtain a desired window length).

4. Each window which consisted of 16-element vectors was automatically passed into

the Kohonen network. After the training process a winning neuron graph was ob-

tained (Fig 3). The 5x5 Kohonen network was used with the following parameters:

100 epochs, learning coefficient 0.20-0.10, and neighbour distance 2.5-0.5.

5. Each graph was marked as fluent or non-fluent (this information was ‘the teacher’

in the perceptron learning algorithm).

6. Using STATISCTICA, the perceptron with the best recognition ratio was found.

The input vectors were divided randomly by STATISTICA into teaching set (50%),

verifying set (25%) and testing set (25%). (Only the allblknn2 and allblknn3 files

were passed to the STATISTICA). The best perceptron (see Table 4) was imported

back into WaveBlaster and all three files took part in the finding process.

4.4 Finding algorithm

1. Steps 1–4 were repeated from the previous paragraph.

2. The obtained Kohonen vector was passed into the perceptron (imported from STA-

TISTICA) and its output was checked.

3. Based on the output the speech fragment was marked as fluent/non-fluent.

5 Results

The recognition ratio was calculated with the use of these formulas:

sensitivity =
P

A
; predictability =

P

P +B
(6)

where P is the number of correctly recognized disorders, A is the number of all

disorders and B is the number of fluent sections mistakenly recognized as disorders.

6 Conclusions

As we can see in Table 4 all perceptrons distinguish blockades really well (97%-100%),

even in veriication and testing sets (test vectors do not take part in teaching at all).

That is because of speech cutting algorithm – on the perceptron only speech fragments

that begin with the utterance were passed, therefore the perceptron does not have to

straggle with fragments that have sometimes blockade in the middle and sometimes

at the end. Such results would suggest that this method of cutting blockades is very

good.
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Table 4. Best perceptron recognition ratio in % for allblknn2 and allblkn3

files. STATISTICA randomly divided vectors into learning (50%), verifying

(25%) and testing set (25%). In ‘net’ column we have a number of neurons

on each layer. Learning algorithm: BP100 – back propagation with 100

epochs, CG20b – continuous gradients with 20 epochs.

Unfortunately our speech cutting algorithm has a weakness – it misses some of the

blockades and by making it more sensitive, it cuts disproportionately more fluent frag-

ments (see Table 3). Maybe a more complex and more smart algorithm should be

used.

As for automatic blockades recognition results in the fluent speech (see Table 5), we

need to remember that they can only be as good as speech cutting efficiency. Nets

1-6 work on the set that has only 71%-78% blockades cut (see Table 3 blk 55dB 50ms

section) so their results are significantly lower than sets 7-12 having 87%-94% blockades

cut (see Table 3 blk 54dB 50ms section) or sets 13-18 having 95%-100% blockades cut

(see Table 3 blk 54dB 30ms section). Files allblknn2 and allblknn3 have very good

results. Of course these files were used in teaching the perceptron but we should

remember that only 50% of fragments took direct part in teaching (learning set) while

25% of the fragments were not used at all (testing set).

We tested one file that was not used in teaching at all – allblknn1. As we can see the

results are significantly lower but still good. After closer investigation it occurred that

the file has a few series blockades that occur very fast one after another (like “p p p

p publication”). Though the cutting algorithm cut them correctly, perceptron decided
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Table 5. Disordered sound repetition recognition results in % in continuous

speech using nets from Table 4. The best results are marked as bold.

that they were so close to each other that it had to be one fluent word. Because such

a decision was applied to all blockades in one series (not only one), this lowered the

recognition ratio heavily.

The last conclusion is connected with the result for the file allblknn1. Nets 7-12

which received 71%-78% blockades had better results than those 13-18 which received

95%-100% blockades. This means that perceptron cannot receive too many fluent

fragments (nets 7-12 received 123 and nets 13-18 received 165) because it makes more

mistakes though it has more blockade patterns to learn on.
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