
Annales UMCS Informatica AI XIII, 1 (2013) 53–61
DOI: 10.2478/v10065-012-0013-3

The N queens problem - new variants of the Wirth algorithm

Marcin Łajtar1

1Institute of Computer Science, Lublin University of Technology,
ul. Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract – The paper presents new ways of n-queens problem solving . Briefly,
this is a problem on a nxn chessboard of a set n-queens, so that any two of them
are not in check. At the beginning, currently used algorithm to find solutions is
discussed. Then sequentially 4 new algorithms, along with the interpretation of
changes are given. The research results, including comparison, of calculation times
of all algorithms together with their interpretation are discussed. Finally, conclu-
sions are given. The results were obtained thanks to the pre-created application.
Chapters except for "By filtering ver. 2" were based on the previous studies carried
out during the Bachelor course [1].

1 Introduction

“The N-queens puzzle is the problem of putting N chess queens on an N ×N chess-
board such that none of them is able to capture any other using the standard chess
queen’s moves. The colour of the queens is meaningless in this puzzle, and any queen
is assumed to be able to attack any other. Thus, a solution requires that no two queens
share the same row, column, or diagonal” [2].

2 Backtracking and check function

Solving some algorithmic issues, we use a set of the searched patterns to reduce
the number of calculations. State space pruning trees(backtracking) are used today in
the problem of n queens to reduce the number of nodes. Niklaus Wirth [3] proposed
that method. The results of this operation are presented in this paper as "Basic
Backtracking". This has been the most effective type of structure to restrict the range

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

UM
CS



54 The N queens problem - new variants of the Wirth algorithm

of research of this problem so far. A general form of the Backtracking algorithm can
be presented as a simple code [3]:

public static void backtracking (node v)
{
//code

if (promising(v))
if (last line) // solution is found
save_solution();

else
for (every node „u” child for „v”)
backtracking (u);

}

Fig. 1 shows the search tree using the Backtracking algorithm. The symbol "x"
indicates that the node is not promising and for it further calculations are no longer
performed. The algorithm has completed its work upon finding the first solution, ((1,2)
(2,4) (3,1) (4,3)). If we used the full tree of states to find a solution we would need for
prior checking of 154 nodes, in the case of the Backtracking algorithm it was enough
to check 22 nodes.

Fig. 1. Description of the return-Tree(backtracking) [3].

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

UM
CS



Marcin Łajtar 55

We can distinguish two types of nodes:

• Promising- -using this kind of nodes we can solve the problem
• Non-promising- broken terms of the solution. For them we do not perform

further operations.

The base of algorithms is to check: "is the node promising?". It is most frequently
called method and it absorbs most of the computing resources at runtime. It is based
on checking “Does the Queen placed on the field "interfere" with any pre-set queen?”.
It is a 100% reliable method and intuitively used.

But what happens if the chessboard is larger? It turns out that the checking-
algorithm has significant influence on the runtime of the base method. So far the
literature lacks interesting solutions. New ways of solving this problem and comparing
it with the classical checking function are proposed in this work.

The general code of checking function is presented below:

Global variables:
int queens[]-array of pre-set queens;
for example: queens[0]= column value of the queen set in the first
row,
queens[1]= column value of queen set in the second row, etc.
Public boolean CheckNode(int row, int column)// with input parameters
of queen position
{
//code
boolean promising= true;
While(it has non check Queens and promising value is true) //comparing
with every pre- //set queen
{
if(the same column, or the same diagonal)
{promising=false;} //queen conflict with the pre-set queen;
}
return promising; //output value of promising
}

Table 1 shows the number of the call function CheckNode for 4-14 size chessboards
and for their every row. Depending on which row function is called, it has a different
number of pre-set queens to check. For example, for the first (‘0’) row, it has 0 to
check because it is zero pre-set queen. For row ‘1’ it has 1 queen to check, for row ‘n’
it has ‘n’ queens to check. Of course it is not necessary to check ‘n’ nods if we find
before that the checking node is not-promising. The average number of comparisons
shows that this number is smaller than half of size, but this depends on it. It is
very important information, because it also shows that the bigger chessboard is, the
more time is needed to execute the function CheckNode. We do not know how many

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

UM
CS



56 The N queens problem - new variants of the Wirth algorithm

solutions bigger chesboards have, but we can estimate the upper limit, as Craig Letavec
and John Ruggiero [4] did.

Table 1. Checked nodes.

3 Symmetry

Chessboard is an object of many axes of symmetry. By using this property a lot
of solutions could be obtained after the reflection, or rotation. However, we should
consider how this fact can speed up the algorithm? Here some problems appear. Solu-
tions "reflected" in most cases will not give us knowledge about the point from which
to begin calculations, or upon which end. Implementation of even formation of such
"settings" will lead up to duplicate results. So we can not approach this fact too greed-
ily. The advantages coming from this relation are significant. Based on the possession
of the vertical axis of symmetry we call a function executing only half of the nodes.
The other solutions are symmetrical. This approach allows us to "miss" half a tree of
states, which will reduce the calculation time. This fact is used in all next algorithms.

4 Backtracking ver.1

As already mentioned in Section 2 check function is not a very effective algorithm.
Along with moving deep into tree, longer operations of comparison are obtained. The

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

UM
CS



Marcin Łajtar 57

main idea for speeding up the program was to create a method wich will partially or
fully replace the function of checking. That was the idea of creating a boolean array
specifying the column already used. Every time we “put” the Queen, the value "false"
is set in the proper place. That structure is used as a filter that stops executing if
the column is already used. In this way adding a few instructions largely eliminates
the need for call check function. In the objects such as table, a problem with the
transmission of the subsequent recursive cycles appears. It is a very large number of
calls, and copying arrays dramatically increase the demand for memory. The solution
is to create a two dimensional array, instead of one. The second dimension describes
the row for which data is stored. Then the recursive call takes and overwrites only the
appropriate line.

Global variables:
Int dimension;//chess board dimension
Boolean columns[dimension][dimension];//and filled by proper values

Public static void backtrackingVer1(int row)
{
//copy values columns[row-1][] to columns[row]
for(int i=0; i<dimension; i++)//”i” describes column
{

if(columns[row][i]==’true’)// column was not used
{

if (CheckNode(i)=true)//call check function
{

columns[row][i]=false;//column is used now
if (last line) // solution is found

{save_solution(); }
else { backtrackingVer1 (row+1); }

}
}

}
}

5 Backtracking ver. 2

Another creative intention was the rejection of having to check each of the nodes
whose column index has been previously used. Such nodes are by definition non-
promising and there is no need to check them. In the previous algorithm, the filter
"stops" calculation. In this case they will be skipped in the declaration of the loop
already. Originally the solution was to be a queue of integers that stores information
about the columns which can still be used. However, this approach is loaded with

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

UM
CS



58 The N queens problem - new variants of the Wirth algorithm

many problems in transfer of data to subsequent recursive calls. The final result is an
array of integers with the same parameters. For the next row the size is successively
decremented. The transmission array is performed using the lists whose indices indicate
rows of the chessboard.

6 By filtering ver. 1

Looking at the backtracking algorithm ver1 we can see that we base on exclusion
from the set of possible fields whose columns were previously used. By setting the
queen in a certain place in accordance with the solution rules, apart from column it is
possible to eliminate also the diagonal. Row is not checked, because every time we pass
to the next. Following the clue of elimination of columns and diagonals, we can see that
each field can be described using these parameters. The number of columns is equal to
the "dimension" and the number of diagonals is equal to "2* dimension-1". If we save
already used columns and diagonals in the Boolean arrays, we can completely replace
the need of recall checking function. This approach significantly speeds up calculations
in deeper nodes. Unlike the checking function, the operation for each node in this case
takes the same amount of time.

7 By filtering ver. 2

Considering executing a program, we reach the conclusion that during the recursive
call it is a jump instruction with putting appropriate values on the stack. Upon re-
turning, these values are collected from stack and the next lines of code are executing.
With this idea before entering into the tree, we can remove the columns and diagonals
that have been already used, and after back instruction (while returning the parent
node) to the set the appropriate values to "true"(add them back). For the program
with such assumptions, we need three arrays defining the columns and diagonals used,
but they will not be 2-dimensional just one-dimensional. Now copying parent arrays
to child will not be necessary. This will save us a lot of operations. Operation on a
critical loop in this case will be composed of 3 operations on bits for non-promising
nodes, and for promising of 9 operations on bits. Execution of these operations takes
much less time than copy operations on arrays or making integer operations.

8 Research results

All algorithms are based on the principle of cutting the tree of states. This method
allows to significantly reduce the number of nodes to check. Precise data can be found
in the work of Professor Teslera [5]. The "backtracking ver. 2" also limits the range,
excluding the calculation nodes, whose columns have been already used. In this way
the number of checked nodes is much smaller. In comparison with the other functions,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

UM
CS



Marcin Łajtar 59

the number of checked nodes is 2-times smaller for a 4×4 chessboard and nearly 4-times
smaller for a 14×14 chessboard.

The application created for research has been done in the Java platform. This is
not the language which should be used if we consider calculation speed. However, for
comparison it is enough to make the implementation within the same tehnology using
the same rules. Persons who would like to accelerate the program will find necessary
information in the conclusions.

The program includes the method with different schemes of search for solutions.
Before calling any of them the counter is activated, and it stops after completion of
calculations. It should be added that time has relative and absolute errors. The
calculations were performed on the Intel Core 2 Duo T5550 1.83 GHz CPU and the
operating system MS Windows XP. Computation time for each call was different. The
reason for that might be for example the occurrence of interrupts from the system
during the computation. These errors were relatively large for the small chessboards.
For larger size chessboards calculation errors, became less significant. Larger 10-18
chessboards will be used in presenting results. All included algorithms are built on the
symmetry relation.

Table 2. Comparison of results.

In the next table, the information about relative profit by using the algorithms can
be found. It is presented as the ratio of runtime basic function (Basic backtracking) to
the selected method.

9 Conclusions

As follows from the research currently used algorithms for counting the solutions
of N-queens problem are not the most efficient. They are based on the "checking
method" which with subsequent calls into the depths of tree works longer. Partial or
total exclusion of calling this method made it possible to speed up calculations in a
non-linear way, as evidenced by the increase in the value of the ratio in the next board
sizes .

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

UM
CS



60 The N queens problem - new variants of the Wirth algorithm

Table 3. Comparison of results - rounded times.

Table 4. Comparison of results - ratio Basic backtracking to other algorithms.

To speed up the program there should be used a less developed language such as C,
or even implementations on the orders of microprocessor. The style of writing is also
very important. Using references, operations on bits, etc. can significantly speed up
the program as shown in the work by Jeffs Somers [6]. It is worth reading the article,
which offers a multi-threaded solution of that problem [7]. If we are not interested
in finding all the solutions, but only one we should use the heuristic methods. They
are applied usually when we have to deal with the cases where it is hard to perform
accurate calculations. As presented by the Year Sosic and Jun Gu [8], a solution
for really huge chessboards can be found doing fewer operations than presented by
Peter Alfeld [9].One should get familiar with the works [10], [11], [12] and [2], which
contribute largely to the problem.

The study describes the patterns of four new methods for finding solutions:

• Backtracking ver. 1
• Backtracking ver. 2
• By filtering ver. 1
• By filtering ver. 2

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

UM
CS



Marcin Łajtar 61

Each of them brings something new into the problem. Backtracking ver. 2 even reduces
the number of tested nodes. It is possible that implementation of this method in a
different environment with the addition of diagonal filter would provide even better
results than the algorithm "Filtering ver.1" or even "Filtering ver. 2". But the main
discovery is to show other ways to achieve the objective.

Acknowledgement

I would like to express my gratitude to Professor S. Grzegórski for his supervision
and helpful remarks.

References

[1] Łajtar M., Implementacja i porównanie wybranych metod w problemie N-królowych, BSc Thesis
supervision Grzegórski S., Lublin University of Technology (2011).

[2] http://www.etsi.org/plugtests/grid/Document/N-QUEENS-CHALLENGE-2007-v4.pdf
(01.10.2012).

[3] Wirth N., Program Development by Refinement, Communication of the ACM (1971).
[4] Letavec C. Ruggiero J., The n-Queens Problem, INFORMS Transcations on Education (2002).
[5] Tesler G., n-Queens, Math 188 (2001).
[6] http://jsomers.com/nqueen_demo/nqueens.html (01.10.2012).
[7] Hać M., Brzuszek M, Równoległe rozwiązanie problemu N-królowych z wykorzystaniem standardu

OPENMP, Scientific Bulletin of Chełm 1 (2008).
[8] Rok S., Jun G., Polynomial Time Algorithms for the N-Queen Problem, ACM SIGART (1990).
[9] Alfeld P., The N by N Queens Problem, Univerity of Utah (1997).

[10] Chatham R. D., Reflections on the N + k Queens Problem, Integre Technical Publishing (2009).
[11] http://www.academic.marist.edu/∼jzbv/algorithms/Backtracking.htm (01.10.2012).
[12] http://proactive.inria.fr/index.php?page=nqueens25 (01.10.2012).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

