Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

Annales UMCS
Informatica
Annales UMCS Informatica AI XIII, 1 (2013) 53-61 Lublin-Poloni:
DOT: 10.2478 /v10065-012-0013-3 UDn-Lo. omd
Sectio Al

http://www.annales.umes.lublin.pl/

The N queens problem - new variants of the Wirth algorithm

Marcin Lajtar!

Institute of Computer Science, Lublin University of Technology,
ul. Nadbystrzycka 36b, 20-618 Lublin, Poland

Abstract — The paper presents new ways of n-queens problem solving . Briefly,
this is a problem on a nxn chessboard of a set n-queens, so that any two of them
are not in check. At the beginning, currently used algorithm to find solutions is
discussed. Then sequentially 4 new algorithms, along with the interpretation of
changes are given. The research results, including comparison, of calculation times
of all algorithms together with their interpretation are discussed. Finally, conclu-
sions are given. The results were obtained thanks to the pre-created application.
Chapters except for "By filtering ver. 2" were based on the previous studies carried
out during the Bachelor course [1].

1 Introduction

“The N-queens puzzle is the problem of putting N chess queens on an N x N chess-
board such that none of them is able to capture any other using the standard chess
queen’s moves. The colour of the queens is meaningless in this puzzle, and any queen
is assumed to be able to attack any other. Thus, a solution requires that no two queens
share the same row, column, or diagonal” |2].

2 Backtracking and check function

Solving some algorithmic issues, we use a set of the searched patterns to reduce
the number of calculations. State space pruning trees(backtracking) are used today in
the problem of n queens to reduce the number of nodes. Niklaus Wirth [3] proposed
that method. The results of this operation are presented in this paper as "Basic
Backtracking". This has been the most effective type of structure to restrict the range

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42
54 The N queens problem - new variants of the Wirth algorithm

of research of this problem so far. A general form of the Backtracking algorithm can
be presented as a simple code [3]:

public static void backtracking (node v)
{
//code
if (promising(v))
if (last line) // solution is found
save_solution();
else
for (every node ,,w’’ child for ,,v’*)
backtracking (u);

Fig. 1 shows the search tree using the Backtracking algorithm. The symbol "x"
indicates that the node is not promising and for it further calculations are no longer
performed. The algorithm has completed its work upon finding the first solution, ((1,2)
(2,4) (3,1) (4,3)). If we used the full tree of states to find a solution we would need for
prior checking of 154 nodes, in the case of the Backtracking algorithm it was enough

to check 22 nodes.
sjojole
N
X M

0000100000
X x

Fig. 1. Description of the return-Tree(backtracking) [3].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

Marcin Lajgtar

We can distinguish two types of nodes:

e Promising- -using this kind of nodes we can solve the problem
e Non-promising- broken terms of the solution. For them we do not perform
further operations.

The base of algorithms is to check: "is the node promising?". It is most frequently
called method and it absorbs most of the computing resources at runtime. It is based
on checking “Does the Queen placed on the field "interfere" with any pre-set queen?”.
It is a 100% reliable method and intuitively used.

But what happens if the chessboard is larger? It turns out that the checking-
algorithm has significant influence on the runtime of the base method. So far the
literature lacks interesting solutions. New ways of solving this problem and comparing
it with the classical checking function are proposed in this work.

The general code of checking function is presented below:

Global variables:
int queens[]-array of pre-set queens;
for example: queens[0]= column value of the queen set in the first
row,
queens[1]= column value of queen set in the second row, etc.
Public boolean CheckNode(int row, int column)// with input parameters
of queen position
{
//code
boolean promising= true;
While(it has non check Queens and promising value is true) //comparing
with every pre- //set queen
{
if (the same column, or the same diagonal)
{promising=false;} //queen conflict with the pre-set queen;
¥

return promising; //output value of promising

}

Table 1 shows the number of the call function CheckNode for 4-14 size chessboards
and for their every row. Depending on which row function is called, it has a different
number of pre-set queens to check. For example, for the first (‘0’) row, it has 0 to
check because it is zero pre-set queen. For row ‘1’ it has 1 queen to check, for row ‘n’
it has ‘n’ queens to check. Of course it is not necessary to check ‘n’ nods if we find
before that the checking node is not-promising. The average number of comparisons
shows that this number is smaller than half of size, but this depends on it. It is
very important information, because it also shows that the bigger chessboard is, the
more time is needed to execute the function CheckNode. We do not know how many

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 12/01/2026 06:50:42

56

The N queens problem - new variants of the Wirth algorithm

solutions bigger chesboards have, but we can estimate the upper limit, as Craig Letavec
and John Ruggiero [4] did.

Table 1. Checked nodes.

Dimension

Row\ 4 s le |7 8 9 10 11 12 13 14

0 4 |5 le |7 8 9 10 11 12 13 14

1 16 |25 |36 |49 |es+ |81 100 121 144 169 196

2 24 |60 [120 |210 [336 |s04 |720 990 1320 1716 2184

3 16 |70 |216 |532 |1120 |2106 |3640 |5896 | 9072 13390 19096

4 60 |276 |980 |2752 |6sse |14000 |27148 |48960 |83252 134848
5 240 | 1148 [4544 | 14526 |39160 93412 |202224 |404300 | 756952
6 658 |4400 | 20628 |75520 |234982 | 634272 | 1530022 | 3380776
. 2496 | 18342 | 96320 |409728 | 1441248 |4355130 | 11690784
8 9504 |78280 | 485628 | 2343240 |9200074 | 30966152
9 40400 382514 | 2672640 | 14125384 | 61487832
10 166276 | 1931568 |14973114 | 88522448
11 819168 | 10574824 | 90606208
12 4553926 | 63166908
13 27167000
Sum 60 |220 | 894 |3584 |15720| 72378 |348150 |1806706 | 10103868 | 59815314 | 377901398
ﬂﬁ;ﬁgoﬁz 84 405 | 2016 | 9207 | 46752 | 243000 | 1297558 | 7416541 | 45396914 | 292182579 | 1995957888
Avarage

i‘gg}i’:}'mﬁf 14 |184]2225(2.504|2.974 | 3.3575 | 3.72701 | 4.105007 | 4.4930233 | 4,88474538 | 5.2816896
per node

3 Symmetry

Chessboard is an object of many axes of symmetry. By using this property a lot
of solutions could be obtained after the reflection, or rotation. However, we should
consider how this fact can speed up the algorithm? Here some problems appear. Solu-
tions "reflected" in most cases will not give us knowledge about the point from which
to begin calculations, or upon which end. Implementation of even formation of such
"settings" will lead up to duplicate results. So we can not approach this fact too greed-
ily. The advantages coming from this relation are significant. Based on the possession
of the vertical axis of symmetry we call a function executing only half of the nodes.
The other solutions are symmetrical. This approach allows us to "miss" half a tree of
states, which will reduce the calculation time. This fact is used in all next algorithms.

4 Backtracking ver.1

As already mentioned in Section 2 check function is not a very effective algorithm.
Along with moving deep into tree, longer operations of comparison are obtained. The

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

Marcin Lajgtar

main idea for speeding up the program was to create a method wich will partially or
fully replace the function of checking. That was the idea of creating a boolean array
specifying the column already used. Every time we “put” the Queen, the value "false"
is set in the proper place. That structure is used as a filter that stops executing if
the column is already used. In this way adding a few instructions largely eliminates
the need for call check function. In the objects such as table, a problem with the
transmission of the subsequent recursive cycles appears. It is a very large number of
calls, and copying arrays dramatically increase the demand for memory. The solution
is to create a two dimensional array, instead of one. The second dimension describes
the row for which data is stored. Then the recursive call takes and overwrites only the
appropriate line.

Global variables:
Int dimension;//chess board dimension
Boolean columns[dimension] [dimension];//and filled by proper values

Public static void backtrackingVerl(int row)
{
//copy values columns[row-1][] to columns[row]
for(int i=0; i<dimension; i++)//’’i’’ describes column

{
if (columns [row] [i]==’true’)// column was not used
{
if (CheckNode(i)=true)//call check function
{
columns [row] [i]=false;//column is used now
if (last line) // solution is found
{save_solution(); }
else { backtrackingVerl (row+1); }
}
}
}
}

5 Backtracking ver. 2

Another creative intention was the rejection of having to check each of the nodes
whose column index has been previously used. Such nodes are by definition non-
promising and there is no need to check them. In the previous algorithm, the filter
"stops" calculation. In this case they will be skipped in the declaration of the loop
already. Originally the solution was to be a queue of integers that stores information
about the columns which can still be used. However, this approach is loaded with

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 12/01/2026 06:50:42

58

The N queens problem - new variants of the Wirth algorithm

many problems in transfer of data to subsequent recursive calls. The final result is an
array of integers with the same parameters. For the next row the size is successively
decremented. The transmission array is performed using the lists whose indices indicate
rows of the chessboard.

6 By filtering ver. 1

Looking at the backtracking algorithm verl we can see that we base on exclusion
from the set of possible fields whose columns were previously used. By setting the
queen in a certain place in accordance with the solution rules, apart from column it is
possible to eliminate also the diagonal. Row is not checked, because every time we pass
to the next. Following the clue of elimination of columns and diagonals, we can see that
each field can be described using these parameters. The number of columns is equal to
the "dimension" and the number of diagonals is equal to "2* dimension-1". If we save
already used columns and diagonals in the Boolean arrays, we can completely replace
the need of recall checking function. This approach significantly speeds up calculations
in deeper nodes. Unlike the checking function, the operation for each node in this case
takes the same amount of time.

7 By filtering ver. 2

Considering executing a program, we reach the conclusion that during the recursive
call it is a jump instruction with putting appropriate values on the stack. Upon re-
turning, these values are collected from stack and the next lines of code are executing.
With this idea before entering into the tree, we can remove the columns and diagonals
that have been already used, and after back instruction (while returning the parent
node) to the set the appropriate values to "true"(add them back). For the program
with such assumptions, we need three arrays defining the columns and diagonals used,
but they will not be 2-dimensional just one-dimensional. Now copying parent arrays
to child will not be necessary. This will save us a lot of operations. Operation on a
critical loop in this case will be composed of 3 operations on bits for non-promising
nodes, and for promising of 9 operations on bits. Execution of these operations takes
much less time than copy operations on arrays or making integer operations.

8 Research results

All algorithms are based on the principle of cutting the tree of states. This method
allows to significantly reduce the number of nodes to check. Precise data can be found
in the work of Professor Teslera [5]. The "backtracking ver. 2" also limits the range,
excluding the calculation nodes, whose columns have been already used. In this way
the number of checked nodes is much smaller. In comparison with the other functions,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

Marcin Lajgtar

59

the number of checked nodes is 2-times smaller for a 4x4 chessboard and nearly 4-times
smaller for a 14x14 chessboard.

The application created for research has been done in the Java platform. This is
not the language which should be used if we consider calculation speed. However, for
comparison it is enough to make the implementation within the same tehnology using
the same rules. Persons who would like to accelerate the program will find necessary
information in the conclusions.

The program includes the method with different schemes of search for solutions.
Before calling any of them the counter is activated, and it stops after completion of
calculations. It should be added that time has relative and absolute errors. The
calculations were performed on the Intel Core 2 Duo T5550 1.83 GHz CPU and the
operating system MS Windows XP. Computation time for each call was different. The
reason for that might be for example the occurrence of interrupts from the system
during the computation. These errors were relatively large for the small chessboards.
For larger size chessboards calculation errors, became less significant. Larger 10-18
chessboards will be used in presenting results. All included algorithms are built on the
symmetry relation.

Table 2. Comparison of results.

Dimension: Times in ms:

Basic backtracking| | Backtracking ver.1 | Backtracking ver.2 | By filtering ver.1 | By filtering ver.2
10 16.896095 12.255002 18.970754 12.783468 2.730235
11 97.865232 66.790704 86.597412 69.778515 15.013920
12 329.048245 185.5165947 257.401989 164.302819 69.790155
13 1 850.414229 1:223.245025 1 746.307980 1141.714659 533.501883
14 11 573.996974 6973.351548 9 483.632231 6 059.041489 2623.219152
15 86 234.007953 42 064.092224 57 809.804598 35432.127826 18 264.930599
16 600 858.600464 285 466.713228 374 769.852314 224 476.190130 117 607.564090
17 4966228.215597 | 2309 856.942991 |3 083 093.004278 |1817708.698731 |879 178.312327
18 38 898 236.537884 | 16 686 192.199287 | 21 352 901.948153 | 13 522 508.749855 | 5861 311.315265

In the next table, the information about relative profit by using the algorithms can
be found. It is presented as the ratio of runtime basic function (Basic backtracking) to
the selected method.

9 Conclusions

As follows from the research currently used algorithms for counting the solutions
of N-queens problem are not the most efficient. They are based on the "checking
method" which with subsequent calls into the depths of tree works longer. Partial or
total exclusion of calling this method made it possible to speed up calculations in a
non-linear way, as evidenced by the increase in the value of the ratio in the next board
sizes .

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 06:50:42

The N queens problem - new variants of the Wirth algorithm

60

Table 3. Comparison of results - rounded times.

Dimension: Times:
Basic backtracking | Backtracking ver.1 | Backtracking ver.2 | By filtering ver.l | By filtering ver.2
10 <ls <ls <ls <ls <ls
11 <ls <1s <ls <ls <ls
12 <ls <ls <ls <ls <ls
13 2s 1s 2s Is <ls
14 125 7s 9s 6s 3s
15 1min26s 42s 58s 35s 18s
16 10min 4mindSs 6minl3s 3mind4s Imin58s
17 1h22min46s 38min30s 51min23s 30minl8s 14min39s
18 10h48minl8s 4h38min6s Sh35min53s 3h45min23s 1h37min41s
Table 4. Comparison of results - ratio Basic backtracking to other algorithms.

Ratio
Dimension: Basic
backtracking | Backtracking ver.1 | Backtracking ver.2 | By filtering ver.1 | By filtering ver.2

10 1.000000 1.378710 0.890639 1.321714 6.188513
11 1.000000 1.465252 1.130117 1.402512 6.518300
12 1.000000 1.773686 1.278344 2.002694 4.714823
13 1.000000 1.512672 1.059615 1.620733 3.468431
14 1.000000 1.659747 1.220418 1.910203 4.412135
15 1.000000 2.050062 1.491685 2.433780 4.721289
16 1.000000 2.104829 1.603274 2.676714 5.109013
17 1.000000 2.150015 1.610794 2.732136 5.648716
18 1.000000 2.331163 1.821684 2.876555 6.636439

To speed up the program there should be used a less developed language such as C,
or even implementations on the orders of microprocessor. The style of writing is also
very important. Using references, operations on bits, etc. can significantly speed up
the program as shown in the work by Jeffs Somers [6]. It is worth reading the article,
which offers a multi-threaded solution of that problem [7]. If we are not interested
in finding all the solutions, but only one we should use the heuristic methods. They
are applied usually when we have to deal with the cases where it is hard to perform
accurate calculations. As presented by the Year Sosic and Jun Gu [8], a solution
for really huge chessboards can be found doing fewer operations than presented by
Peter Alfeld [9].One should get familiar with the works [10], [11], [12] and [2], which

contribute largely to the problem.

The study describes the patterns of four new methods for finding solutions:

Backtracking ver. 1
Backtracking ver. 2
By filtering ver. 1
By filtering ver. 2

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 12/01/2026 06:50:42
Marcin Lajtar 61

Each of them brings something new into the problem. Backtracking ver. 2 even reduces
the number of tested nodes. It is possible that implementation of this method in a
different environment with the addition of diagonal filter would provide even better
results than the algorithm "Filtering ver.1" or even "Filtering ver. 2". But the main
discovery is to show other ways to achieve the objective.

Acknowledgement

I would like to express my gratitude to Professor S. Grzegorski for his supervision
and helpful remarks.

References

[1] Lajtar M., Implementacja i poréwnanie wybranych metod w problemie N-krolowych, BSc Thesis
supervision Grzegoérski S., Lublin University of Technology (2011).
[2] http://www.etsi.org/plugtests/grid/Document/N-QUEENS-CHALLENGE-2007-v4.pdf
(01.10.2012).
[3] Wirth N., Program Development by Refinement, Communication of the ACM (1971).
[4] Letavec C. Ruggiero J., The n-Queens Problem, INFORMS Transcations on Education (2002).
[5] Tesler G., n-Queens, Math 188 (2001).
[6] http://jsomers.com/nqueen demo/nqueens.html (01.10.2012).
[7] Ha¢ M., Brzuszek M, Roéwnolegte rozwigzanie problemu N-krélowych z wykorzystaniem standardu
OPENMP, Scientific Bulletin of Chelm 1 (2008).
[8] Rok S., Jun G., Polynomial Time Algorithms for the N-Queen Problem, ACM SIGART (1990).
[9] Alfeld P., The N by N Queens Problem, Univerity of Utah (1997).
[10] Chatham R. D., Reflections on the N 4 k Queens Problem, Integre Technical Publishing (2009).
[11] http://www.academic.marist.edu/~jzbv/algorithms/Backtracking.htm (01.10.2012).
[12] http://proactive.inria.fr/index.php?page=nqueens25 (01.10.2012).

http://www.tcpdf.org

