Performance of algebraic graphs based stream-ciphers using large finite fields
Abstract
Algebraic graphs D(n, q) and their analog graphs D(n, K), where K is a finite commutative ring were used successfully in Coding Theory (as Tanner graphs for the construction of LDPC codes and turbo-codes) and in Cryptography (stream-ciphers, public-keys and tools for the key-exchange protocols. Many properties of cryptography algorithms largely depend on the choice of finite field Fq or commutative ring K. For practical implementations the most convenient fields are F and rings modulo Z modulo 2m. In this paper the reader can find the first results about the comparison of D(n, 2m) based stream-ciphers for m = 8, 16, 32 implemented in C++. They show that performance (speed) of algorithms gets better when m is increased.
Full Text:
PDFDOI: http://dx.doi.org/10.2478/v10065-011-0012-9
Date of publication: 2011-01-01 00:00:00
Date of submission: 2016-04-28 09:03:46
Statistics
Total abstract view - 673
Downloads (from 2020-06-17) - PDF - 0
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 Annales UMCS Sectio AI Informatica
This work is licensed under a Creative Commons Attribution 4.0 International License.